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A discrete kinetic model admitting compression and expansion 
shock waves 

K. PIECH6R (WARSZAWA) 

WE PROPOSE a discrete kinetic model which has some properties typical for retrograde gases. 
The characteristic feature of the model is that the probabilities of direct and inverse collisions 
are not symmetric. We deduce the Euler and Navier-Stokes equations corresponding to the pro­
posed model. The plane shock wave is studied by means of these three types of equations. We 
find that in some cases the number density must decrease in order for the shock to be stable. 
The transition line is shown to be the same for the Boltzmann and Navier-Stokes model equations 
and, in the case of weak shocks, it coincides with that found from the Euler model equations. The 
shock structure in the Boltzmann model equation is the same as that found by previous authors. 

Proponowany jest dyskretny model kinetyczny, kt6ry rna pewne wlasnosci typowe dla gaz6w 
odwrotnych (ang. retrograde). Charakterystyczn~ cech~ tego modelu jest to, ze prawdopodobien­
stwa prostych i odwrotnych zderzen nie s~ symetryczne. Wyprowadzamy r6wnania Eulera i 
Naviera-Stokesa odpowiadaj~ce proponowanemu modelowi. Badamy fale uderzeniowe za 
porno~ tyh trzech typ6w r6wnan. Stwierdzamy ze w pewnych przypadkach g~stosc liczbowa 
musi malee po to, by fala byla stabilna. Pokazujemy, ze linia przejsciajest taka sama dla modelo­
wych r6wnan Boltzmanna i Naviera-Stokesa i w przypadku slabych fal uderzeniowych, pokrywa 
si~ z lini~ znalezioiU~ z r6wnan Eulera. Stmktura fali uderzeniowej w modelowym r6wnaniu 
Boltzmanna jest taka sama jak znaleziona przez wczesniejszych autor6w. 

IIpe,Z:VIaraeTca ,!UICI<peTHaa I<HHeTHtlecKaa Mo.o;em., KoTopaa JtMeeT Hel<oTopbie csouCTBa 
TlffilfliHbie .wrn o6paTHbiX raaos (rro-aHrJIHHCIG{I' etrograde). XapaKTepHCTHtleCKHM csoiiCTBoM 
3TOH MO,lJ;eJIH HBIDieTCR: TO, liTO BepOHTHOCT.H IlpOCTbiX H o6paTHbiX CTOJII<HOBemm He 
asmnoTcH cHMMeTp~IMH. BbiBO,ll;HM ypasHeH.Ha 3H.nepa H HasLe-CToKca oTBetiaroJ.IUie 
rrpe,Z:VIaraeMOH MO,ll;eml. liccJie.zzyeM y.o;apHbie BOJIHbl IIpH IIOMOIIUf 3THX TpCX THIIOB ypaBHemm. 
KoHCTaTHpyeM, liTO B HeKoTopbiX cJiyqaax ti.HCJiosaa IIJIOTHOCTL .o;oJDKHa yMeHLwaTLca .o;mJ 

Toro, 'tfro6bl BoJIHa 6bma CTa6Hm.Hoii. IIoKa3bmaeM, liTO JIHHWI nepexo.o;a as.rmeTca TaKOH 
CaMOH ,wrn MO,ll;CJIDHbiX ypaBHeHHH nOJIDI..\MaHa H HaBLe-CToKca H B CJiyqae CJia6biX y.o;apHLIX 
BOJIH COBIIa,lJ;aeT C JIHHHCH, HaH,ll;CHHOH H3 ypaBHemm 3fu:repa. CTpYKTypa y.o;apHOH BOJIHbi, 
B Mo.o;em.HoM ypaBHeHHH Eom.I..\MaHa, as.rmeTca TaKoii CaMoii KaK Haii.o;eHHaa aBTopaMH 
6oJiee pammx ny6JIHI<aUHii. 

1. Introduction 

A RETROGRADE fluid is a medium whose molecules are of high molecular weight and 
complex structure. This result in many vibrational degrees of freedom and high specific 
heats. Consequently, flows in such fluids can exhibit many very unusual properties [1]. 

Presumably, it could be possible to explain most of them by applying a kinetic theory 
approach. Unfortunately, to the present author's knowledge, no kinetic theory of retro­
grade fluids exists and, if it did, it would be of extreme complexity. Being, hoevever, con­
vinced that even complicated phenomena can be better understood by means of simple 
models, in this paper we propose a discrete kinetic model resembling a retrograde gas. 
The encouragement was the great success of the. discrete velocity models in describing 
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many phenomena in single rarefied gases (cf. [2, 3, 4]) as well as in their binary mixtures 
[5, 6, 7, 8]. 

It is clear that no simple model can be used to describe properly all features in a medium 
like a retrograde gas. Therefore we limit ourselves to just one aspect of the problem, namely 
to the shock problem in a gaseous phase of a retrograde fluid [9, 10, 11]. 

In the next section we introduce the model, and discuss its physical sense. Also the 
Euler and Navier-Stokes equations corresponding to it are given. 

In Sect. 3 we discuss the model Euler equations. They form a strictly hyperbolic system 
of two coupled quasilinear equations. However, the characteristic fields are neither genui­
nely nonlinear nor linearly degenerate. 

In Sect. 4 the shock wave problem in these equations in considered. Using the general­
ized entropy condition [9, 10] we show that, similarly to the true Euler equations, both 
compression and expansion shocks are possible. 

The shock profile in the model Navier-Stokes equations is studied in Sect. 5. The 
dissipation term involves now a term proportional to the density gradient, what is new 
compared to both the true Navier-Stokes equation and those corresponding to the. original 
Broadwell model. As usual, however, the shock wave has a smooth profile, which is found 
exactly. Again the shock ~ay be either a compression or an expansion wave. The tran­
sition line is however different from that predicted by the model Euler equations. The 
agreement is achieved for weak shoek waves only. In this case our results agree with those 
by CRAMER and KLUWICK [11] 

In Sect. 6 we study the shock profile in the model kinetic equations. Again, the shock 
can be either an expansion or a compression wave. The transition line is the same as in 
the model Navier-Stokes equations. However, the shock profiles agree for weak shock 
waves only. The shock wave thickness is discussed in detail. In particular, our results 
confirm the CRAMER and KLUWICK's [11] conjecture about the weak shock thickness. 

2. Construction of the kinetic model 

The simplest and at the same time a sufficiently sophisticated model to be of physical 
interest is the celebrated Broadwell's model [12] (see also [2, 3, 4]). One of its one-dimen­
sional versions is given by the equations 

oN1 oN1 1 
a~+cax = -e-Q, 

oN2 oN2 1 
(2.1) 81 -cax = - 7 Q, 

oN3 1 
at = e Q, 

where N 1
, N 2

, N 3 are scalar functions representing probability densities of particles moving 
in the positive x-direction, negative x-direction and perpendicularly to it, respectively, 
x e R1

, t e R~, c > 0 is the particle velocity, e > 0 can be identified as the Knudsen num­
ber. The collisional operator is of the form 

(2.2) Q(N, N) = N 1 N 2 - (N3
)

2
• 
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The system of equations (2.1) has two collisional invariants 

(2.3) 

and 

(2.4) 

regardless of the form of Q. 

'Po = (I, I, 2) 

"P1 = (I, - I, 0) 

The density e and the mean velocity u are defined by 

(2.5) 

and 

(2.6) 

respectively. 
The transport equations are 

(2.7) 

:, (eu)+ :x [! c2(N1 +N2
)] = o. 

89 

The densities vi (i = 1, 2, 3) are said to be equilibrium densities if they all are positive 
and if Q(v, v) = 0. If the collisional operator Q is given by Eq. (2.2) then 

(2.8) 

They are positive if and only if 

~~ = e ( 1 + ~ )', 

~2 = e( 1-~r 

(2.9) (! > 0, lui < c. 
Setting N 1 = v1 (i = 1, 2, 3) is Eqs. (2. 7) we obtain the Euler equations corresponding 

to the model (2.1 ), (2.2). They are 

ae a 
Tt + ax (eu) = o, 

(2.10) 

:t (eu)+ :x (p+eu2) = 0. 

Here the pressure pis given by 

(2.11) 
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For the model kinetic equations (2.1) we can also write the Navier-Stokes equations 
{2, 13], 

oe o 
7ft e+a:x (eu) = o, 

(2.12) 

:, (eu)+ :x (p+eu') = ! [,.(u) :xu]. 
where pis given by Eq. (2.11), and the viscosity coefficient /-l(u) takes the form 

(2.13) 

The Broadwell model or its versions was considered by many authors (cf. [3] and 
references therein). In particular, the relations between shock waves in the model Euler, 
Navier-Stokes and Boltzmann equations were studied by CAFLISH [14]. Recently the shock 
stability was proved by KA.WASIDMA and MATSUMURA (15], and CAFLISH and LIU (16]. 
CORNILLE in [17] and in other papers (cf. [17] for references) constructed many interesting 
exact solutions for the Broadwell model. 

Hence, both the theory and applications of the Broadwell model are so well developed 
that it can be a good reference for our modification. 

We proceed to construct a model resembling retrograde gases. We want our model 
to be of the form Eqs. (2.1) with the collisional term Q different from Eq. (2.2). 

As it is known [18], the simplest model of a retrograde fluid is that given by van der 
Waals. In this model, the relation between the presure p, the density e and the temperature 
T is of the form 

(2.14) ReT 2 
P = ----ae' 

I-he 

where R is the gas constant, a ~ 0 is a quantity proportional to the forces of molecular 
attraction, and b ~ 0 is a constant characterizing the maximal concentration. 

For the sake of simplicity we set b = 0, i.e. we admit the gas to be infinitely compressible, 
what is in accordance with the Boltzmann concept of gas. Hence, we take 

(2.15) p = R(}T-ae2, 

instead of Eq. (2.14). It can be checked easily that a gas with the constitutive relation (2.15) 
is still of the retrograde type. 

The first term at the right-hand side of Eq. (2.15) is the usual ideal gas expression for 
the pressure, which in the Broadwell model is replaced by Eq. (2.11). Thus, inserting 

-} e(c2-u2) in place of ReT, we obtain from Eq. (2.15) 

(2.16) 
1 

p = 2 e(c2-u2)-ae2. 

Hence, our model should be of the form (2.1) with such expression for the collisional 
operator Q that the pressure term is of the form (2.16) instead of Eq. (2.11). Consequently, 
the model Euler equations should be of the form (2.10) with p given by Eq. (2.16). 
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One can obtain the Euler equations from the general transport equations (2. 7) by 
setting Nl = vi (i = 1, 2, 3), where v1 are equilibrium densities. Therefore 

This relation along with Eqs. (2.5), (2.6) yields a system of three linear equations for 
three unknowns v1 , v2 , v3 • The solution is 

( )

2 
1 u 2a 2 ., = e 1+- --e, 

c c2 

(2.17) 

3 (1 u
2

) 2a 2 'V = (! -- +-/). c2 c2 ~:: 

Thus, we know the equilibrium densities of an unknown collisional operator Q. 
We have 
PROPOSITION 2.1. Let P(N) be a third degree polynomial of N = (N1 , N 2 , N 3). The 

vector v = (v1 , v2 , v3) with components given by Eqs. (2.17) nullifies P(N) if and only 
if P(N) is of the form 

(2.18) P(N) =A[+;, (N1 +N2 +2N2
)

3 +N1N 2 -(N3
)

2
], 

where A is an arbitrary constant. 
To prove the assertion of Proposition 2.1 we take an arbitrary third degree polynomial 

P(N). It has 20 coefficients. Next we substitute N = v, where v is given by Eqs. (2.17), 
and demand the obtained expression to be identically equal to zero for any values of f! 
and u. After some calculations we obtain Eq. (2.18). We take 

(2.19) Q(N) = P(N) =A [ 8;, e3 +N'N2 -(N3
)

2
] 

=A [ (N'+ ~ 1!
2 )(N'+ ~ e') -(N3

- ~ 1!
2n 

We define the H-function by 

H = ( N1+ ~ e') ln(N' + ~ e') + (N'+ ~~ e')In(N'+ ~e•) 
+ {N•- ~ e')In(N•- ~ e')'. 

For a uniform gas, we have defdt = 0. Therefore, using that and Eq. (2.19) we obtain 
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(2.20) 

From the above it follows that 

dH 
dt ~ 0 if and only if A ~ 0. 

K. PIECH6R 

The case A = 0 is not interesting, therefore it must be A > 0. Without any loss of general­
ity we can assume A = 1, since in Eqs. (2.1) Q is multiplied by an arbitrary constant 1/e. 

Hence, we take finally 

(2.21) Q = 8 _!!_ rl + Nt N2- (N3)2 = (Nt + 2 _!!__ r/) (N2 + 2 _!!_ e2) - (N3- 2_!!__ e2)2 c2 c2 c2 c2 
Again, from Eq. (2.20), in the case of A = 1, it follows that dHfdt = 0 if and only if N 

is given by (2.17). 
Thus, an analogue of the Boltzmann H-theorem is proved. 
Applying the Chapman-Enskog procedure to the model (2.1), (2.18) (see [2]) we derive 

again the Euler equations (2.1 0), (2.16) as the zero order approximation in e, and the 
Navier-Stokes equations 

(2.22) 

whe~e p is given by (2.16), and 

(2.23) 

(2.24) 

as the first order approximation. 

x = ea 

There is a difference between the Navier-Stokes equations (2.12) and (2.13) corre­
sponding to the usual Broadwell model (2.1) and (2.2) and those given by Eqs. (2.22)-(2.24). 

Namely, a quantity :x (eu) is added to the dissipation term. 

At least, we impose the following conditions on e and u in order to have the equili­
brium densities positive 

(2.25) (! > 0, lui< c, 
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3. The model Euler equations 

We consider the initial value problem for the Euler equations (2.10) and (2.16) subject 
to the conditions 

(3.1) e(O, x) = eo(x), u(O, x) = Uo(x), X E R 1• 

We write Eqs. (2.10) and (2.16) in the matrix form 

(3.2) !___ (e) + M _!_ (e) = o, at u ax u 

where 

(3.3) r 
u 

M = 1 2 2 - (c -u -4ae) 
2e 

The eigenvalues of M are solutions of 

(3.4) 

Hence 

(3.5) 

The eigenvalues are real and distinct provided that 

(3.6) 

From Eq. (3.5) the following inequalities follow 

A+~ 0 for u e ( -c,- Jf c2 -4ae ), 

A+ > 0 for u e (- JIC2-4ae, c) 

and 

A_ < 0 for u e(-c, yc2 -4ae), 

A_ ~ 0 for UE < VC 2 -4ae,c). 
Thus, if 

y c2 -4ae < lui < c 

then both characteristics are of the same sign. Because it is not a situation met in the 
true gas-dynamics we reject it as non-physical and assume 

lui < y c2 -4ae 
or 

(3.7) 
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Combining Eqs. (2.25), (3.6) and (3. 7), we obtain 

(3.8) e >0, lui< c, 0 < ae < ~ min{(c-[ui)2
, ~ (c2-ll)}. 

The set of (!, u satisfying conditions (3.8) is denoted by U. In what follows we assume that 

f!, u belong to this set. 
If (e, u) E U, then we have also 

(3.9) 

and 

- c < A_ < 0 < A+ < c 

(3.10) A_ < u < A+. 

The right and left eigenvectors of M are 

(3.11) 

(3.12) 

Thus we have proved 

r ± = (e, -A=~=), 

I± = (A±, e). 

LEMMA 3.1. If (e, u) E U, then the system of the Euler equations (2.10), (2.16) is 
strictly hyperbolic. 

We define 

(3.13) 

where grad= (a~, :u}. 
After some calculations we obtain 

A~ -2ae c2 -6ae- A! r = + = + ~::=::::=:=====:=:;::-
± - y2c2 -u2 -8ae yic2 -u2 -8ae. 

(3.14) 

From Eq. (3.14) it is seen that the characteristics are neither genuinely nonlinear nor 
linearly degenerate in the sense of LAX [23]. Indeed, r ± vanish on the curves y ±, respective­
ly, given by 

. (3.15) Y± = {((!, u) E U: u = sgn[± (c2 -8ae)] (c 2 -4ae+2 y2a(c2 -6a) f 12 

or 

where 

{

-1 

sgnx = ~ 

for x < 0, 
for x = 0, 
for x > 0. 

The normal vectors n± to y ± at (e, u) E y ± are given by 

. ( , oA± 6 , oA±) 
n± = 211.± 0(} + a, 211.± au 

what follows from the equation r ± = 0. 
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Therefore for (e, u) E y ± 

r± ·n± = 2.A±F±+6ae = 6ae > 0. 

Thus the right eigenvectors r ± are transversal to y ±. It means that none of the character­
istics is linearly degenerate in any subregion of U. 

Thus we have proved 
LEMMA 3.2. The system of the Euler equations (2.10), (2.16) is neither genuinely 

nonlinear nor linearly degenerate in U. The linear degeneracy does not take place in any 
subregion of U. 

From Lemmas 3.1 and 3.2 it follows that the general theory of such hyperbolic 
systems of conservation laws as developed by Liu in [9, 10] is applicable to the model 
Euler equations (2.1 0) and (2.16) at least in U. 

4. Shocks in the Euler equations 

Following LAX [20] we take solutions to (2.10), (2.16) and (3.1) in a weak sense. Such 
solutions consist of their domaihs of continuity separated by lines of discontinuity. Let 
x = x(t) be the equation of a line of discontinuity, and lets = x'(t). Then across it the 
Rankine-Hugoniot relations hold 

s(er-e,) = QrUr-e,u, 

(4.1) 
s(erur-e,u,)= ~ [er(c 2 +u;-2aer)1- ~ [e,(c 2 +uf-2ae,)], 

where for any quantity Q(x, t) 

Qr = Q(x(t)+O, t ), 

Q1 = Q(x(t)-O,t). 

We define the R-H curves S(eo, u0 ) through a given state (eo, u0) E U as follows [9, 101 

(4.2) S(eo. uo) = {<e. u) E U: u(e-eo) = eu-eouo and (eu-eouo) 

for some scalar u = u(e0 , u0 ; (!, u)}. 

With this notion the Rankine-Hugoniot conditions become 

(e, u,) E S(en ur), x'(t) = a(er, ur; Qz, u,). 

From the jump conditions (4.1) the following useful relations follow 

(4.3) eoe(uo-u)2 = (eo-Q) 2 [c 2 -a2 -2a(eo+e)], 

and 

(4.4) 

If a2 > c2
- 2aQ0 , then all coefficients in Eq. ( 4.4) are positive and therefore it cannot 

have positive solutions. Hence, the necessary condition of positive e is 
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(4.5) 

We have 

PROPOSITION 4.1. If condition (4.5) is satisfied and a is sufficiently small, then Eq. 

(4.4) has two positive solutions corresponding to the state (e0 , u0 ) and the shock speed a. 
Proof. Indeed, setting a = 0 in Eq. (4.4) we obtain 

(uo- a)2 

e = eo 2 2 > 0. c -(] 

Therefore, by the Inverse Function Theorem, we obtain the thesis. 

If we eliminate a from Eq. (4.2), and denote 

(4.6) e = eoO + w), w > -1 

then we obtain on S(eo, uo) 

(4.7) u = _2_ + __ w_ [ 2c2 -u~-Bae0 +w(c2 -8ae0)-2w2ae0 ]
112 

w+2 - w+2 l+w · 

Therefore 

(4.8) a±= w~ 2 {uo± [2c2 -u~-8ae0 +w(3c2 -u5-16ae0) 
+ w2 (c 2 -10aeo)-2w3aeol1

'
2 

}. 

Thus we have proved (cf. [23]) 
LEMMA 4.1. The R-H curve S(e0 , u0 ) consists of two smooth curves S:(e0 , u0 ). 

The following expansions follow from Eq. (4.6) and (4.7) 

(4.9) 

(4.10) 

and additionally from Eq. (3.5) 

(4.11) ).±(e, u) = A:~:(eo, uo)+F:~:(eo, uo) w+O(w2
) 

(cf. [9, 10, 23]). 
Extending the OLEJNIK's celebrated entropy condition [21) Liu in [9, 10] introduced 

the following one: 
a discontinuity (e" u1; e, u,) is an admissible discontinuity if (e, u,) E S+ (e, u,) 

(or S_(e1, u1), respectiv~ly) and if it satisfies the following entropy condition 

(E) 

for any (e, u) E S+ (e, u1) (S_ (e1, u1), respectively) between (ez, u,) and (e, ur). 

The above entropy condition (E) is equivalent to the following: 

(E) 

for any (e, u) E S+ (e, u,) between (e 1, u1) and (e, u,), and similarly in the case of 
s_ (e, u,). 
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LIU proves in [9, 10] that if a discontinuity is admissible and weak, i.e. if (e, u,) is 
close to (e1, u1), then the following stability condition holds 

A.+ (e, u,) ~ a(e, u,; e, u,) ~ A.+ (e, u,), 

and similarly in the case of S_ (ez, u,). 
From Eqs. (4.9) and (4.10) and the entropy condition (E) we obtain (at least for weak 

shock waves) 
i) for (e,u,) eS+(e,,u,): 

if r+(e, u,) > 0 then er > (!, and u, > u, 
(4.12) 

if r+(e, u,) < 0 then and er < er u, < u,; 

ii) for (e, u,) e S+(e,, u,) 

if r_((!z, u,) < 0 then e, > ez and u, < u,, 
(4.13) 

if r_(e,, u,) > 0 then and er < ez u, > u,. 

From these results and the Rankine-Hugoniot jump conditions we have 

(4.14) 

for 

(4.15) 

for (e,., u,) e S_(e, u,). 

u -u1 a(e,, u,; e, u,)-u, = e,-'-- < 0 e,-e, 

Inequality ( 4.14) means that the gas leaks through the discontinuity to the left, there­
fore the shock S+ (e,, u,) moves to the right with respect to the gas. Because of that we call 
S+ (e, u,) the forward shock wave. Next, from Eq. (4.5) we see that the R-H curve 
S_ (e1, u1) moves to the left with respect to the gas, and we call it the backward shock 
wave. 

The first results in (4.12) and (4.13) can be interpreted as statements saying that the 
shock wave is a compression wave. This is a typical result concerning the shock waves 
both for the classical Broadwell model and for the true normal gases. The second state­
ments in (4.12), (4.13) resemble retrograde gases, since the density is smaller behind the 
shock wave then that before it. We call such waves expansion waves. 

In this way we have arrived at one of our main results, namely we have proved 
THEOREM 4.1. The shock waves in the model Euler equations (2.1 0) and (2.16) can be 

either compression waves or expansion waves. 
Finally, let us notice that the results of the previous section and those of the present 

one make it possible to apply the existence and uniqueness theorems proved by LIU [9, 10] 
to the initial value problem (2.10), (2.16) and (3.1). 

5. The Navier-Stokes shock profile 

We smooth out the Euler shock wave by using the Navier-Stokes equations (2.22)-(2.24) 
along with Eq. (2.16). 

7 Arch. Mech. Stos. 1/90 
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We look for solutions of this system of equations in the form 

(5.1) e(x, t) = e(x-st), u(x, t) = u(x-st), 

where s is a constant, subject to the limiting values 

(5.2) 

where y = x-st. 

(e, u) (y = - oo) = (e, u,), 

(e, u) (y = oo) = (e,, u,), 

Solutions of the above form are called a Navier-Stokes shock profiles. 
Substituting Eqs. (5.1) into the model Navier-Stokes equations we get 

(5.3) e(u-s) = m, 

(5.4) 

where m and j are constants. 
We assume additionally that 

(5.5) . (de du) hm -d , -d - = (0, 0). 
Y-±oo Y Y 

From Eqs. (5.2)-(5.5) it follows that 

m = e,(u,-s) = e,(u,-s), 

(56) . 1 ( 2 2 ) 1 ( 2 2 2 ) . . 1 = - 2 e, c +u, -2ae, +se1u, = - 2 e, c +u,- ae, +se,u,. . 

K. PmcH6R 

Comparing (5.6) and (4.1) we see that relations (5.6) are nothing else but the Rankine­
Hugoniot relations. 

We make the substitution 

(5.7) 

and 

(5.8) 

with 

(5.9) 

e = e.+e, +G e,-e, 
2 2 

G(y = - oo) = 1, G(y = oo) = - l. 

With this substitution we satisfy Eq. (5.3) identically, and from Eq. (5.4) along with (5.6) 
we get 

(5.10) 

where 

(5.11) 

dG 
(a4 w4G4 + a3 w3G3 + a2 w

2G2 + a1 wG + ao) dy 

4a(e,- e,)
2 

(2 + w+ wG)3(G2 -1) (G +B), 
E 

W 
_ e,-e, 
- ' e, 
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and 

1 
oc3 .= 2 ae,[u,+s(3 + 2w)], 

(5.12) OCz = - (u,.-s) [c2 -s2
- 6ae,.(2+ w)], 

oc1 = 4(u,-s)2s-2(u,.-s) (c 2 +s2
) (2+w)+2ae,.(2+w)3(3u,.-s(7+4w)], 

oc0 = 4(u,.-s)3 -4s(u,.-s)2(2+ w)- (u,.-s) (c 2 -s2) (2+ w)2 

99 

+ 2ae,.(2+ w)3 [u,.-s(3 + w)], 

and finally 

(5.13) 

Integrating Eq. (5.10) one gets, if IBI #: I, 

At Az I A3 
(5.14) wln(2+w+wG)-w 2+w+wG - 2w (2+w+wG)z 

-A4ln(l-G)+Asln{l +G)+A6 ln(G+B) = 4
a(e,-e,.)

2 

(y- y0), 
. e 

where Yo is the constant of integration and the constants A 1 to A6 satisfy the following 
system of algebraic equations: 

(5.15) A1 -wA4 +wA5 +wA6 = 0, 

(5.16) (2+wB)A1 +A2 -w[w(B+ I)+3(2+w)]A4 
+w[w(B-1)+3(2+w)]A5 +3w(2+w)A 6 = -w3 oc4, 

(5.17) [(2+w)2 +2wB-w2]A1 + [2+w(B+ l)]A2 +A 3 

- w[3(2+ w)2 + 3w(2+ w) (B+ 1)+ w2 B)A4 + w[3(2+ w)2 + 3w (2 + w) (B-1) 

-w2B]A5 +w[3(2+w)2 -w2]A6 = -w3 oc3 , 

(5.18) [(2+w)2B-2w-w2B] A1 + [B(2+w)-w]A2 +BA3 

- [(2+w)3 +3w2 (2+w)2 (B+ 1)+3w2B(2+w)A4 
+ [(2+ w)3 +3w2 (2+ w)2 (B-1)- 3w2B(2+ w)]A 5 

+ [(2+w)3 -3w2 (2+w)]A6 = -w2 ocz, 

(5.19) [(2+w)2 +2wB]A1 + [2+w(B+1)]A2 +A 3 

+ [(2+ w)3(B+ 1)+3w(2+ w)2]A4- [(2+w)3(B-1)-3wB(2+ w)2]A5 

+3w(2+w)2A 6 = WOCt, 

(5.20) (2+w)2BA1 +(2+w)BA2 +BA3 +(2+w)3BA4+(2+w)3BA5 +(2+w)3A6 = oco. 

It is evident from Eq. (5.14) that Gcan satisfy the limiting conditions (5.9) only if IBI > I, 
since otherwise it would be: IYI -+ oo for G -+ - B, - 1 < B < 1, contrary to Eq. (5.9). 
However, condition IBI > 1 does not guarantee that Eq. (5.13) satisfies Eq. (5.9). The 

7* 
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final answer to this question depends on the sign of A4 and A 5 , which is difficult to be 
established. Later, we solve this problem for weak shock waves. 

We proceed to the case when B = 1. We consider only the case of B = 1 since the case 
of B == -1 can be treated in a similar way. Setting B = 1 in Eq. (5.10) and integrating 
we obtaift 

(5.21) 

where y 0 is the constant of integration, and the constants A 1 to A6 are solutions of the fol­
lowing system of linear algebraic equations 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.27) 

At-WA4+WA.s = 0, 

(2+w)A1 +A2 -w(6+5w)A4+3w(2+w)A5 +w2A6 = -w3oc4 , 

2(2+3w)A1 +2(1 +w)A2 +A3 -3w(4+6w+3w2)A4 +2w(6+6w+w2)A5 

+2w2 (3+w)A6 = -w3 oc3 , 

2(2+3w)A1 +2A2 +A 3 -2(2+w) (2+8w+5w2)A4 +2(2+w) (2+2w-w2)A5 

+3w(2+w) (I-2w-w 2) A6 = - w2 a2 , 

(4+6w+w2)A1 +2(1 +w)A2 +A3 +(2+w)2 (4+5w)A4 +3w(2+w)2A5 

-2(2+w)2 (1-w)A6 = Woc1 , 

(2+w)2A1 +(2+w)A2 +A3 +(2+w)3A4 +(2+w)3A5 +(2+w)3A6 = oc0 • 

Let us analyze in more detail the condition IBI ~ 1. We have from Eq. (5.13) 
B > 1 if and only if one of the following relations takes place 
i) either 

(5.28) 

ii) or 

(5.29) 

The equation B = 1 defines the transition line 

(5.30) s2 = c2 -2ae,(3+2w). 

Similar results can be obtained if B ~ - 1. 
Qualitatively, these results agree with those of Theorem 4.1, i.e., the shock wave can 

be either a compression wave or an expansion wave, but there are some differences as 
well. 

First, in Eqs. (5.28)-(5.30) the shock speed s appears instead of the characteristic 
speed A.± appearing in r ± and, consequently, in the equation of the transition line. Secondly 
now the equation of the transition line depends not only on the state before the shock 
but also on the state after it. Hence, the criterion for a shock wave to be a compression 
or expansion w~ve is much more complicated in the case of the ·model Navier-Stokes 
equation than in the case of the model Euler equations. We cannot compare our model 
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results with the corresponding ones obtained for the -strong shock waves in the full hydro­
dynamic Navier-Stokes equation, because such results are missing at present. 

An agreement between the Navier-Stokes and Euler equations is achieved for weak 
shock waves. 

For weak shock waves, i.e. for small values of w, we obtain from Eqs. (5.15)-(5.20) 

(5.31) A, = ·o(w2), i = 1, 2, 3, 

and 

OCo 
A4 = 2(B+ 1) + O(w), 

(5.32) 

where IXo is given by 

(5.33) 

In deriving Eq. (5.33) we took into account Eqs. (5.12) and (4.9), (4.10). 
Owing to Eqs. (5.31)-(5.33), the exact solutions (5.14) and (5.21) reduce to 

(5.34) B2 _ 1 {21n( ~ + 1) +Bin : ~~ -ln(l- G2
)} 

= a(e, ~ e,)l 2 (y- Yo) 
eA.± (e, u,) [c -A.:~: (e, u,)] 

for IBI > 1, and 

(5.35) _!_In 1-G - _E_ = 8a(e,- e,)l (y- Yo) 
2 1 + G 1 + G eA.+ (e, u,) [ci-A.! (e, u,)] 

for B = 1. We took A.+ in Eq. (5.35) to satisfy the limiting condition (5.9). In Eq. (5.34) 
we use the asymptotic formula forB> 1 as w-+ 0, 

(5.36) B = 1-2 c2- A.!(e, u,)-6ae,+O(w)' 
2a(e,-e,) 

where Eq. (4.10) has been taken into account. 
The asymptotic solutions (5.34) satisfy the limiting conditions (5.9) if an only if we 

put there -

the ( +) subscript (i.e. A.+) and B ~ 1 or 

the (-) subscript (i.e. A._) and B ~ -1. 
(5.37) 

The first case corresponds to the forward shock waves, whereas the second case to the 
backward ones. 

In what follows we limit ourselves to the forward shock waves, since the backward 
shocks can be analyzed in a similar way. 

From Eq. (5.36) as well as from Eq. (3.14) we obtain (cf. also Eqs. (5.28) and (5.29)): 
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B > 1 if and only if one of the conditions is satisfied: 
i) either 

(5.38) 

ii) or 

(5.39) F+(f!, Ur) < 0 and (}z < f!r· 

K. PmcH6R 

Relations (5.38), (5.39) are identical with (4.12). Hence, for the weak shock waves we 
obtain full agreement with the Euler predictions of the character of the shock. 

Let us notice also that the asymptotic form of the solutions is exactly the same as that 
obtained for the weak shock waves by CRAMER and KLUWICK [1 i] within the framework 
of the true Navier-Stokes equations (cf. formulae (5.7) and (5.8) of the cited paper). 
They als6 give graphs of the shock profile for a few values of B ~ 1. 

6. The Boltzmann shock proftle 

The Boltzmann shock profile is a density vector N(y), y E R1 , such that 

(6.1) N(x, t) = N(x-st) 

is a solution of the model Boltzmann equation (2.1), (2.21) with the limiting values 

N(y = -oo) = v1, 

N(y = oo) = Vr, 
(6.2) 

where v, vr are the equilibrium density vectors with hydrodynamical moments (e1, u1) 

and ((}r, u,), respectiyely. We assume that both ((}z, u1) and (f!r, u,) are elements of the 
set U defined in Eq. (3.8). 

The Boltzmann shock profile . equation~ are found by substituting the assumed form 
of solutions (6.1) into the model Boltzmann equations (2.1) 

dN1 I 
(c :-s) -d = .---.- Q(N, N), 

y e 

dN2 1 
-(c+s)-d. = --Q(N,N), 

y e 
(6.3) 

dN3 1 . 
-s-d = -Q(N,N). 

y e 

Equations (6.3) lead to two conservation laws, which are obtained by multiplying (6.1) 
by "Po and VJ 1 given by Eqs. (2.3) and (2.4), respectively. The constants of integration are 
found by using the limiting conditions (6.2) and the Rankine-Hugoniot relations (5.6) 

c(N1 
- N 2

)-s(N1 + N 2 + 2N3
) = 4m, 

(6.4) 
c2(N1 +N2)-sc(N1 -N2 ) = 4j. 

Multiplying Eqs. (6.3) by the vector 1p2 = (1, 1, -I) we obtain 

d 3 
(6.5) -d [(c-s)N1 -(c+s)N2 +sN3

] = - - Q(N,N). 
y E 
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We make the substitution 

(6.6) 
. . 1 i . i i 

N' = T [(v 1 +v~)+G(y) (v1-,,)], i = 1, 2, 3, 

where G(y) is an unknown function such that 

(6.7) G(y = - oo) = 1, G(y = oo) = - 1 

(cr. Eq. (5.9)). 
With this substitution Eqs. (6.4) are satisfied identically, and Eq. (6.5) becomes 

(6.8) dG =-a(e,-e,)2 (G2-J)(G+B), 
dy es( c2 - s2) 

where B is given by Eq. (5.13). 
In deducing Eq. (6.8) we have used the Rankine--Hugoniot conditions and the identity 

(4.3). 
Equation (6.8) is the same as that obtained by CRAMER and KLUWICK in [11] for weak 

shock waves in the genuine Navier-Stokes equation. However, now it is an exact conse­
quence of the model Boltzmann equation and describes not only the weak but also the 
strong shock waves. 

The solution of Eq. (6.8) for the forward (s > 0) shock waves is: 
forB> I ' 

(6.9) BL 1 {21n( ~+I) +Bin : ~~ -ln(I-G2)}= - :;~~;!;,; (y-y0 ), 

and forB= 1 

(6. 10) 

where Yo is the constant of integration. 
These solutions have the same form as those found by. CRAMER and KLuwiCK [11 

for weak shock waves in the true Navier-Stokes equations. They agree with the model 
Navier-Stokes equations considered in the previous section for weak shock waves only, 
what follows from Eqs. (6.9) (6.10) and the expansion (4.10). 

Since the parameter B is the same for the model Navier-Stokes and Boltzmann equa­
tions, the transition line is also the same for the two descriptions and does not agree in 
general with the Euler description. Full agreement between the three types of equations is 
attained for weak shock waves only. 

The last problem we consider is the shock wave thickness. As its definition we take 

(6.11) L = le,-e,l . 

. s~p~~~~ 
From Eq. (6.6) and definition (2.5) of the density we have 

de I dG 
- = - (e,-e)-
dy 2 ' dy · 
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Inserting that into Eq. (6.11) we obtain 

(6.12) L = 2 
. 

s~p~~~~ 
The point of inflection of G{y) is the point where the derivative dGjdy attains its maximal 
value. We have 

(6.13) G - 1 
lot- B+ yB2+3 . 

Thus the point of inflection is shifted downstream of the point where e attains its average 
value and, hence, the shock profile is no longer symmetric as it was in the case of the 
classical Broadwell model and true regular gases (cf. [11]). From (6.13) and Eq. (6.8) we 
obtain 

I 
dG I 2a(e,-er)2 (2B+ yBT+3Y 

s~p dy = 9es(c2 -s2 ) B+ y'B2 +3 

Using this in Eq. (6.12) we get 

(6.14) L = 9 es( c2 
- s2

) B + y:J:i2+3 
a(e,-er)2 (2B+ yB2 +3Y 

Two cases must be considered. 
i) B = 0(1), i.e. the downstream and upstream states are close to the transition line. 

Then, as it is seen from Eq. (6.14), for the case of weak shock waves 

1 
L ~ ( )2 . e.-er 

(6.15) 

Hence, the weak shock wave thickness is much larger now than in the case of the classical 
Broadwell shock wave, where (cf. [14]) 

1 
L~---

le,-e,l 
Cramer and Kluwick in their considerations bad to assume the estimate (6.15) in order 
to have their asymptotic theory self-consistent (see [11]). Thus our rigorous result (6.15) 
confirms Cramer-Kluwick's conjecture. 

ii) B-+ oo, what corresponds to the case a -+ 0. For a-+ 0 we get from Eqs. (6.14) 
and (5.13) 

(6.16) 

It follows from (6.16} that, in this case, the shock wave thickness is much smaller than in 
the previous case. Also from the graphs of G given by CRAMER and KLUWICK [11] it is 
seen that the growth of B steepens the shock profile and makes it symmetric. From Eq. 
(6.9) we obtain as B -+ oo 

(6.17) 
1 - G Ba(e,- e,)2 

In -1 G = - . ( 2 2) (y- Yo) . . + esc -s 
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Thus, in this limit, the shock profile becomes the classical hyperbolic tangent. If, addition­
ally, the shock is such that 

then (6.16) gives 

(6.18) 

l!t + (!,. 
le,- e,.l 

~I, 

This expression reminds very much the following formula for the shock thickness 

(6.19) L = a.f(Ms)+{J, 

obtained recently experimentally in [22]. Here (Lis a constant, f(M11) represents the depend­
ence of shock thickness on the Mach number, and {3 seems to be a constant characteri­
zing the gas. 

The qualitative agreement between (6.18) and (6.19) is not full, however, since (6.18) 
was obtained for sufficiently strong shock waves, and (6.19) is to be true for shocks of any 
strength. This disagreement can be ascribed to the extreme simplicity of the proposed 
model. 

7. Final remarks 

A simple discrete velocity model resembling retrograde gases has been proposed. The 
resemblance has been fully shown. In particular we have shown that at all three levels of 
description: i.e. the Boltzmann, the Navier-Stokes and Euler description of the gas, the 
shock waves can be either a compression wave or an expansion wave. For each of the 
levels of description the transition line has been found. In the Euler eql:lations the transi­
tion line was the curve along which r ± (e, u) vanished. This agrres completely with previ­
ous results obtained by other authors from the full hydrodynamic Euler equations. 
However, if the dissipative effects are included, a shift of the transition line arises, parti­
cularly for strong waves. On the other hand, in the case of weak shock waves an agreement 
between the three levels of description was obtained. 

The second problem we would like to discuss is the presence of space gradient of the 
density in the model Navier-Stokes equations (2.19). 

This form can be a distorted representation of the second viscosity, and such its form 
can be a result of the simplicity of the model. (Another travesty is the dependence of the 
press on the velocity in the Broadwell model). 

The third and the most difficult problem is that of the kinetic equations even for the 
case of one-phase retrograde gases. The proposed discrete model has the characteristic 
feature the probabilities of direct and inverse collisions are different. 

At present there exist general true kinetic equations in which both the ternary collisions 
and many physical and chemical phenomena occurring in real gases are taken into account 
(see for example [19]). However, it is very difficult to make practical use of them since we 
do not know the exact molecular structure and composition (for instance, the number of 
the internal degrees of freedom of the moleculas) of a retrograde gas, of the law of molecular 
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interactions. If, additionally, we resign of the symmetry between the direct and inverse 
collisions, then it becomes ex_tremely difficult (if possible at all) to determine all states of 
equilibrium. Owing to that, it seems that discrete velocity models, more sophisticated than 
the one proposed in this paper can be very helpful in the qualitative understanding of many 
phenomena occurring not only in the retrograde gases but also in the general real gases. 
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