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A discrete kinetic model admitting compression and expansion
shock waves

K. PIECHOR (WARSZAWA)

WE ProPOSE a discrete kinetic model which has some properties typical for retrograde gases.
The characteristic feature of the model is that the probabilities of direct and inverse collisions
are not symmetric. We deduce the Euler and Navier-Stokes equations corresponding to the pro-
posed model. The plane shock wave is studied by means of these three types of equations. We
find that in some cases the number density must decrease in order for the shock to be stable.
The transition line is shown to be the same for the Boltzmann and Navier-Stokes model equations
and, in the case of weak shocks, it coincides with that found from the Euler model equations. The
shock structure in the Boltzmann model equation is the same as that found by previous authors.

Proponowany jest dyskretny model kinetyczny, ktory ma pewne wlasnosci typowe dla gazdéw
odwrotnych (ang. retrograde). Charakterystyczna cech tego modelu jest to, ze prawdopodobiefi-
stwa prostych i odwrotnych zderzen nie sa symetryczne. Wyprowadzamy réwnania Eulera i
Naviera-Stokesa odpowiadajace proponowanemu modelowi. Badamy fale uderzeniowe za
pomocg tyh trzech typédw réwnan. Stwierdzamy ze w pewnych przypadkach gesto$é liczbowa
musi male¢ po to, by fala byla stabilna. Pokazujemy, ze linia przejcia jest taka sama dla modelo-
wych rownan Boltzmanna i Naviera—Stokesa i w przypadku stabych fal uderzeniowych, pokrywa
sie z linig znaleziona z réwnan Eulera. Struktura fali uderzeniowej w modelowym rownaniu
Boltzmanna jest taka sama jak znaleziona przez wcze$niejszych autoréw.

Ipenmaraercs MUCKpeTHAsT KWHETHUECKas MOJENb, KOTOPAasd HMEeT HEKOTopble CBOMCTBa
TUIHUHBIE 1A oOpaTHBIX ra3oB (Mo-aHrIHicKAr etrograde). XapaKTepHCTHUECKHM CBOHCTBOM
3TOH MOJENH FABJAETCA TO, UTO BEPOATHOCTH MPOCTBIX H 0OOpPaTHBIX CTOJKHOBEHHWI He
ABJIAIOTCA CHMMETPHUHbIMK. BbIBogum ypaBHeHua OJiinepa u Hasbe—-CrTokca oTBeuaromue
npenaraemoii moaenu. Mccienyem yoapHsle BOJHBI IPH IIOMOIIM 3THX TPEX THIIOB YPaBHEHHIA.
KoHcTaTUpyeM, UTO B HEKOTOPBIX CIIy4asix YHCJIOBas IUIOTHOCTb HOJDKHA YMEHBINATHCA IJIT
Toro, 4ToObl BosiHAa Obu1a crabmnbHOH. IloKaspIBaeM, YTO JIMHMA Iepexoda ABIAECTCS TaKo
camoii AJIs1 MOJEJIPHBIX ypaBHeHMH Bonsumana n HaBre-CToKca H B ciryyae c1abbIX yOApHBIX
BOJIH COBIIAJaeT C JIMHMEH, HalieHHOW H3 ypaBHeHHit Jisiepa. CTpyKTypa yAapHOH BOJIHEI,
B MOOeJbHOM ypaBHeHMH Bosjslmana, sABIAETCA TaKoOM caMoM KaK HaliieHHasi aBTOpPaMu
OoJlee paHHUX ITyOJIHKALIMIA,

1. Introduction

A RETROGRADE fluid is a medium whose molecules are of high molecular weight and
complex structure. This result in many vibrational degrees of freedom and high specific
heats. Consequently, flows in such fluids can exhibit many very unusual properties [1].
Presumably, it could be possible to explain most of them by applying a kinetic theory
approach. Unfortunately, to the present author’s knowledge, no kinetic theory of retro-
grade fluids exists and, if it did, it would be of extreme complexity. Being, hoevever, con-
vinced that even complicated phenomena can be better understood by means of simple
models, in this paper we propose a discrete kinetic model resembling a retrograde gas.
The encouragement was the great success of the discrete velocity models in describing



88 K. PIECHOR

many phenomena in single rarefied gases (cf. [2, 3, 4]) as well as in their binary mixtures
[5, 6, 7, 8].

It is clear that no simple model can be used to describe properly all features in a medium
like a retrograde gas. Therefore we limit ourselves to just one aspect of the problem, namely
to the shock problem in a gaseous phase of a retrograde fluid [9, 10, 11].

In the next section we introduce the model, and discuss its physical sense. Also the
Euler and Navier-Stokes equations corresponding to it are given.

In Sect. 3 we discuss the model Euler equations. They form a strictly hyperbolic system
of two coupled quasilinear equations. However, the characteristic fields are neither genui-
nely nonlinear nor linearly degenerate.

In Sect. 4 the shock wave problem in these equations in considered. Using the general-
ized entropy condition [9, 10] we show that, similarly to the true Euler equations, both
compression and expansion shocks are possible.

The shock profile in the model Navier-Stokes equations is studied in Sect. 5. The
dissipation term involves now a term proportional to the density gradient, what is new
compared to both the true Navier—Stokes equation and those corresponding to the original
Broadwell model. As usual, however, the shock wave has a smooth profile, which is found
exactly. Again the shock may be either a compression or an expansion wave. The tran-
sition line is however different from that predicted by the model Euler equations. The
agreement is achieved for weak shock waves only. In this case our results agree with those
by CrAMER and KLuwick [11]

In Sect. 6 we study the shock profile in the model kinetic equations. Again, the shock
can be either an expansion or a compression wave. The transition line is the same as in
the model Navier-Stokes equations. However, the shock profiles agree for weak shock
waves only. The shock wave thickness is discussed in detail. In particular, our results
confirm the CRAMER and KLuwick’s [11] conjecture about the weak shock thickness.

2, Construction of the Kkinetic model

The simplest and at the same time a sufficiently sophisticated model to be of physical
interest is the celebrated Broadwell’s model [12] (see also [2, 3, 4]). One of its one-dimen-
sional versions is given by the equations

aN'HaNl__lQ
ot ax @ &=
aN?*  oN? 1
21 -9
aN® 1
e

where N, N2, N* are scalar functions representing probability densities of particles moving
in the positive x-direction, negative x-direction and perpendicularly to it, respectively,
x eR!, te Ry, ¢ > 0 is the particle velocity, £ > 0 can be identified as the Knudsen num-
ber. The collisional operator is of the form

22 (N, N) = N'N?—(N°).
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The system of equations (2.1) has two collisional invariants

2.3) vo=(1,1,2)
and
(2.9 v =(1,-1,0)

regardless of the form of Q.
The density ¢ and the mean velocity u are defined by

1
2.5) o= -&-(N‘+N2+2N3),
and
1
(2.6) ou = c(N'—N?),
respectively.

The transport equations are

d 2
ETLANT™) (ov) = 0,
2.7
a a l 2 1 2| —
'é;‘(@u)‘*‘a[TC (N'+N )] = 0.
The densities »'(i = 1, 2, 3) are said to be equilibrium densities if they all are positive
and if Q(», %) = 0. If the collisional operator Q is given by Eq. (2.2) then

5 2
V1=Q(1+Z),
u 2
(2.8) »? = Q(l—-;) 5
s ofi- (2
7 —g(l (c))

They are positive if and only if
2.9 0>0, Ju <ec

Setting N' = »* (i = 1, 2, 3) is Egs. (2.7) we obtain the Euler equations corresponding
to the model (2.1), (2.2). They are

dp O
e @ =0
(2.10)

9 9 .
”5;(9“)"‘5(?"‘9“ ) = 0.

Here the pressure p is given by

(2.11) p= % o(c? —u?).
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For the model kinetic equations (2.1) we can also write the Navier-Stokes equations
[2, 13],

7Y

ol
ar 9+'§ (eu) =0,

2.12) 2 y 5 3
7(9u)+g(p+eu’) = [H(“)Eu],

where p is given by Eq. (2.11), and the viscosity coefficient u(u) takes the form

(2.13) u(w) = % (c*—u?).

The Broadwell model or its versions was considered by many authors (cf. [3] and
references therein). In particular, the relations between shock waves in the model Euler,
Navier-Stokes and Boltzmann equations were studied by CArLISH [14]. Recently the shock
stability was proved by KawasHiIMA and MATSUMURA [15], and CAFLISH and Liu [16].
CoRrNILLE in [17] and in other papers (cf. [17] for references) constructed many interesting
exact solutions for the Broadwell model.

Hence, both the theory and applications of the Broadwell model are so well developed
that it can be a good reference for our modification.

We proceed to construct a model resembling retrograde gases. We want our model
to be of the form Egs. (2.1) with the collisional term Q different from Eq. (2.2).

As it is known [18], the simplest model of a retrograde fluid is that given by van der
Waals. In this model, the relation between the presure p, the density ¢ and the temperature
T is of the form

RoT
2.14 = —ap?,
(2.19 A T
where R is the gas constant, a > 0 is a quantity proportional to the forces of molecular
attraction, and & > 0 is a constant characterizing the maximal concentration.
For the sake of simplicity we set b = 0, i.e. we admit the gas to be infinitely compressible,
what is in accordance with the Boltzmann concept of gas. Hence, we take

(2.15) p = RoT—ag?

instead of Eq. (2.14). It can be checked easily that a gas with the constitutive relation (2.15)
is still of the retrograde type.

The first term at the right-hand side of Eq. (2.15) is the usual ideal gas expression for
the pressure, which in the Broadwell model is replaced by Eq. (2.11). Thus, inserting

1 .
5 o(c?—u?) in place of RpT, we obtain from Eq. (2.15)

(2.16) p= %g(cz—uz)—agz.

Hence, our model should be of the form (2.1) with such expression for the collisional
operator O that the pressure term is of the form (2.16) instead of Eq. (2.11). Consequently,
the model Euler equations should be of the form (2.10) with p given by Eq. (2.16).
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One can obtain the Euler equations from the general transport equations (2.7) by
setting N? = »'(i = 1, 2, 3), where »' are equilibrium densities. Therefore

%4cz(v‘+v2) = p+ou* = %9(02+u2)—a92.

This relation along with Egs. (2.5), (2.6) yields a system of three linear equations for
three unknowns »', »2, »3. The solution is

c
2
u 2a
(2.17) v = 9(1—7) =gl

Thus, we know the equilibrium densities of an unknown collisional operator Q.
We have

PROPOSITION 2.1. Let P(N) be a third degree polynomial of N = (N*, N2, N3). The
vector » = (v1,2,»%) with components given by Egs. (2.17) nullifies P(N) if and only
if P(N) is of the form

(2.18) P(N) =4 % :—2(N‘ +N2+2N2)3+N1N2~(N3)2] ,

where A is an arbitrary constant.

To prove the assertion of Proposition 2.1 we take an arbitrary third degree polynomial
P(N). It has 20 coefficients. Next we substitute N = », where » is given by Egs. (2.17),
and demand the obtained expression to be identically equal to zero for any values of o
and u. After some calculations we obtain Eq. (2.18). We take

(219 Q(N)=P(N)=A [86—"293+N1N2—(N3)2]

2 2 22 \*
iz el )24

We define the H-function by

2 2 2
H= (N1 +?‘2’—92) ln(N‘+;‘21 92) * (N’ +-ifj- 92) 1n(N2 +?‘:—g2)

For a uniform gas, we have dp/dt = 0. Therefore, using that and Eq. (2.19) we obtain
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2
prozelfr 2
=

w2 ) v

xIn — ( =

2
(2.20) d—H=+i(N3—222592)  fp

7)

Ns_?z_ez

From the above it follows that
a

dt
The case 4 = 0 is not interesting, therefore it must be A > 0. Without any loss of general-

ity we can assume A = 1, since in Eqs. (2.1) Q is multiplied by an arbitrary constant 1/e.
Hence, we take finally

<0 ifandonlyif A4>=0.

2
a a a a
(221) Q = 86_293+N1N2_(N3)2 = (N‘+2?2—@2) (N2+2;*2‘92)—(N3—2?-92) -

Again, from Eq. (2.20), in the case of 4 = 1, it follows that dH/dt = 0 if and only if N
is given by (2.17).

Thus, an analogue of the Boltzmann H-theorem is proved.

Applying the Chapman-Enskog procedure to the model (2.1), (2.18) (see [2]) we derive
again the Euler equations (2.10), (2.16) as the zero order approximation in ¢, and the

Navier-Stokes equations
0

7

=2 ¢ ox (ou) = 0,

(2.22)

ou

a(@u)+ (.v+9) :x[ﬂ7};+x%(eu)],

where p is given by (2.16), and
(2.23) p= 5 (c*~u—4ag),

(2.29) ® = &a

as the first order approximation.
There is a difference between the Navier-Stokes equations (2.12) and (2.13) corre-
sponding to the usual Broadwell model (2.1) and (2.2) and those given by Eqs. (2.22)-(2.24).

Namely, a quantlty (gu) is added to the dissipation term.

At least, we impose the following conditions on ¢ and u in order to have the equili-
brium densities positive

(2.25) e>0 l<c ap<p (el
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3. The model Euler equations

We consider the initial value problem for the Euler equations (2.10) and (2.16) subject
to the conditions

3.1 00, x) = go(x),  u(0,x) = uo(x), xeR.
We write Egs. (2.10) and (2.16) in the matrix form
2 (ol o
where
u e
3.3) M=

1 :
5 (c*—u?—4ap) 0

The eigenvalues of M are solutions of

(3.4 A2—Ju —éu (c2—u*—4ap) = 0.
Hence
3.5) 1u( 0) = [ V267 —ut Bag)

The eigenvalues are real and distinct provided that
1
(3.6) a0 < (2¢%2 —u?).

From Eq. (3.5) the following inequalities follow
A, <0 for wuel(—c, — Yc2—4ap),
i, >0 for ue(- Ve*—4ap, ¢
and
Ao <0 for wue(—c ) c2=4ay),
Al_20 for we <) c*—4ap,c).
Thus, if
]/?:Z@ < |yl <c

then both characteristics are of the same sign. Because it is not a situation met in the
true gas-dynamics we reject it as non-physical and assume

il < /e dap

or

3.7 ao < ‘l( (c*—u?).
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Combining Eqgs. (2.25), (3.6) and (3.7), we obtain

2

The set of o, u satisfying conditions (3.8) is denoted by U. In what follows we assume that
o, u belong to this set.
If (o, v) € U, then we have also

1 .
(3.8) 0>0, Ju<ec O<ap< ~—mm{(c—!u|)2,i(c2—u2)}.

3.9 —c< A <0<, <c
and

(3.10) Ao <u< i,.

The right and left eigenvectors of M are

(3.11) re = (0, —4),
(3.12) l, = (A4, 0)

Thus we have proved
LemMA 3.1. If (g, u) € U, then the system of the Euler equations (2.10), (2.16) is
strictly hyperbolic.

We define
(3.13) I', = r,gradd),
d @
where grad = (%, W)
After some calculations we obtain
2 _ 2_ _—
(3.14) r, Az—2e¢ _ . ci—6ap-1;

= + = e e
= V2c*—u?—8ap V2e2—u?—8ag .

From Eq. (3.14) it is seen that the characteristics are neither genuinely nonlinear nor
linearly degenerate in the sense of Lax [23]. Indeed, I', vanish on the curves y,, respective-
ly, given by

"315)  y, = {(e,u) € U: u = sgn[(c*—8ag)] [¢* —4ag+2 Y 2a(c*—6a) |
or

u = sgn[+ (c? —8ap)] [cz—4ag—2 ;/2(19(&—6(1(5]”2},

-1 for x<0O,
sgnx = 0 for x=0,

1 for x>0.

where

The normal vectors n, to y, at (g, u) € y, are given by

o oA
n, = (21i 8—;+60, 221 31:)

what follows from the equation I", = 0.
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Therefore for (o, u) €,
ro-n, =2A1I,+6ap = 6ap > 0.

Thus the right eigenvectors r, are transversal to y,. It means that none of the character-
istics is linearly degenerate in any subregion of U.

Thus we have proved

LeMMA 3.2. The system of the Euler equations (2.10), (2.16) is neither genuinely
nonlinear nor linearly degenerate in U. The linear degeneracy does not take place in any
subregion of U.

From Lemmas 3.1 and 3.2 it follows that the general theory of such hyperbolic
systems of conservation laws as developed by Liu in [9, 10] is applicable to the model
Euler equations (2.10) and (2.16) at least in U.

4. Shocks in the Euler equations

Following LAax [20] we take solutions to (2.10), (2.16) and (3.1) in a weak sense. Such
solutions consist of their domaihs of continuity separated by lines of discontinuity. Let
x = x(t) be the equation of a line of discontinuity, and let s = x'(¢). Then across it the
Rankine-Hugoniot relations hold

s(er—0) = oty — 01Uy,

(4.1) 1 1
S(Qrur_glul) = 7 ['Ql'(':“z_‘_ur2 —20&-)] _’5 [Ql(cz"'ulz_zagl)]:

where for any quantity Q(x, t)

0, = Q(JC(I)+0, t),

Q1 = Q(x(1)=0,1).
We define the R-H curves S(gq, #o) through a given state (oo, 1o) € U as follows [9, 10]
4.2) S(0o0s to) = {(e, u) e Ui o(p—go) = gu—pouo and  (ou—goto)

1
=5 o(c*+u*—2ap)— % oo(c®+u}—2ap,)  for some scalar o = o(po, Uo; 0, u)] .

With this notion the Rankine-Hugoniot conditions become
(o1, w) € S(ors wy),  X'(2) = oloy, s 015 ).

From the jump conditions (4.1) the following useful relations follow

4.3) 000 (o —1)* = (00—0)?[c*— 0% —2a(0o+0)),
and
4.4) 2ap%—p(c?— 0% —2ap,) + 0o (1o — 6)* = 0.

If ¢*> > ¢*—2ag,, then all coefficients in Eq. (4.4) are positive and therefore it cannot
have positive solutions. Hence, the necessary condition of positive g is
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4.5 6% < ¢?—2ap, < 2.
We have

ProrosiTiON 4.1. If condition (4.5) is satisfied and a is sufficiently small, then Eq.
(4.4) has two positive solutions corresponding to the state (0o, #,) and the shock speed o.
Proof. Indeed, setting a = 0 in Eq. (4.4) we obtain
(uo—0)?
=@ 22 ~ 0.
Therefore, by the Inverse Function Theorem, we obtain the thesis.
If we eliminate o from Eq. (4.2), and denote

(4.6) e =go(l+w), w>—1I

then we obtain on S(gq, 4o)

@7 Y= 2 £ ¥ 2¢? —uj—8apy+ w(c? —8apy) —2wlag, 1’2‘
w+2 w+2 1+w

Therefore

48 o, = {uo + [2¢2 —uj —8apo +w(3c? —ug —16ag,)

w+2
+w2(c?—=10ap,) —2w3ap,)'/? }.
Thus we have proved (cf. [23])

LemMa 4.1. The R-H curve S(oo, o) consists of two smooth curves S, (g, Uo).
The following expansions follow from Eq. (4.6) and (4.7)

4.9) (0, u) = (00, Uo) +r (0o, o) W+ O(W?),
1
(4.10) 04 (00, Up; 0, U) = 2. (00, 1‘0)‘*‘"2"11:(90, o) w+ O(w?),
and additionally from Eq. (3.5)
(4] l) 21(93 u) = 21(@0, u0)+I‘t(905 ”o) w+ O(Wz)

(cf. [9, 10, 23)).

Extending the OLEINIK’S celebrated entropy condition [21] Liu in [9, 10] introduced
the following one:

a discontinuity (o;, u;; o,,u,) is an admissible discontinuity if (o,,u,) €S, (01, uy)
(or S_(o;, wy), respectively) and if it satisfies the following entropy condition
(E) o(er, i 0rs Uy) < 0l@r, 115 05 1)
for any (o, u) € Sy(o1, uy) (S_(a1, w), respectively) between (g1, u) and (g, u,).

The above entropy condition (E) is equivalent to the following:
(E) 0(915 ul; er ur) ? U(Q,, ur; Qr u)

for any (o, u) € S, (o,, u,) between (o;,u;) and (o,, u,), and similarly in the case of
S_(er, u).
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Liu proves in [9, 10] that if a discontinuity is admissible and weak, i.e. if (g,, u,) is
close to (g;, uy), then the following stability condition holds

A-{-(en ur) < G(Qh Ups Ors ur) < ;“+ (Ql: u,),

and similarly in the case of S_(o;, &)
From Egs. (4.9) and (4.10) and the entropy condition (E) we obtain (at least for weak
shock waves)

i) for (g, w) €S, (o u):

“.12) if I'y(e,,u)>0 then p,>p, and u > u,
' if I',(o,,u)<0 then ¢, <p, and wu <u,;

i) for (or, u,) €Sy (e, )

if I'_(e,u) <0 then o, >p, and u, <u,
“15) if I'_(g,)>0 then o, <p, and u > u,.
From these results and the Rankine-Hugoniot jump conditions we have
(4.14) 0(0rs 1 01y W)=y = Q1 —— - > 0

Or—@

for  (or, ) € S4(er, tr);
U, —u
=0

<0

(415) U(Ql’ Uy O, ur)_ul =0

for (o, u,) € S_(01, w).

Inequality (4.14) means that the gas leaks through the discontinuity to the left, there-
fore the shock S, (¢,, #,) moves to the right with respect to the gas. Because of that we call
S+ (o,, u,) the forward shock wave. Next, from Eq. (4.5) we see that the R-H curve
S_(e1, w;) moves to the left with respect to the gas, and we call it the backward shock
wave,

The first results in (4.12) and (4.13) can be interpreted as statements saying that the
shock wave is a compression wave. This is a typical result concerning the shock waves
both for the classical Broadwell model and for the true normal gases. The second state-
ments in (4.12), (4.13) resemble retrograde gases, since the density is smaller behind the
shock wave then that before it. We call such waves expansion waves.

In this way we have arrived at one of our main results, namely we have proved

THEOREM 4.1. The shock waves in the model Euler equations (2.10) and (2.16) can be
either compression waves or expansion waves.

Finally, let us notice that the results of the previous section and those of the present
one make it possible to apply the existence and uniqueness theorems proved by Liu [9, 10]
to the initial value problem (2.10), (2.16) and (3.1).

5. The Navier-Stokes shock profile

We smooth out the Euler shock wave by using the Navier-Stokes equations (2.22)-(2.24)
along with Eq. (2.16).

7 Arch. Mech. Stos. 1/90
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We look for solutions of this system of equations in the form
(5.1) o(x,t) = o(x—st), u(x,t) = u(x—st),
where s is a constant, subject to the limiting values

(e, w) (¥ = —0) = (a1, w),

.2)
(9! u) (y == w) = (Qrs ur)s

where y = x—st.
Solutions of the above form are called a Navier-Stokes shock profiles.
Substituting Eqgs. (5.1) into the model Navier-Stokes equations we get

(5.3) o(u—s) = m,

du d 1 s .
54 ,uw+nd—y(gu)—79(c +u?—-2ap)+sou = j,

where m and j are constants.
We assume additionally that

im (22, %) @0,
(5.5 AT 0,0)

From Egs. (5.2)-(5.5) it follows that

m = o,(u,—5) = o,(4,—5),
1
(5.6) j= -5 oi(c +uf —2ap)+so,u; = _% o.(c? +u? —2ap,) +s0,u,.

Comparing (5.6) and (4.1) we see that relations (5.6) are nothing else but the Rankine-
Hugoniot relations.
We make the substitution

— 9|+9r 01—0r
(5.7 0= +G 3
and
(5.8) ou = Qlul;Qrur +G Qlulggrur
with
(5.9) Gy=—-0)=1, G(y =)= -1

With this substitution we satisfy Eq. (5.3) identically, and from Eq. (5.4) along with (5.6)
we get

(5.10) (o w*G*+ a3 w3G? + 0, W2G? + oty WG+ atp) %;i

)2
- -ﬂg’e&)_ (2 +w+wG)*(G*—1) (G + B),
where

(5.11) w= 278
o
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and
1
Xg = 2 agr;

1
ks = - ag,[ur+5(3+ 2w,

(5.12) o3 = —(u,—8) [c?—s?—6ap,(2+w)],
a; = 4(u,—5)%s —2(u,—s) (¢ +5?) 2+w)+2a0,2+ w)*[3u,— 5(7+4w)),
oy = du,—5)?—4s(u, — )22+ w)— (,—5) (c*—52) 2+ w)?
+2a0,(2+w)3[u,—s(3+w)],

and finally
c?—s5*—2a(p;+2¢,)
5.13 B=1-2 ;
Gl 2a(e.—e¢r)
Integrating Eq. (5.10) one gets, if |B| # 1,
Ay 1 As 1

Ay
Gl IR NG) e T 2w 2+w+wG)?

32
—Adn(1-G)+ Asln(1+G)+ Agln G+ B) = 4@V ()

where y, is the constant of integration and the constants 4, to 4 satisfy the following
system of algebraic equations:
(5.15) : Ay —wA,+wAs+wdg = 0,
(5.16) (Q+wB)A;+A,—w[w(B+1)+3(2+w)]A4,
+w[w(B—1)+3Q2+w)]As+3w2+w)ds = —way,
5.17)  [R+w)*+2wB—w2]A;+ [2+w(B+1)]A,+ A4,
—wBR+w)2+3w2+w) (B+1)+w2BlA,+w[3(2+w)*+3w(2+w) (B—1)
—w2B) As+w[32+w)?—w?dg = —w3as,
(5.18) [2+w)*B—2w—w?B) A+ [B2+w)—w]A4,+BA,
—[Q+w)>+3w2(2+w)2(B+1)+3w*B(2+w) A,
+[2+w)+3w*(2+w)*(B—1)—3w*BQ+w)]4s
+[2+w)=3w?Q2+w)]ds = —w az,
(5.19) [R+w)*+2wB)A,+ 2+w(B+1)]A,+ A4,
+[2+w)3(B+1)+3wR2+w)? A, — [(2+w)*(B—1)—3wB(2+w)*]4;
+3w(2+w)2ds = way,
(520) (2+w)?BA;+ (2+w)BA,+BA3+(2+w)BA,+ (2+w)*BAs+ 2+ w)*As = .
It is evident from Eq. (5.14) that G can satisfy the limiting conditions (5.9) only if |B| > 1,

since otherwise it would be: |y| = o for G - —B, —1 < B < 1, contrary to Eq. (5.9).
However, condition |B| > 1 does not guarantee that Eq. (5.13) satisfies Eq. (5.9). The

7%
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final answer to this question depends on the sign of A, and A4, which is difficult to be
established. Later, we solve this problem for weak shock waves.

We proceed to the case when B = 1. We consider only the case of B = 1 since the case
of B = —1 can be treated in a similar way. Setting B = 1 in Eq. (5.10) and integrating
we obtain

Ay A, 1 As 1
(32)  R+wG+D-TF 3 m Ty T w BrwG R P

4s  4aloi—e,)?

1+G e (y_y()),

—Asn(1-G)+AsIn(14+G)—

where y, is the constant of integration, and the constants 4, to 4, are solutions of the fol-
lowing system of linear algebraic equations

(5.22) Aj—wAs+wAds =0,
(523) QR+w)A;+A4,—w(6+5w) A4 +3wQRR+w)As+w?dg = —way,
(524) 2Q2+3w)A; +2(1+w) A, + A3 —3w(@+6w+3w?) A, + 2w(6+ 6w+ w?) A
+2w2(B+w) Adg = —wiay,
(5.25)  2Q2+3W)A; +24; + A3 =2+ W) 2+ 8w+ 5w2) Ay +2(2+w) (2+2w—w?) As
+3wC+w) (1 -2w—-w?) 4dg = —wia,,
(5:26)  (4+6w+w) A +2(1+w) Ay + Ay + 2+ w4+ 5w) Ag + In(2+w)2 A,
22+ w)A(1—w) g = way,
(527  Q2+w)lA;+QR+w) A+ A3+ R+ WA+ 2+ w)PAs+ 2+ w)’As = .

Let us analyze in more detail the condition |B| > 1. We have from Eq. (5.13)
B > 1 if and only if one of the following relations takes place

i) either

(5.28) 52 > ¢*=2ap,(3+2w) and g > o,
ii) or

(5.29) 52 < ¢?=2a0,3+2w) and g < g.
The equation B = 1 defines the transition line

(5.30) 52 = ¢?-2ap,(3+2w).

Similar results can be obtained if B < —1.

Qualitatively, these results agree with those of Theorem 4.1, i.e., the shock wave can
be either a compression wave or an expansion wave, but there are some differences as
well.

First, in Eqs. (5.28)-(5.30) the shock speed s appears instead of the characteristic
speed A, appearing in I, and, consequently, in the equation of the transition line. Secondly
now the equation of the transition line depends not only on the state before the shock
but also on the state after it. Hence, the criterion for a shock wave to be a compression
or expansion wave is much more complicated in the case of the model Navier-Stokes
equation than in the case of the model Euler equations. We cannot compare our model
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results with the corresponding ones obtained for the strong shock waves in the full hydro-
dynamic Navier-Stokes equation, because such results are missing at present.

An agreement between the Navier-Stokes and Euler equations is achieved for weak
shock waves.

For weak shock waves, i.e. for small values of w, we obtain from Egs. (5.15)-(5.20)

(5.31) A4, =0w), i=1,2,3
and
Ay 2(B+1) 3@+ oM
(5.32) As = 502y + 000,
Ay = — s+ O(),

where «, is given by
(5.33) ap = —8A,(0,, u) (c*— 2 (o,, u))+O(w).

In deriving Eq. (5.33) we took into account Egs. (5.12) and (4.9), (4.10).
Owing to Egs. (5.31)-(5.33), the exact solutions (5.14) and (5.21) reduce to

1 G 1-G ,
_ a(e:—gn)? _
B elt (en ur) [02— 1:(979 “r)] (y yO)
for |B| > 1, and
- - 2

T TR T G wE=Raa ¢

for B = 1. We took 4, in Eq. (5.35) to satisfy the limiting condition (5.9). In Eq. (5.34)
we use the asymptotic formula for B > 1 as w — 0,

c?— A3 (0r, 4,)—6ap,+ O(w)
(5.36) B=1-2 A . :
2a(o,—0,)
where Eq. (4.10) has been taken into account.

The asymptotic solutions (5.34) satisfy the limiting conditions (5.9) if an only if we
put there

the (+) subscript (ie. ,) and B2=21 or
the (—) subscript (i.e. ) and B< —1.
The first case corresponds to the forward shock waves, whereas the second case to the
backward ones.
In what follows we limit ourselves to the forward shock waves, since the backward
shocks can be analyzed in a similar way.
From Eq. (5.36) as well as from Eq. (3.14) we obtain (cf. also Egs. (5.28) and (5.29)):

(5.37)
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B > 1 if and only if one of the conditions is satisfied:

i) either

(5.38) . (o,,u) >0 and o, > o,
ii) or

(5.39) I'.(o,,4) <0 and g, <op,.

Relations (5.38), (5.39) are identical with (4.12). Hence, for the weak shock waves we
obtain full agreement with the Euler predictions of the character of the shock.

Let us notice also that the asymptotic form of the solutions is exactly the same as that
obtained for the weak shock waves by CRAMER and KLuwick [11] within the framework
of the true Navier-Stokes equations (cf. formulae (5.7) and (5.8) of the cited paper).
They alsd give graphs of the shock profile for a few values of B > 1.

6. The Boltzmann shock profile

The Boltzmann shock profile is a density vector N(p), y € R, such that
(6.1) N(x,t) = N(x—st)
is a solution of the model Boltzmann equation (2.1), (2.21) with the limiting values
Ny = —0) =,
6.2) y 1
Ny= )=y,
where »,, », are the equilibrium density vectors with hydrodynamical moments (o, ;)
and (g,, u,), respectively. We assume that both (g, #,) and (o, ) are elements of the
set U defined in Eq. (3.8).
The Boltzmann shock profile equations are found by substituting the assumed form
of solutions (6.1) into the model Boltzmann equations (2.1)

dn'! 1
(C—S) dy = _?Q(N’N):
dN? 1
(6-3) —(C+S)‘ dy = —?Q(N5 N)’
dnN? 1

Equations (6.3) lead to two conservation laws, which are obtained by multiplying (6.1)
by v, and y, given by Egs. (2.3) and (2.4), respectively. The constants of integration are
found by using the limiting conditions (6.2) and the Rankine-Hugoniot relations (5.6)

c¢(N'=N?*)—s(N*'+N2+2N?3) = 4m,
c2(N'+N?)—sc(N*—N?) = 4j.
Multiplying Egs. (6.3) by the vector y, = (1, 1, —1) we obtain

(6.4)

(6.5) %[(C—S)N‘_(C+S)N2+SN3] = —%Q(N,N)A
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We make the substitution
66) N' = 5 [O4+A+GO) 6=l i=1,2,3,

where G(y) is an unknown function such that
6.7 Gy=-0)=1 G(y=o)=-1
(cf. Eq. (5.9)).

With this substitution Egs. (6.4) are satisfied identically, and Eq. (6.5) becomes

dG . a(Ql—Qr)z 2

(6.8) T ale=) (G*-1)(G+B),
where B is given by Eq. (5.13).

In deducing Eq. (6.8) we have used the Rankine-Hugoniot conditions and the identity
(4.3). _

Equation (6.8) is the same as that obtained by CRAMER and KLuwiIcK in [11] for weak
shock waves in the genuine Navier-Stokes equation. However, now it is an exact conse-

quence of the model Boltzmann equation and describes not only the weak but also the
strong shock waves.

The solution of Eq. (6.8) for the forward (s > 0) shock waves is:
for B > 1 ’

] G 1-6 a(o, —0,)?
6. ——— . —In(1 -G §= — s
(6.9) o =21n(3+l)+81n TR In(1 G)} P (r=yo),
and for B =1
1, 1-G G a(o—o,)?
1 o - - - _
(10 7156 " T+6 e —s7) OV

where y, is the constant of integration.

These solutions have the same form as those found by, CRAMER and KLuwick [11
for weak shock waves in the true Navier-Stokes equations. They agree with the model
Navier-Stokes equations considered in the previous section for weak shock waves only,
what follows from Egs. (6.9) (6.10) and the expansion (4.10).

Since the parameter B is the same for the model Navier-Stokes and Boltzmann equa-
tions, the transition line is also the same for the two descriptions and does not agree in
general with the Euler description. Full agreement between the three types of equations is
attained for weak shock waves only.

The last problem we consider is the shock wave thickness. As its definition we take

(6.11) L= el
4
sup |-
yp dy |
From Eq. (6.6) and definition (2.5) of the density we have
dp 1 dGg
—"}'; =7 (e1—en) dy
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Inserting that into Eq. (6.11) we obtain
2

.vp d)’

(6.12)

The point of inflection of G(y) is the point where the derivative dG/dy attains its maximal
value. We have

1
(6-13) Giar =

B+ yYB*+3
Thus the point of inflection is shifted downstream of the point where o attains its average
value and, hence, the shock profile is no longer symmetric as it was in the case of the

classical Broadwell model and true regular gases (cf. [11]). From (6.13) and Eq. (6.8) we
obtain

sup | 9G] _ 2alei—e)? (2B+ VB +3)
y |dy|  Yes(c’—s?) B+ yB?+3

Using this in Bq. (6.12) we get

9es(c?—5*) B+ Y B*+3

6.14 L= B2+3)’
(6.14) alei—¢)* (2B+ Y/ B*+3)’

Two cases must be considered.
i) B = O(l), i.e. the downstream and upstream states are close to the transition line.
Then, as it is seen from Eq. (6.14), for the case of weak shock waves

1
6.15 Ly ——-.
1) (0:—e)?
Hence, the weak shock wave thickness is much larger now than in the case of the classical

Broadwell shock wave, where (cf. [14])

.

loc—erl ~

Cramer and Kluwick in their considerations had to assume the estimate (6.15) in order
to have their asymptotic theory self-consistent (see [11]). Thus our rigorous result (6.15)
confirms Cramer-Kluwick’s conjecture.

i) B — oo, what corresponds to the case a — 0. For a — 0 we get from Eqs. (6.14)
and (5.13)

o 2es(c?=s?)  2es 3a(e,+0,)

(a8 ot a(gi—e)’B " lei—el (l T ey )

It follows from (6.16) that, in this case, the shock wave thickness is much smaller than in
the previous case. Also from the graphs of G given by CrRaMER and Kruwick [I1] it is
seen that the growth of B steepens the shock profile and makes it symmetric. From Eq.
(6.9) we obtain as B —» o0

L

1-G Ba(g,—0,)*
1+G ~ es(c?—s?)

(6.17) In (y—»o)-
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Thus, in this limit, the shock profile becomes the classical hyperbolic tangent. If, addition-
ally, the shock is such that

ater

lo1— ol ’
then (6.16) gives

2es 6ase
6.18 L=z .
L loi—orl ~ c*—s?
This expression reminds very much the following formula for the shock thickness
(6.19) L = af(M)+B,

obtained recently experimentally in [22]. Here « is a constant, f(M,) represents the depend-
ence of shock thickness on the Mach number, and £ seems to be a constant characteri-
zing the gas.

The qualitative agreement between (6.18) and (6.19) is not full, however, since (6.18)
was obtained for sufficiently strong shock waves, and (6.19) is to be true for shocks of any
strength. This disagreement can be ascribed to the extreme simplicity of the proposed
model.

7. Final remarks

A simple discrete velocity model resembling retrograde gases has been proposed. The
resemblance has been fully shown. In particular we have shown that at all three levels of
description: i.e. the Boltzmann, the Navier—Stokes and Euler description of the gas, the
shock waves can be either a compression wave or an expansion wave. For each of the
levels of description the transition line has been found. In the Euler equations the transi-
tion line was the curve along which I', (¢, ¥) vanished. This agrres completely with previ-
ous results obtained by other authors from the full hydrodynamic Euler equations.
However, if the dissipative effects are included, a shift of the transition line arises, parti-
cularly for strong waves. On the other hand, in the case of weak shock waves an agreement
between the three levels of description was obtained.

The second problem we would like to discuss is the presence of space gradient of the
density in the model Navier-Stokes equations (2.19).

This form can be a distorted representation of the second viscosity, and such its form
can be a result of the simplicity of the model. (Another travesty is the dependence of the
press on the velocity in the Broadwell model).

The third and the most difficult problem is that of the kinetic equations even for the
case of one-phase retrograde gases. The proposed discrete model has the characteristic
feature the probabilities of direct and inverse collisions are different.

At present there exist general true kinetic equations in which both the ternary collisions
and many physical and chemical phenomena occurring in real gases are taken into account
(see for example [19]). However, it is very difficult to make practical use of them since we
do not know the exact molecular structure and composition (for instance, the number of
the internal degrees of freedom of the moleculas) of a retrograde gas, of the law of molecular

8 Arch. Mech. Stos. 1/90
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interactions. If, additionally, we resign of the symmetry between the direct and inverse
collisions, then it becomes extremely difficult (if possible at all) to determine all states of
equilibrium. Owing to that, it seems that discrete velocity models, more sophisticated than
the one proposed in this paper can be very helpful in the qualitative understanding of many
phenomena occurring not only in the retrograde gases but also in the general real gases.
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