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Thermomechanics of dried materials

Notation

S.J. KOWALSKI (POZNAN)

THE THERMOMECHANICAL behaviour of fluid-saturated capillary-porous materials exposed to
a drying process is examined in the paper. Basing on the balance equations of mass, momentum,
energy and entropy and on the restrictions imposed on these equations by the thermodynamics
of irreversible processes, one develops the differential equations describing the evolution of the
drying body deformations, and the temperature and moisture concentration fields. Several
periods of the drying process are distinguished and for these periods the respective models are
proposed. The presented theory concerns an arbitrary technology of drying, but examples of
boundary conditions are given for the convective means of drying, which is mostly employed
in technology.

W pracy analizuje si¢ zjawiska termomechaniczne zwigzane z przebiegiem procesu suszenia
zawilzonych materialow kapilarno-porowatych. Opierajac si¢ na réwnaniach bilansu masy,
pedu, energii i entropii oraz ograniczeniach, jakie naklada na te réwnania termodynamika
procesoéw nieodwracalnych, wyprowadza si¢ rOwnania rézniczkowe opisujace ewolucje rozkladu
deformacji ciala suszonego, jego temperatury i koncentracji zawartej w nim wilgoci w kazdym
punkcie pola. W procesie suszenia wyrdznia si¢ pewne jego fazy, rozniace si¢ mechanizmem
wymiany ciepla i masy. Dla tych wyrdznionych faz proponuje si¢ odpowiednie modele susze-
nia. Przedstawiona teoria odnosi si¢ do dowolnej techniki suszenia. Przy analizie warunkéw
brzegowych glowny nacisk polozono na konwekeyjny sposéb suszenia, ktoéry w praktyce jest
najbardziej rozpowszechniony.

B paGoTe aHaMH3UPYIOTCA TEPMOMEXaHHUECKHE ABJIEHUSA, CBA3AHHBIE C XOJI0M TIpolIecca CYIIKH
OTCLIPENLIX KAMHIUIAPHO-MOPUCTBIX MaTepuanoB. basupysa Ha ypaBHeHuAx Ganmanca Maccsl,
VMIIYJIbCA, SHEPTHH M SHTPOIHH, & TAK)KE HA OTPAHUUEHHAX, KAKHE HAKIAIbIBAET HA 3TH YPaR-
HCHHUS TEPMOJAMHAMHKA HEoOPAaTHMBIX IMPOLECCOB, BBIBOAATCA AnddepeHIManbHble ypaRHe-
HHA, ONMUCBHIBAIOIHME 3BOJIIONHIO pachpese/eHns AedopMallMH CYLIEHHOIO Tella, €ro TeMime-
PAaTyphl M KOHIEHTPAIHH, COMEPHI<ABILEHCA B HUM BIAXKHOCTH B KaXKJo# Touxe mondA. B mpo-
IIecce CYIIIKK PasJIHYaloTCs HeKOTopbIe ero (hasbl, OTIMYAIOIIHECH MEXaHM3MOM TerurooOMeHa
1t maccoobmena. J[s1 5THX BBIgENEHHBIX (has IIPeIaraloTcA COOTBETCTBYIOIHE MOMEIIH CYIIKH.
IIpeacraBnenHas TeopHs OTHOCUTCA K IMPOM3BOJIBHOI TexHuKe cyiuku. Ilpu ananu3e rpanuy-
HBIX VCIOBMH TIaBHOE BHMMaHHe ofpallaeTcd Ha KOHBEKUMOHHBIN Cocod CYIIKH, KOTOPBI
E TNPAKTHKE ABJSACTCA HaHOOJEE PACNpOCTPaHEHHBIM.

x,[m], X;[m] position vectors,
t{s] time,

u, = (x,—X;)[m] displacement vector of the porous solid
F, = Gradx,(X,, )[I] deformation gradient,

J = detFg[1] Jacobian,
d,[1/s] strain rate tensor,
E;[1] Green strain tensor,
ve[m/s] velocity vector of the ath constituent,
V[in/s] velocity vector of the interface,
%#o,[m3] body volume,
0%,[m?] body boundary surface,
dv[m®] volume element,
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da[m?]

D, (1]

D[1]

o [kg/m®]

0a = 05Pulkg/m?]
Bu. = (Qa/QO) [1]
611]

b, [N/kg]

T, [N/m?]

S[N/m]

T[N/m?]

Pe[N/m?]

P, = —p,D[N/m?]
ug[J/keg]

sq[J/kg°K]

s /kel

e 1I/kel

po = uHug? kel
U,, Fyl1jm3]

Se[J/m? °K]

qy[W/m?]
q‘[W/m]
nelkg/m? s
T,[°K]

8y = Ty — T:[K]
11J/kel
M[N/m?]
A[N/m?]

al [1/°K]

o' [1]
A’[m?/N]
ar [W/m2°K]
ot [kg?/Ims]
Cvﬂt[J/msoK]
oy [J/kE°K]
o¥[1/s]
m¥*[N/kg]
e¥[J/kgs]

Subscripts

WY e W= O

S. J. KowALsk1

surface element,
volume fraction of the «th constituent,
porosity ratio,
true mass density of the «th constituent,
bulk mass density of the ath constituent,
mass fraction of the «th constituent,
specific moisture content,
body force in the ath constituent,
partial stress tensor of the xth constituent,
surface stress tensor,
total stress tensor,
true pressure of the ath constituent,
bulk pressure of the ath constituent,
specific internal energy of the ath constituent,
specific entropy of the a«th constituent,
chemical potential of the ath constituent,
capillary potential of the «th constituent,
thermodynamic potential of the «th constituent,
internal energy, free energy, of the ath constituent, per unit bulk volume of the
reference configuration,
entropy of the ath constituent per unit bulk volume of the reference configur-
ation,
heat flux vector of the «th constituent,
surface heat flux vector,
mass flux vector of the «th constituent,
absolute temperature of the ath constituent,
relative temperature of the ath constituent,
latent heat of evaporation,
shear modulus for the porous solid,
bulk modulus for the porous solid,
coefficient of linear thermal expansion of the saturated matrix,
coefficient of linear swelling of the saturated matrix,
coefficient of expansion of the porous body by the penetrating moisture pressure,
coefficient of the convective heat transfer,
coefficient of the convective mass transfer,
specific heat of the ath constituent at constant volume per unit bulk volume,
specific heat of the ath constituent at constant pressure per unit mass,
production of ath constituent mass,
production of «th constituent momentum,
production of ath constituent energy.

perfectly dry body,
bound liquid,

free liquid,

humid air (gas),
saturated matrix,
fluid,

gas,

liquid,

physical reference,
geometrical reference.
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1. Introduction

A THERMODYNAMIC theory is developed to predict the thermomechanical behaviour of
a fluid-saturated, capillary-porous body during the process of drying. Basing on the balance
equations of mass, momentum, energy, and entropy which used to be employed in mixture
theories [1, 2, 4, 7, 13, 15, 17, 18] and on the restrictions imposed on these equations by
the thermodynamics of irreversible processes, [13, 36, 44, 49], one develops the differen-
tial equations describing the evolution of the dried body deformation and the temperature
and moisture concentration fields.

The theory presented here deals with an arbitrary technology of drying and in this
sense it is of a general character. But the analysis of boundary conditions is mainly accen-
tuated for the convective means of drying which is mostly employed in technology.

This paper is a generalization and continuation of the author’s earlier contribution [22].
The generalization consists in considering the phase transitions not only on the evapora-
tion surface but also inside the whole body, what actually takes place in real processes.
The continuation means here an extension of the previous theory to the so-called second
period of drying. This period, called also the decreasing drying rate period, (see, e.g.,
[20, 33, 42]), was not considered in the paper [22]. In this period for some kinds of dried
materials, the evaporation surface (surface of phase transitions) may recede from the
boundary toward the inside of the dried body. In such a case the problem of heat and mass
transfer is mathematically formulated as that with moving boundaries, which may be
referred to as an example of the Stefan problem [26]. Therefore one considers here a moving
evaporation surface which divides the medium into two regions for which the surface
is a common boundary. The surface is regarded as a singular one at which some thermo-
dynamic fields posses discontinuities. In this regard the considerations shall be mostly
supported by the results presented in the paper [35] and in the monograph [21].

This study differs from other ones dealing with the same subject (see, e.g., [31, 47])
in some substantial questions. Firstly, one takes into consideration here the deformability
of the dried material as a phenomenon coupled to the drying process. This phenomenon
has been taken into account in the drying theory by Lucik [32] and the author [22]. Secondly,
the equations of heat and mass transfer are developed here basing on the fundamental
balance equations and the restrictions implied on the constitutive equations by the entropy
inequality. It leads, in fact, to a concept of heat and mass transfer equations other than
those obtained by utilizing the Onsager principle. Thirdly, one analyses here in detail
the particular periods of drying by performing equations and boundary conditions suitable
for the given period. Thus we obtain here a drying theory which gives rise to mathematical
modelling of the thermomechanics of the drying process in the whole time of its duration.
This paper supposedly does not dwell on all the effects accompanying drying of fluid-satu-
rated porous bodies. The problem is very complex and characterized by various phenom-
ena. Only a theoretical model of drying is shown here which, to the author’s mind,
reveals the most substantial features of the real drying process. It was built basing on
experimental data from the respective literature. The model alone requires also experi-

mental verification and, in particular, an estimation of some material constants existing
in the model.
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2. Description of the medium

Referring to the knowledge of structure of dried materials, [20, 33, 42], we state that

the medium in hand consists of the following constituents:
(i) an elastic porous matrix (skeleton of the medium),

(ii) a liquid bounded physically and chemically with the skeleton (cellular liquid);
the kinematics of this constituent is the same as that of the skeleton,

(iii) a liquid bounded physically and mechanically with the skeleton (capillary liquid)
having its own kinematics,

(iv) humid air contained in the medium in the form of bubbles having also its own
kinematics.

Thus we shall consider a porous medium whose pores are filled up with a three-compo-
nent mixture of the bounded liquid, free liquid, and gas. We assume the pores of the
medium to be intercommunicating void spaces; thus there exists the possibility of migra-
tion of the moisture through the medium. The dimension of the pores is greater than the
intermolecular distances (i.e. 1078 cm) and smaller than the dimensions excluding the
capillarity (i.e. 10! cm). Dried materials most commonly found, e.g., ceramics, have
such dimensions of pores.

The peculiar constituents will be marked out with the indices o« = 0, 1, 2, 3 referring
to the porous matrix, bounded liquid, free liquid, and gas, in that order.

According to the averaging procedure (see, e.g., [15, 41, 47, 48]) we assume that each
constituent is characterized by the intrinsic volume average mass density (true mass den-
sity) g% and the bulk (partial) mass density g,. They are related to each order by

(2.1) Oa = q)agé,

where @, is the volume fraction representing the volume of the ath constituent per unit
volume of the medium as a whole.

Therefore
:
2.2) N, =1
x=0

From here we state that the quantity

3

\ 1
(2.3) D=1-0, = ) P,

a=1

is the porosity ratio of the medium. Determination of the volume fractions is possible.
The amount of bounded liquid can be determined by sorption and desorption isoterms
analysis or by measuring changes of thermal or electrical conductivities. The amount of
free fluid is determined by the permeability coefficient for a given porous material. The
amount of gas in the medium can be determined by the weight, acoustics, X-rays or other
methods.

We shall use in our study the notion of specific moisture content defined as

(2.4 p= Qrteatos = 0,+0,+0,, B o= o

] Qo
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The mean velocities of the constituents obtained by utilizing the mass average operator,
[15, 41], will be denoted by v,,x = 0, 1, 2, 3. According to the previous assumption,
vy = Vo

The thermodynamic system in our consideration will be the interior of the body sep-
arated mentally from the medium by a regular and closed control surface fixed to the po-
rous solid. The porous solid plays here the role of diathermous, open, and deformable
“container” for the moisture. The moisture flux through the control surface is determined
by
(2.5) Ne = 0a(Va— Vo).

The change of constituent mass due to phase transition will be denoted by o¥, but g§ = 0.
The partial stress tensor for the ath constituent of the moisture is assumed to be isotropic,
1.e:

(2.6) Ty = Pl = —p, @, I for «=1,2,3,

where p, denotes the true pressure of the ath constituent and I is the unit second-order
tensor.

3. Description of the drying model

A possibility of determining the drying process is provided by measuring the change
in weight of the dried material. In this way the curve of drying is drawn up as it is scen
in Fig. 1. This curve shows that the drying process consists of several periods which differ
from one another in the mechanisms of heat and mass transfer. Generally, each drying
process can be divided into the constant drying rate period (Period I) and the decreasing
drying rate period (Period II).

constant drying  decreasing drying
rate (I period) ! rate (I period )

6, | )
~— ] :4
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Fic. 1. Curve of drying of fluid saturated capillary-porous material.
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In Period I the free liquid is removed. We take into consideration three important
mechanisms in our model concerning Period I:

(i) the migration of moisture from the interior of the dried material out to the surface,

(ii) the evaportation of the moisture from the surface of the dried material,

(iii) the growth of gas bubbles inside the dried material. The gas bubbles are very
small when the porous material is fully saturated, 6 = 0. Because of the surface tension,
they are stuck to the pore walls, [16]. In the course of drying the bubbles grow and finally
reach the dimension of the capillary-pore. At this time the stream of liquid flowing from
the interior out to the surface of the dried material breaks. We assume that at this moment
Period I passes to Period II of drying. This occurs when the moisture content reaches
the critical value 0 = 6,(%).

Two different mechanisms of drying are possible in Period II:

(i) the evaporation surface recedes from the boundary toward the inside for nonhy-
groscopic materials and gross pores, or

(ii) the evaporation of the physically and chemically bounded liquid proceeds from
the pore walls in the whole pore space and, next, diffusion of the vapour toward the outside
of the material takes place. This mechanism is referred to as hygroscopic materials.

The end of the drying process occurs when the moisture content reaches the equilib-
rium value with the surrounding atmosphere, 6 = 6,.

It is worth pointing out here that the temperature of a dried material increases quickly
in the preheating period from the initial value & = &, to the wet-bulb temperature
©# = @y; next it is kept fixed during Period I and increases to the value of the surrounding
atmosphere ¢ = ¥, at the end of Period II. All these mechanisms of heat and mass transfer
mentioned above will be taken into consideration in this paper.

4. Balance equations for Period I of drying

This section contains a brief introduction to the balance equations appropriate for
the drying theory in Period I or in Period IT for the case of hygroscopic materials, i.c.,
when there is no singular surface inside the dried material.

Consider now a moving three-dimensional body #(¢). Let us separate mentally from
the body an arbitrary three-dimensional part %,(z) bounded by a regular control surface
O0%,(t) being fixed to the skeleton grains and oriented spatially by the outward directed
unit normal vector n, Fig. 2. We shall consider %,(¢) for the thermodynamic system. Thus
the thermodynamic system is open, diathermic, continuous and moving with the velocity
field vq(x,, 1).

The time derivative of a time-dependent measure of thermodynamic quantity ¥,()
referred to the constituent « and having the volumed ensity ,(x,, f) can be expressed as

a*,(r) .
CRY] —d:_ = f [wa(xs, t)dv] + f Yo(X., 1) [Va(Xs, 1) —0o(x;, 1)] - nda.
Bo(r) Ao (r)
(*) For some materials the second critical point K, on the drying curve is distinguished. From this
point strongly nonlinear reductions of drying rate take place.
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FiG. 2. Control volume for analysis of moisture flow through a porous body.

The first integral in Eq. (4.1) expresses time changes of ¥, () in the moving region %#,(1),
the dot denotes the time derivative with convection velocity v (x;, #).

The second integral in Eq. (4.1) describes the changes of ¥ (¢) as a result of the net
outword flow of the constituent « across the control surface.

Using the theorem of measure transport, [41],

(4.2) do = divvydo,
and the divergence theorem, we rewrite Eq. (4.1) as follows:
I - . .
4.3) 0] = J [+ padiv vo + divye(ve — Vo)l do.
dt Bo(r)

In continuum thermodynamics a general balance statement for a body #,(¢) is given
in the form, [49],
_d“ll’a(t) -

4.9) o = AN+ FE)+PF)+D(Fy).

In Eq. (4.4) A(¥,) is the efflux of ¥, through the boundary of the body having the following
representation:

(4.5), AW = [ Au(w)da.

B (1)

F(¥,) is the supply of ¥, in Bo(t),

(4.5), P = [ sudv,

Fo(t)
and #(¥,) is the production of ¥, in %,(?),

(4.5 | PW) = [ prav.
Ao
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2(YV,) is a measure of long range interaction and is assumed in our considerations to be
equal to zero.
We assume the flux principles

(4.6) Ag(m) = A, - n,
and apply the divergence theorem to rewrite the efflux (4.5), as follows:
@4.7) AW = [ diva,de.

Holr)

Thus the general balance equation (4.4) can be written in the local form
(4.8) Yo+ Wadivyy = div[Ag— wu(Vy— Vo)l + 54+ Pi.

Special equations of balance will be obtained using the notation introduced in Table 1,
where u, is the specific internal energy of the «th constituent, T, is the partial Cauchy
stress, {, is the heat flux vector into the «th constituent through the surface dZ,(r).

Table 1.
e Ya l Ay l S5 pE
S—— o — ! — | | —
Mass 0 0 10 0. 0%
Momentum 0uVa Ty | 0Dy | 0aMy
1 f ‘
Energy O (”m + ? Vo ! va) TovVe— e ‘ 05 (ry by * ¥y) | (M4
| |

Because of the mass efflux through the surface 64,(¢), the heat flux ¢, consists of q, as if
there were no mass efflux and is diminished by the total heat transported by the mass
eflux n,s, T, i.c.,

(49) ‘Dla' = Q¢ —NaSa Taa

where 1,, s,, T, are the mass efflux, specific entropy, and absolute temperature of the
ath constituent, respectively. Further notations in Table | are: b, is the partial external
body force density, r, is the external heat supply density and pf, m¥ and e} denote, res-
pectively, the internal mass, momentum and energy production densities due to the exchange
of these thermodynamic quantities between the constituents.

The equations of balance of mass, momentum and energy read as

(4.10) Oat0adivvg = —divn,+o.0¥,
(4.11) @;+inadivvo = div[Ta— 04 Va® (Vo — Vo)] + 0u by + 0. m%,

e
(4.12) o, (ua+ 5 V' va)+ga(ua+; Vi * vc,,)divv0 = div [Tava—f‘h

1
— 04 (ua:“" "2_ A\ va)(va_vo)] +Qa(r¢+boz' Va)+9u9§,
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where
3 3 3
3 3
4.13) 3;%9:: =0, %oami‘ =0, _S,;gaez‘ =0
a= o= a=
must hold.

We rearrange Eqgs. (4.10) to (4.12) writing these equations separately for the porous
body and for the moisture contained in pores. Thus we have for « = 0

(4.10), 0o +00divyy = 0,
(4.11), 2oVo = divTo+gobo+oomg,
(412)1 Qoilo = trToLo—divqo']'goro'*‘goéo,
where
(4.13), Lo, = gradv,
is the velocity gradient of the porous body, and for . =1, 2, 3
(4.10), 000, = —divnl+o.0%,
’ 1 A
(411)2 va+"2' Q:(Va"’o) == _grad:ua'{'ba'i'mas
4.12), 00 f;a == Padivvo+go,uge;—divq“+gara+ga(2—g§f te) = Ne * m,,

where i, = 0,u, is the specific internal energy of the ath constituent referred to the mass
of the porous solid, and

(414) Moy = ua_SmTa—_l—Pa

o

is the thermodynamic potential of the «th constituent. As it is seen, in Eq. (4.11), we
have made the moisture potential gradient responsible for the moisture motion. The
new internal momentum and energy supply densities m, and e, for « = 1, 2, 3 are related
to the old ones by

(4.15) fo. = mi +gradys, + - grad P, - :'2 o (Vat Vo),
Qo

(4.]6) 2’ = €:+Qa\’0 . "(_)/2“[]“&k * VO,

and must satisfy the conservation principles

3 3
4.17) 00m5+2 oM, =0 and )_:ga'é = 0.
ax=1 =0

In Eq. (4.11), v} denotes the acceleration of the ath constituent for & = 1, 2, 3.
We introduce now the equation of balance of entropy for the medium as a whole.
If s, denotes the entropy density for the ath constituent, then

3
(4.18) S = J Zgasadv

Bo(t) =0
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defines the total entropy for the medium. Its time changes read

as _

(4.19) =

3
J 2 (0x Sz + 025, divo + divs,n,) de.
Bo(r) =0
The total entropy consists of a part S, that can be exchanged with the ambient medium
and a part S; that can be produced inside the body. In agreement with the Clausius-Duhem
postulate, the rate of changes of these entropies must satisfy the inequality

dS;
dt
Since the processes close to the equilibrium state are considered here, then the entropy

exchanged with the ambient medium is assumed to be equal to the whole nonmechanical
power exchanged with the ambient medium being referred to the absolute temperature, i.e.

3 :
S M- [ L. [ )
4.21) P ( T, nda + T, %)

a=0 oBo(t) Bo(n)

d
(4.20) = W (S—‘Se) ; 0

Using Eqs. (4.19) and (4.21), we can write the local form of the inequality (4.20) as
3

A . o Oulo
4.22) Z (go Sy +div % - %) =0,

=0
where §, = 6,5, is the specific entropy of the ath constituent referred to the mass of the

porous solid. It follows from Egs. (4.12),,, and (4.22) by elimination of (divg,—0,7x)
that

3
- . .
429 oo+ > A}»-[—goaa+trTmLo+gouaaa——;‘f-gradn

=0

N * ﬁ1x+91(2x—9:!‘a)] =0,

3
where s = ) 5, is the total entropy of the medium referred to the mass of the porous

=0
solid.
We shall use the inequality (4.23) to draw some conclusions concerning the constitu-
tive relations and, in particular, the heat and mass transport equations.

5. Constitutive relations for dried materials

The deformations of dried materials are caused by both humidity and temperature
action. They are not usually due to mechanical forces except in some particular cases of
drying as wringing or centrifuging. Drying processes, however, are always accompanied
by the internal mechanical forces inducing the drying stresses. These arise as a result of
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nonhomogeneous distributions of the moisture content and temperature. When these
parameters are constant in the whole body, the drying stresses do not appear.

Now we shall derive the constitutive relations allowing, among others, the determina-
tion of drying stresses. The description of a nonequilibrium state is provided by the adop-
tion of the principle of local state (see e.g. [50]) which recognizes that each of the inde-
pendent thermodynamic properties y, of the equilibrium end-states must now be replaced
by an instantaneous field y,(x,, f). Furthermore, the principle of local state asserts that
the continuous system can be thought of as a collection of elementary (open) subsystems
each of which undergoes a quasi-static irreversible process, and that the fundamental
equilibrium equations of state remain valid locally and instantaneously. The principle
of local equilibrium state is justified for its application to quasi-static processes, i.e., when
the gradients of intensive functions or the differences between intensive constituent par-
ameters of a multicomponent (or multiphase) system are small and when they change
their local values in a sufficiently long period of time in comparison to the relaxation
time.

In such a situation the Gibbs equation can be assumed to be valid. For the medium
at hand this equation reads

3

; ) | 2
(51) 005 = Z ]T' [Qoufx—eruLo_QO,uaaa]'

=0

Substituting Eq. (5.1) into the inequality (4.23), we obtain a residual inequality of the
form

(5.2) Z [—--f 0a(€x — 0¥ pta) — Z ( T - grad T+, - my )

=0

= 0.

The first sum in the inequality (5.2) expresses the entropy production due to an exchange
of heat and mass between the constituents. The second sum in the inequality (5.2) performs
the entropy production due to conduction of heat down the temperature gradient and
due to the flow of moisture while there exists resistance of motion (e.g. viscosity).

As the individual sums in the expressions (5.4) have different tensorial representations,
they ought to be positive defined independently, i.c.,

3
‘ | 1 A
> [f ga(ea—gzmm—T)+9ag:(ua—m] >0
(5.3) *=e

3
S .

—Z 7 [~;]_ -gradTa+na-ma] =0,
a=0 -3 -3

where T and p are the full equilibrium temperature and the full equilibrium moisture
potential, i.e., the temperature and the moisture potential the whole system would have
had after a sufficient lapse of time when isolated. It is known (see, e.g., [12, 43]) that in
any equilibrium state the peculiar temperatures and the chemical potentials for mixture
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constituents must be equal to each other. Temperature T and potential u can be defined
here, for example, as

(5.4) 7= (Y 1s)| Yo u S(Zauaaa) [ 3t

DuNwoobpy and MULLER [11] suggest other possibilities of defining the mean temperature

for the mixture,
Assuming the inequalities (5.3) to be positive defined quadratic forms, we obtain the

following rate equations:
(i) the rate of heat alteration of the ath constituent due to heat exchange between the
constituents
l A m
(55)1 "T‘* Qu(&z‘@f#a) = ~A;-(T:x_T)"‘-/lm (,”'a—'/u)g

x

with A% = 0;

(ii) the rate of mass alteration of the «th constituent due to phase transitions between
the constituents
(5.5); 0g0% = — I (Tu=T)— 13 (ua— ),
with I'f = 0and I'§ = 0;

(iii) the rate of heat conduction through the a«th constituent
(5.5)5 Q/Tw = — Az grad T, — An,;

(iv) the rate of internal momentum supply

(5.5), m = —yg grad T, — yi'n,.
The coefficients appearing in the relations (5.5) must satisfy the following (Silvester)
criteria:

Ag 20, ATTE > (AZ+T5)*4,
(5.6)
=

M=0, Alyr> (Ar+yD?/a.

To fulfil the criteria (5.6) for each possible process, some additional restrictions have to
be imposed on the transport coefficients, namely, the symmetry, [22],

5.7 Ar =TT and 12 =yl.

In many cases these coefficients can be assumed to be equal to zero (when neglecting for
example the Dufour effect). Generally, they depend on the parameters of state.

The heat flow in moving in pore-space moisture is caused both by conduction and by
convection. Assuming A; = 1,/T, and — A} = s, = ¢pe0,/T,, where c}, denotes the
specific heat of the ath constituent at constant pressure and ¥, = T, — T, is the relative
temperature of the ath constituent, we obtain from Eq. (5.5); a generalized equation for
heat flux suitable for filtration problems:

(5.8) qy = — Aegraddy+cpuOyny, o 2 0.
The second term in (5.8) describes the heat convected by the moisture. If it there wasn’t

any relative motion through the porous matrix, Eq. (5.8) would be reduced to the known
Fourier rate equation.
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Substituting the right hand side of Eq. (5.5), into the equation of motion (4.11),, one
obtains the following form of moisture transport equation for « = 2 and 3:

(5.9) Vot ¥E(va— Vo) = —gradu, +b,—yl grad Ty,
where y¥ = o,y +0%/2. In most cases of drying (except perhaps centrifuging), the accel-

eration v, can be taken as negligibly small. Then, it is convenient to write the moisture
transport equation in the form of the moisture flux

(5.10) Ne = —7algradp, —b,)—yi" grad Ty,

where y, = 1/(yr+0¥/20.), y&" = y1yx. Such a form of moisture transport equation
together with the mass balance equation (4.10), leads to the thermodiffusion differential
equation describing moisture distribution. We see that in the case of moisture potentials
being equal to gravitational potentials, the first term on the r.h.s. disappears and the mass
flux is due to the temperature gradient (thermodiffusion).

Now we come back to Gibbs’ equation (5.1) which helps us to establish some physical
3 3

relations. Note that s = > 5, (or § = ) 5,) and therefore we can make on the basis
a=0 a=0

of Eq. (5.1) the following identity:

(5.11) Se = %u[a“_;o trTmLO—yaQaJ.

At this point we make an assumption that the temperature of the porous matrix T, is
equal to the temperature of the bound liquid 7 all the time during the course of drying.
Such an assumption is justified by the fact that both these constituents move together all
the time. Moreover, it is sensible to treat the porous matrix and the bound liquid as one
whole, The reason for that is that the wet matrix has usually quite different properties
than the dry one. Therefore we will henceforth speak of three (not four) constituents:
saturated skeleton marked off by the index s, free liquid 2, and gas (humid air) 3. Thus we
have the following Gibbs equations concerning the respective constituents:

N ] . :
(512)1 “s = trTsds+Ss Ts+#1 01:

0

for the saturated skeleton, &« = s = “0”+“1”, and

(5.12), {\la = _Ol Patha divog+ 5y Tu+paéa,
<o

for « = 2 and 3, where u, = wo+0,u,, s, = so+0s,, T, = To+P,I, v, = Vv, = v,, and

(5.13) d, = ; (grad v+ (gradv,)")

denotes the strain rate tensor of the saturated skeleton.

Note that the deformation of the moist body is determined here by the deformation
of the saturated matrix. It makes it possible to relate Gibbs’ equation (5.12) to the reference
configuration of the porous matrix and write
(5.14) U, = rTRE,+ 8, T, + 1,6, for o« =s,

U, = —pmb:g;+S.,_Tm+y¢9.q for o«=2,3,



S. J. KowALsKI

136

where
Ua = Qg:lg, Sy = Qgscu Qa = Qgecu djg = d)a'] and Qg = QOJ

are: internal energy, entropy, mass, and volume fraction of the ath constituent, all per
unit volume of the porous body reference configuration, and J = det F; is the determinant
of the deformation gradient F; = Grad x,(X., ¢). Furthermore

(5.15), T = JF ' To(F )T
is the second Piola-Kirchhoff stress tensor,
(5.15), E, = F.d,F;!

is the time derivative of the Green strain tensor E,, and
. df ;
(5.15)4 E, = ®Rdivv,

expresses the time alteration of the whole porous body volume caused by the pressure of
the ath constituent.

We shall assume that the thermodynamic state of an individual constituent will be known
if E;, T, and @, for « = s and E,, Ty, @, for « = 2, 3 are known. For thermal processes
it is convenient to express the Gibbs identities (5.14) with the help of the free energy Helm-
holtz function

(5.16) FEy-sr,

to obtain

(5.17), F, = trTRE,— S, T,+ 1,0, for o« =3,
(5.17), Fy= —puby—SuTutpa®y for a=2,3,
where

(5.18), F,=F,E,, T,,0,) for a=s,

and

(5.18), Fi = Fu(Ex, Tx,0,) for o =2,3.

In order that the function (5.18) satisfy Gibbs’ equation (5.17), it is necessary and
sufficient that

oF,
(5.19), S, = _(ﬁ:)s,.e. ,
oF,
19 R = =
(5 )2 Ts ( ('}Es )Tpel ’
oF;
(5.19)3 tul - (a@l )Es_‘r. E]

for @ = s and

i O0F,;
(5.19), P = '( oE, )Ta,ea’
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(5.19)s S, = —(_a_FE-) ,

(5.19)6 fhy =

|
Sle
Q| ®
S|
S ———
&
a

for « = 2, 3. These are the equations of state.
Basing on the tensor representation theorem, we write the stress-strain relation as
follows (see, e.g., [46]):

(5.20) TSR = (p11+(p2 E5+¢73trE5Es,

where ¢, k = 1, 2, 3 are the material constants. We must remember that the deformation
of a porous body consists of deformations of the matrix material and of deformations of
the pore voids. In the absence of external mechanical forces, these deformations can be
induced by the thermal expansion and by swelling of the solid matrix. The swelling is due
to the presence of a second constituent (moisture) dispersed within the solid matrix (which
belongs to the skeleton structure). CowiN [8, 9], ascertains that there are at least three
ways by which the second constituent can cause the solid matrix to swell. The first way
is by changing the concentration of the second constituent at constant specific volume,
an example of which is the absorption of water by a microporous solid. The second way
is by changing the specific volume of the second constituent at constant concentration.

Examples of this second way include soil heaving due to freezing of internal water,
and the swelling induced by the thermal expansion of small, distributed gas bubbles within
the solid matrix. The third way is simply a combination of the first two. An example here
is the drying of most microporous materials where a change in phase of the second con-
stituent from liquid to gas accompanies the process.

Thus the material constants depend on the temperature T, moisture content &, and,
in general, on the strains. For isotropic material

(520)1 P = (pk(IE’ IIEv IIIE: Tsa @1)5 k= 1, 2a 3

where Ig, Ilg, III; are the invariants of the symmetric Green strain tensor E,.

For small deformations the term trE E, in Eq. (5.20) is a second order small quantity,
and the difference between the Cauchy stress tensor T, and the Piola-Kirchhoff stress
tensor TR is negligibly small so that one can approximate the stress-strain relation with
a linear form with respect to strains. It is easy to state that for such a linear form ¢, =
= w, +y, tr E; where the material constants now depend only on temperature and moist-
ure content. For zero moisture content and isothermic processes %, ought to be equal
to zero and the stress-strain relations become the familiar Hooke’s law. Therefore we
identify @, = 2 M, with M being the shear modulus and y, = A being the bulk modulus
of the volumetric deformation for the fluid-saturated porous body. The linear stress-strain
relation has then the form

(5.21) T, = (y; +AtrE)I+2ME;.

Consider the situation when the total stress in the wet medium as a whole is equal to
3

zero, ie., T = T,+ 2 P, = 0. Then the deviatoric components of the stress in the
a=2

2 Arch. Mech. Stos. 2/90
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saturated solid matrix are equal to zero and its spherical part is equal to the partial pressure
3

of the gas and free fluid constituents, i.e., T,- I = —3 Z‘ P,. Deformations of the satu-
a=2

rated solid matrix then occur as a result of thermal expansion, swelling and compression
by the free liquid and gas

3
(5.22) (trE)r—o = el 0, +3a70, +34" D P,,
a=2

where T and a7 are the coefficients of linear thermal expansion and linear swelling for
the saturated solid matrix, and A’ is a coefficient measuring the volume deformations of
the moist body caused by both free liquid and gas in pores. Carrying out a mental experi-
ment it is easy to state that an increase of the real pore pressure must cause an increase of
the porous body volume, and therefore 4’ < 0, as P, = —p, @, < 0.

In order to make this discussion more specific, let us quote an example of wood descri-
bed by Cowin [8, 9]. “The internal liquid in wood is classified as either liquid that is free
and liquid that is bound. The free liquid can move freely between the pores of the wood
and its movement does not involve changes in the overall volume of the wood. On the
other hand, the movement of the liquid designated as bound does involve changes in the
volume of the wood. When the moisture content of wood is progressively reduced, the
moisture content at which the cell walls are completely saturated, that is to say all the
bound water is retained but no water exists in the cell cavities (no free water), is called the
fiber saturation point. For wood the fiber saturation point represents about 309/ moisture
content. The fiber saturation point is generally considered to be the moisture content below
which the physical and mechanical properties of wood begin to change as a function of
moisture content”.

In contrary to Cowin’s statement, we have assumed in the present paper that the free
liquid can also involve the overall volume deformations of the porous body but only
through its pore pressure.

Basing on the above statements, we determine v, in Eq. (5.21) and write the linear
stress-strain relation in the form

3
(5.23) T, = 2ME + [ AUE,~ o7 8,— 576,50 Y Po]I,
a=2 ’

where
xl = QM+34)al, #' = (2M+34)e and P =1+(2M+34)A4".
Assuming the free energy functions for the individual constituents to be quadratic

forms with respect to its arguments, we find the following shapes for partial entropy of the
saturated skeleton:

(5.24), 8= f CT dT,+ T trE, +b70; ,

5

for the potential of the bound liquid
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(5.24), p1 = (b 3 —x]trE,+ 55 0:) /00,

and the partial entropies, constituent pressures, and the moisture potentials for « = 2
and 3:

Ty
(524)3 Sa: = f c;j.a dTa+a;Ea+b;-8aa
Toar *
(524)4 Pa = ﬂlﬁ;—afEm-Fﬂ&"Ba,
(5.24)s e = (—b By —ay E,+b7 0,)/0,.

The unknown coefficients al, af and a7 determine the change of the constituent pressure
(measurable quantity) by: change of temperature at constant E, and 6,, change of volume
fraction at constant T, and 0,, change of constituent content at constant T, and E_, in
that order. The coefficient ¢, is the specific heat of the «th constituent at constant volume
per unit bulk volume, and the coefficient 5] /o, is a meassure of specific entropy of the
ath constituent (see [51], p. 115). By phase transitions b2 /o, may express the latent heat
referred to the transition temperature (see [33] p. 112). The coefficient bf/p, expresses
a density of the moisture potential. Below is an example of how b7 can be determined in
the case when g, plays a role of capillary potential.

A Ax1071
200
I- sand - 15m
T I - sand with clay g
S, 150 3,
be 8
> Q
= 110 X
5 w4 S
T [
o MG 2
Q bmax E | QU
g >
(g
Q (s]
-ﬁ“ 50 3
S o S
hlﬂ'”ﬂ

6l%]

Moisture confent

Fi1c. 3. Capillary potential versus moisture content.

Figure 3, which is redrawn from Lykov [33], shows the height of acclivity of moisture
in a sand sample. The lower boundary surface of the sample is immersed in water which,
due to capillary forces, ishovered toward the top. Due to different dimensions of the capil-
lary-pores, the height of acclivity varies in individual capillary-pores (lower in capillaries
having a larger cross-section and higher in smaller ones). Thus the moisture distribution
varies with height. Conversely, we can say that the height of wetting depends on the moist-

2%
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ure content (maximal wetting is for A, equal to 0). The capillary potential is defined as
(see [33] p. 65)

(5.25) u? = —pijos = [hy™ —hy(0)1g = b% 0.,

where pg denotes the capillary pressure, g; true mass density, h3** maximal height of
acclivity, h,(0,) height adequate to the moisture content 0,, g is the gravitational accel-
eration, and (see Fig. 3) b7 = (hF¥**—h3'2)/(05—0%). Here 03 denotes the saturation humid-
ity, i.e., maximal value of 0, in a given condition of wetting, and 0¢ is a minimum value
of 6, (practically equal to zero) called equilibrium humidity.

Thus, knowing the moisture content in a given point of the medium, we can determine
the capillary potential in this point.

The semi-empirical Leverett function (see [40] p.47) gives also a possibility to determine b7.

The potential u, is a quantity responsible for the transport and phase transitions of
the a-th constituent. Indeed, it consists of the chemical potential ug* and (say) capillary
potential ug*®

(5.26) P = pa"+pe'P.
The chemical potential ug* = u,—s, T+ ps/e% is responsible for the phase transition, and
the capillary potential ug®™® = —pj3/ok is responsible for the transport of the moisture.

Such a decomposition of the potential u, is possible due to splitting of the pore pressure
into the equilibrium pressure pg, i.e., the pressure the moisture would have if there were
no any surface tension on the interfaces, and the additional (capillary) pressure pg caused
by the surface tension (see [43)]), i.e.,

(5.27) Pa = pa—Ppa.

In general, the pressures p', p%, p4 differ from each other. The difference between p3
and p% results from the surface tension on the bubble surfaces. The difference between
P, and pb (wedging pressure) is due to the attraction of the bound liquid by the solid
(see [33], p. 31).

The formulae (5.24), however, do not distinguish chemical and capillary potentials
or quilibrium and additional pressures but describe the total values of these quantities
expressed by the parameters of state. Specification of the constants appearing in these
relations must be carried out each time, depending on the phase of the drying process
as the mechanisms of heat and mass transfer in several periods of drying are different.

6. Final set of equations

Now we put together the basic equations of the theory. We do not deal any more with
special cases of drying where the inertia force has a meaning (e.g., centrifuging), but with
the drying that occurs as a thermal process.

From the mechanics point of view we must differentiate two groups of drying materials:
those which suffer the main deformation in the first period of drying (e.g., clay), and those
which do that in the second one (wood, coal, charcoal) (see [33] p. 185). The first group
can be termed as colloidal bodies, and the second one as capillary-porous bodies.
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As for the moist colloidal bodies (elastic gels), one states (see [33] p. 7) that they change
strongly their dimensions together with the change of moisture content. Therefore we do not
differentiate here between the bound and the free liquid and assume the phase transition to
take place at the boundary surface (not inside of the body). Thus we consider the colloidal
bodies as a moist matrix the drying of which can be described by the following set of

equations:
(i) mechanical equilibrium
(6.1) divTi+ob =0, o= go(1+6),

(i1) physical relations
T, = 2ME+ (AtrE,— »7 & — 7 )1,

(6.2) u = (—bTH—a™rE,+b™6)/o,,

(iii) geometrical relations

(6.3) E, = % (gradu,+ (gradu,)"),

where u, denotes the displacement vector of the dried body.
(iv) moisture mass balance equation

(6.4) 000 = —divy,
(v) balance of energy (heat)

(6.5) Cos D+ T(thrE, + b"'ﬂ') = —divq,+o,r;,
(vi) moisture transport equation

(6.6) n = —y(gradu—b)—y"grad?,
(vii) heat transport equation

6.7 q, = —Agradd+cpdy.

The number of equations can be reduced if the physical relations are substituted into
the mechanical equilibrium equations and the equations of balance of mass and energy
are combined with the moisture and heat transport equations. Thus we obtain

MV’u,+(M+A~x:" f;)graddivu,_(xs + =7 i7—)grad1‘!—r§' o gradu+osb = 0,

b S opm a
Y Qo br . a" .
6.8 Vi = e
(6.8) e \% Bt o o divis,
" b ( T)2 i
AVEY = T,p0 — 5 pt+{cos+T, - g B+ T +bT—— diva,.

This is the set of linearized equations with the unknowns: u,, # and u. For a univocal
character of these equations the initial and boundary conditions must be added.

The initial values determine the values u,, & and u at ¢ = 0. Among the number of
boundary conditions, there are those describing the heat and mass transfer at the boundary
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9%, e.g., for convective drying they are:
(6.9) ar(a—Pog) = — Agradd|se- n—lygradulase - m,

m(pta— ilo@) = —ygradplse - n,
where ar and «,, are the convective heat and mass-transfer coefficients, , and g, demote
the temperature and the transfer potential of the surrounding atmosphere, and 7 is the
latent heat of vaporization.

In the case of capillary-porous bodies the evaporation of moisture occurs in two stages:
first the free liquid and next the bound liquid is evaporized. The deformation and the
temperature of a dried material during the first stage (I period) can be taken to be invariable.
The differential equations governing the drying process in this stage reduce themselves
to mass transfer equations. We then have

(i) moisture mass balance equations

(6.10), 0000 = —divi+o.08, a=2,3,
(ii) moisture transport equation

(6.10), N = —yu(gradpa—bs), a=2,3,
(iii) moisture phase transition rule

(6.10), 0208 = —IT(pa—p), =23,
(iv) moisture potential

(6.10), Ho = Cut+ba0,, a=2,3,

where '

by = b2 l00, Ca = —(baPu+az E)/oo = const.
and 3, is the wet-bulb temperature.
The differential equation describing the moisture mass transfer can be expressed by
the moisture content or by the moisture potential. Using the latter quantity we have

(6.11) > i = 7V — TP pp)s &= 2,3,

The boundary condition determining the mass transfer between the dried material
and the surrounding atmosphere has a form similar to Eq. (6.9),. Note that because
0:0%+030% = 0, we find on the basis of Eq. (6.10);

3

(6.12) w2

The differential equations governing the drying process in the second stage (Period )
are more complex since the temperature and the deformations of the dried material do
not remain constant. We shall consider first a material with small pores, i.e., not having an
evaporation surface inside the body. The free liquid is assumed to be absent in this stage
and the drying involves here the removal of the bound liquid. This liquid is first evapor-
ated inside the body and next, as a vapour, moves toward the outside of the body.
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As the inertia forces are neglected, it is convenient to write the equation of mechanical
equilibrium for the medium as a whole:

(6.13) divT+pb = o%n; ~ 0,
where T = T,+ P;I is the total stress tensor and ¢ = o,+0; = o, is the mass density of
the medium as a whole. The total stress tensor can be expressed on the basis of Eq. (5.23) as
(6.14) T = 2ME+ [AtrE,— 2T 8, — %70, — (7 — 1) P4]1.
The physical relation for the pore pressure is given by Eq. (5.24),. As the vapour fills
now the whole pore space, we can assume ¢; = const and write Eq. (5.24), as follows:
(6.15) Py = —a%d;+d5trE,—a%0;.
where

ai = aips, di =ai(py)?, d% =dip,
and in place of E; we substitute E; = ¢ tr E,.

Mass transition determines the mass balance equations

20; = 0s0%,
(6.16) h ] i . .
0003 = —divys +e303, 0107+0s0% =0
and both the mass transition rule (5.5), and the mass transport rule (5.10) for & = 3.

The heat transfer is determined by the energy balance equations reduced to

(6.17), Cos Byt TP T E +b7 0,) = —div g, + 0,7, 400 €0 +01 (6, — 0% p1y),
and
(6.17); o33+ Ty(alpstrE +b503) = —divas+osrs+03(65—0% pa)—n; - My

and by the heat transition rule (5.5), and heat transport rule (5.8). The interaction force
m, is determined by Eq. (5.5),.

To complete the set of equations the physical relation for the moisture potential (5.24),
and (5.24); for @ = 3 must be added. After neglecting some coupling effects similar to
that of the Dufour one, the final linearized set of differential equations describing the

heat and mass transfer and the deformations of dried material coupled with it, takes the
form

MV?u,+ (M + A)graddiva, — %7 gradv, — %} gradv; — %" grad u, — %5 grad w3 +ob = 0,

0 = 2 (oo s + b7 7 divin) + It — 1),

(6.18) raViu; = %?, (0o ft3+ b3 7.93 +af¢sdiviy) — 1" (u; — pa),
3

AV + 0,1 = Cy "9s+ T, % divu, +E:ﬁ1 +AT(B,—95),
A3 V2340313 = o3B3+ T,a5¢ s divay+ b7 iy — AT(9,—B3),
where

A = A— (™ b — p3(f — 1) (a5 — a)? [,
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%§ = x5 +x5 b /b, x5 = —¢3( —1)00 a3 /b3,
ny = 0o %5 /bg, ®3 = —¢3(xf—1)0oa5 /b5,
Cos = Cost TL(BI (0], BT = o T,b] [67,
Cos = Coa+ T,(B3)*/B3, BT = 0o T,b% /B3,
aj = al+a3bi /b3, rm=srryjr+1y),
AT = AT ATT, (AT +A7).
The unknowns here are: uy, &, ?3, %, 3. The number of equations (6.18) is adequate
for their determination. Further simplification of these equations can be possible following

experimental estimation of the constants existing in Egs. (6.18) for any individual dried
material and drying process.

The initial and boundary condition ought to be formulated in a similar way as in the
theory of thermoelasticity but they must become completed by mass transfer conditions.
For example, the heat and mass transfer boundary conditions for convective means of
drying based on the present theory ought to be

‘xsT(ﬂa_ﬁsIBB) =i ;'sgradﬁslaﬂ' n,
(6.19) o3r(B,—Pslag) = — Asgraddsag - n+Cp3?93713|aa‘ n,
X3m(fta— t3lam) = —ysgradpslos - n—y3Tgrad ¥;)ae - n.

The terms on lL.h.s. of Egs. (6.19) describe the convective heat and mass transfer between
the surrounding and the boundary surface. The terms on r.h.s. of Egs. (6.19) are the heat
and mass transport equations (5.8) and (5.10), respectively.

The end of the drying process is when 4, = ¥|s4 = ¥;)s@ and y, = pslsa.

7. Plunge of the evaporation surface

In some cases of dried materials, e.g., for capillary-porous materials with relatively
large pore dimensions, the evaporation surface may recede from the boundary towards
the inside of the material. Thus the interior of the dried material is divided into two regions,
wet and dry, separated by the evaporation surface being a singular surface for some func-
tions. The problem of heat and mass transfer in such a case is mathematically formulated
as that with moving boundaries, which may be referred to as an example of the Stefan
problem (see [26]). We then need some extra conditions concerning the singular surface.

To determine these conditions we shall refer to the balance equations in an interface
given, for example, by MOECKEL [35] or KosiNski [21]. For clarity, we shall say that the
pore space is filled up with a fluid being a gas in a region denoted by “—" and a liquid
in a region “+” (see Fig. 4). It is assumed here that the skeleton of the medium does not
suffer any discontinuity.

For the fluid in the pore space, the equations of balance of mass, momentum and energy
in the interface read (see [35], Egs. (4.5) to (4.7)):

(7.1 llos(ew—VWIl =0,
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(7.2) llor ve(@en =Vl = [IP/]IN+div,S,

] = [|Progy ‘f;ﬂvu +tr {(gradsU)S’"}—divsqs,

1
Or (“f Ve Vf) (On—Vw)

(1.3) [

where gy, vy, P, u; and g, are the partial mass density, the velocity, the partial pressure,
the internal energy, and the heat flux vector of the fluid, respectively, V is the velocity of
receding of the evaporation surface, S is the surface stress, g is the surface heat flux vector

FiG. 4. Plunge of the evaporation surface.

and U is the particle velocity in the surface. The index N denotes “normal to the evapora-
tion surface”, e.g., vyy = v,* N. The difference »* —9~ = [|y|] is called the jump of y
on the surface X,.

As the phase transition surface is not to be material, other terms related to the surface
mass do not exist in Eqgs. (7.1) to (7.3).

Equation (7.1) can be regarded as the one which determines the velocity of receding
of the evaporation surface. This is easily seen when rearranging Eq. (7.1) as follows:

. [lesl] B 01— 0
where 7,y = op(V;y—Toy) is the mass flux vector of the fluid, and the subscripts / and g
denote liquid and gas, respectively. We see from Eq. (7.4) that if the influx of the liquid
to the evaporation surface is equal to the efflux of gas from it, then the relative motion
of the evaporation surface with respect to the matrix (Vy —von) is equal to zero. Otherwise
the surface moves and 7,5 > 7,y means condensation, and 7,y < 7,y means evaporation.

(7.4) W = _ [In,n] _ Thiv T Ngn
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Practically, it can be assumed that

Yoy = 0,
(7.5) iy = 0,
01 > 04,
and thus
(7.6) Vi = —ngn/o1.

The minus sign means that ¥y has the opposite direction to 7n,y.
Let us multiply Eq. (7.2) by N. Referring to Slattery (see [41], p. 56), we identify

(1.7) div,S-N = —2Ho®,

‘where o is the surface tension, H is the mean curvature of the meniscus in capillary-pores,
and @ is the porosity ratio. Rearranging Eq. (7.2) and using Eqgs. (7.5) and (7.6), we can
write
(7.8) P, = P,+2Hop—g,Viy.
If the kinetic energy of gas (dynamic pressure of gas) can be neglected (no thermal shocks
as in casting moulds), then we obtain the familiar Laplace formula (see, e.g., [43], p. 188).
We can consider Egs. (7.6) and (7.8) as the boundary conditions for mass and momen-
tum transfer on the interface. The condition for heat transfer on the interface is to be
.obtained from Eq. (7.3). We assume, however, that the energy-sharing of the evaporation
surface in the total amount of energy is negligibly small (see [43], p. 180). Therefore we
omit in Eq. (7.3) the terms tr {(grad,U)ST} and div,q* as well as the Kkinetic energy

7 Vf - Vf.
Using Eq. (4.9), we can rearrange Eq. (7.2) as follows:
(7.9) llurll < op(opn—Vy) > = [P Vu—qen+orsy T(Vy—von)ll,

|
where u, is the fluid potential defined similarly as in Eq. (4.14) and (y) = D) @t +y)

means an average quantity of ¢ on the interface. As we have already mentioned, (see Eq.
(5.26)), the fluid potential consists of the chemical potential and capillary potential. The
former is continuous on the interphase surface i.e., [|u§"|]] = 0 (see [12] p. 182). The jump
of the capillary potential reads

(7.10) [lul] = dg™ =™ = iis™ = —2Halel,

where o] is the true mass density of the liquid. Using Eqgs. (7.5) and (7.6), we state that
{er(@en—Vn)> = —@Vy. On the basis of Eq. (7.8), neglecting the dynamic pressure, we
know that [|P/|] = 2Ho®.

Thus the term on Lh.s. of Eq. (7.9) reduces with the first term on r.h.s. of Eq. (7.9),
:and we finally obtain

(7.11) lgsnl]l = —alVy,
where

df
(7.12) ol = (o5 sy —of sf) T,
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is the latent heat of evaporation (see [12], p. 183), and
(7.13) T, =1/ =T

is the phase transition temperature being constant on the interphase surface. The heat
flux vector is determined similarly as in Eq. (5.8), i.e.,

(7.14) gen = —Argrady Tp+cppBpnpy.

Equation (7.11) describes the heat balance across the interface. As to deformations of
dried materials with receding evaporation surface, we determine them using the field
equations presented in the preceding sections. However, we can assume that the amount
of bound liquid is negligibly small in comparison to the amount of free liquid and that
there is no liquid in the “—” region. If the phase transition is neglected inside the “—"
region, then the set of field equations (6.1) to (6.8) can be utilized. We must only differen-

tiate them for “+” and “—" regions. For example, the physical relations (6.2) are
(7.15), T, = 2ME, + (AtrE, — %76 — ¥m6)1

for the “+ region, and

(7.15), T, = 2ME,+ (AtrE,— xT 9 — x"6)1

for the “—" region. Here 5 = 01/0o and 6 = 04/00. All quantities related to the solid
matrix are assumed to be continuous on the interface. The discontinuity of quantities
related to the fluid filling the pore space is given by the conditions developed in this
ection. Thus the solution of the problem of drying with moving evaporation surface is
possible.
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