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On the evaporation of a fluid into a gas 

D. IANNECE and G. STARITA (NAPOLI) 

BY APPLYING the general balance equations of a mixture with an interface, a free-boundary 
problem is posed which describes the evaporation of a pure substance in a gas (air, for instance). 

Stosujctc og6lne r6wnanie bilansu do mieszaniny z powierzchnict mi((dzyfazow~, sfmulowano 
zagadnienie powierzchni swobodnej opisujctce proces parowania czystej substancji w atmosferze 
gazowej. 

llpHMeHHH o6mae ypaBHeHWI 6aJiaHCa K CMeCH C MeiK<Pa30BOH noaepXHOCTbiO, c<PopMyJII{­
pOBaHa 3~aqa cao6o,lUio.H noaepxHoCTH, onHCbisaroman npo~ecc ucnapeHHH 'llllCTo.H cy6-
CTaH~aa B ra3oao.H aTMoc<Pepe. 

1. Introduction 

RECENTLY a model describing the phase transition in a classical fluid binary mixture has 
been proposed (see [1]). In such a .model the system is supposed to be made up of a liquid 
and vapour phase which are both mixtures of the same two substances separated by an 
interface that, in turn, is a binary mixture itself. The general equilibrium and evolution 
equations of this system are determined. 

The case in which the interface is non-permeable with respect to one of the two consti­
tuents of the mixture is particularly interesting. In this case one of the constituents is 
found in just one phase. The class of systems we are considering permits us to study such 
phenomena as the evaporation of dilute mixtures or fluids in the presence of a second 
gas (for instance the evaporation of water in the presence of air). 

In this paper we take into account the latter case; more precisely, we examine a system 
which is made up of a pure liquid phase and of a gaseous phase that, in turn, is a mixture 
of the vapour of the same substance and of the another gas. The evolution equations of 
such a system are obtained by supposing that the concentration of one co-nstituent in the 
liquid phase vanishes in the equation derived in [I] (Sect. 2). 

By employing the procedures we have already applied in [2], in order to study a pure 
substance, in Sect. 3 approximate equations are determined which supply a reasonable 
mathematical model for the system we are concerned with. 

Section 4 is devoted to some physical considerations that we can summarize as follows: 
the evaporation temperature on the interface is not determined but it depends on the 
concentrations of the constituents in the gaseous phase. The study of this dependence, 
in the particular case of water evaporation in the presence of air, makes evident the facts 
that 1) the evaporation temperature decreases when the air concentration increases on the 
interface; 2) the advancing interface is governed by a Stefan-like condition~ which is similar 
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to those found in the evaporation and melting of a pure substance; however, the latent 
heat is not constant because the temperature is not determined on the interface; 3) when 
the gases in the mixture are both monoatomic or biatomic it is possible to deduce all the 
thermodynamical fields starting from the concentration and temperature fields. 

2. The balance equations 

The study of the evaporation phenomenon or sublimation of a substance in the air 
leads to analyze a system which is made up of a (liquid or solid) pure phase and an air 
and vapour mixture separated by a surface with an interface. The general equations describ­
ing such a system have been discussed in [1] together with the corresponding equilibrium 
conditions. 

In this paper an initial examination of dynamics of this system is carried out by sup­
. posing that the following hypotheses are verified for the duration of the process: a) the 
phenomenon exhibits plane symmetry; b) the pressure is much less than its critical 
value; c) the interface has no material characteristics. 

The aforesaid hypotheses lead us to the following approximations: . 
i) the fields depend on the temporal coordinate t and on just one spatial coordinate x; 

~ 

ii) the pure phase is not compressible; 
iii) the mixture is made up of perfect gases; 
iv) the mixture density is negligible with respect to that of the pure phase. 
In the sequel we shall refer to the evaporation case, but all these considerations could 

also be applied to sublimation. 
In the liquid the balance equations of mass, momentum and energy assume the follow­

ing form: 

(2.1) 

v = 0, 

Px = 0, 

{}t = a-{}x:o 

where v is the particle velocity, p and {} represent the pressure and temperature fields and 
a- is the liquid thermal diffusivity. 

The gaseous phase will be treated in the framework of the classical theory (see [3]). 
This means that balance laws for mass, momentum and energy are assumed for the mixture 
as a whole, whereas the presence of two different constituents is described as follows: 

a new balance law for the concentration e) of one constituent is considered; 
a diffusive flux in the energy balance law is introduced. 
We are thus led to the system 

(2.2) 

(!t+ (ev)x = 0, 

e(vt +vvx) = hx, 

e(vr+vvx) = -px, 

(!(E,+VEx) = -pvx+k+{}xx+fl'x, 

(1) The concentration of a constituent is defined as the ratio of its density to its total value. 
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where e denotes the total mass density of the mixture, v is the vapour concentration, 
v is the mean velocity of the mixture particles, hx is the relative mass flux of the vapour, 
p, {} and E are the pressure, temperature and specific internal energy, k+ is the thermal 
conductivity and !i' is the diffusive flux. 

Both the relative mass and energy fluxes have to be expressed as functions of(!, v, {} 

and their respective spatial derivatives (see [4]) by suitable constitutive equations. 
Two remarks are worth mentioning at this point. If we introduce the velocity u of the 

vapour particles, the equation (2.2h reduces to the continuity equation for the vapour 
provided we assume 

(2.3) h = -ev(u-v). 

Consequently, the constitutive equation for h supplies the relative velocity u-v. 
Moreover, it is a classical result of thermodynamics [3] that the flux Ie can be expressed 

in the form 

(2.4) 

where ft is the reduced chemical potential of the vapour and is independent of the spatial 
fields derivatives. 

To the system (2.1), (2.2) we have to add the jump conditions on the interface. If s is 
the advancing velocity of the interface and we suppose the continuity of the temperature 
field, taking into accoun~ (2.3) and (2.4), the jump conditions reduce to 

-e-s = e+(v-s) = J, 

-e-s = e+v(u-s), 

(2.5) [vV+[p] = 0, 

~ ~ (v-s) 2 + E + P ~ J -[kfJx]+ve+ p,(u-v) = 0. 
- (!_ 

From (2.5)1 , 2 we deduce ve+(u-v) = (1-v)J; the energy jump equation (2.5)4 can 
be put in the form 

(2.6) ~ ~ (v-s)2 +E+ P +(1-v)p,~J = [kfJx]· 
- (! -

The thermodynamic laws require that the dissipation principle must be satisfied togeth­
er with the balance equations (2.1), ... , (2.6) in every process. Application of this prin­
ciple leads us to known restrictions on the constitutive equations inside the two phases and 
to the following inequality on the interface: 

fJ[ rJ]J ~ [kfJx] 

(17 is the specific entropy). By eliminating [k{}x] between this last relation and (2.6) we 
arrive at the dissipation inequality in the form 

~ ~ (v-s)2 +VJ+E_+(l-v)p, ~J ~ 0 
- (! -

in which the specific free energy 1p = E- {}17 has been introduced. 
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From now on the following further hypothesis will be supposed to be satisfied: 
v) during the process there is no dissipation on the interface. 
This hypothesis is the same as supposing that the jump relation is verified 

(2.7) 

besides the other jump conditions. 
In the approximation iv), from Eqs. (2.5) 1 and (2.5h, we derive the following expres­

sions of v and u on the interface 

(2.8) 

which permits us to express the remaining conditions (2.5) in terms of the advancing 
velocity of the interface s alone. Simple calculations lead us to the equations 

[P] = - <e-}2 s, 
(1 

(2.9) -}e-(:: r$3 +e-[[E]+~: +(1-v)p]$ = k-{};-k+{}:, 

- g_ .P+[tp]+L+(l-v)p, = 0. 1 ( - )
2 

+ 
2 e+ e+ 

In conclusion, the system describing the evaporation of a liquid in the air is made up 
of Eq. (2.1) at the points of the liquid phase, by Eqs. (2.2) at the points of the air-vapour 
mixture and by the jump conditions (2.8)-(2.9) on the interface. In the sequel this set of 
the equations will be called the system S. 

3. Non-dimensional form of the balance equations 

The system S describes in an exact way the liquid evaporation in the air provided the 
conditions i), ... , v) are satisfied. Following the procedure which was already adopted 
in [2], in this section the order of all the terms appearing in the equations will be evaluated 
in order to attain an approximate form of the system. 

Let e+ be the vapour density at the atmospherical pressure and evaporation tempera­
ture {}v, and let us introduce the parameter ex = e+ /e- ~ I. If x- is the dimension of the 
region initially occupied by the liquid, the characteristic time of thermal phenomena is 
T = (X-)2 ;a- so that the rate u- = x- /T can be supposed to be comparable with the 
advancing velocity of the int~rface. The relations (2.8) show that the velocities u and v in 
the vapour-air phase are much greater than s and they suggest a comparison of their 
values to the quantity u+ = u- foe; this is equivalent to introducing the reference length 
x+ = x- foe in the mixture. 

From the previous considerations we derive the following definitions for dimensionlesi 
variables and fields. 
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t 
t =r, 

(3.1) 

A x-, 0 ~ x ~ s(t), I 
X 

x-
- s(t) x -s(t) 

x- + x+ ' x ~ s(t), 

;. s 
s = -­u-' 

A U 
U=-­u-' 

81 

where e is the difference between the temperature values at the initial time and on the 
boundary of the system. To complete the scheme of the dimensionless variables, different 

thermodynamicafpotentials have to be defined (internal energy, free energy and chemical 

potential). We shall assume that all the variations of these quantities . are of the same 
order of the product c-e and therefore, we define the dimensionless potentials by the 
following ratios: 

(3.2) 
A E 
~ = c-e, 

In the new variables (3.1), (3.2) by imitting the hat for semplicity, systemS assumes the 
form 

Liquid phase 

p = p(t), 

()t = ()XX' 

Mixture 

(!t + (ev)x = 0, 

e(v,+vvx) = - [ev(u-v)]x, 

Px = -Ae(v,+vvx), 

e(er+vex) = -pvx+tXk0xx- [P!?,tt(u-v))x. 

Interface 

s s 
v=-7, u=-e+v' 

82 
[p] =-A+", e 

-}A es:, +[[£]+~: +(1-v)1+ = 0;-akOi, 

1 s2 p+ 
- A-+[VJ]+-+(1-v),u = 0. 
2 e+2 e+ 

TI1e number A = u+ fe-e we have introduced into the system (3.3) expresses the 

order of the ratios of kinetic energy, pressure force work and heat per unit mass in the 
mixture. Under the hypotheses of this paper, A assumes extremely small values (for instance 
in the case of water, it is of the order of 10-13) and therefore they can be neglected. 

In such an approximation, the pressure is continuous and uniform in the whole system 

and it assumes the external value p. The system (3.3) reduces to the form 

Liquid phase Mhlture 

!>r + (ev)x = 0, 

(Jt = ()xx· e(Pr+VPx) = - [eP(U-V))x, 

e(e,+vex) = -pvx+1Xk0xx- [Pe,u(u-v))x. 

6 Arch . Mech. Stos. 1/90 
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Interface 

p+ 
['P]+~+ (1-v),u = 0. 

(! 

D. IANNECE AND G. STARITA 

4. Some considerations concerning the system (3.4) 

Equation (3.4) define a complex free boundary problem with unknowns represented 
by two functions s(t) and l(t) (which assign the interface and external surface position), 
by the fields O(x, t) in each phase and by v(x, t), v(x, t), e(x, t) in the mixture. 

In this section we confine ourselves to making evident some interesting physical character­
istics of the system we are faced with. 

The condition (3.4)4 supplies a relation between the values that the fields assume on 
the interface. According to the approximations ii), iii), the liquid and the mixture phase 
free energies are respectively expressed by the COJ?Stitutive equations 

( 4.1) tp- (0) = (0* + 0) [1 -ln(O* + 0)]- e0 + (0* + 0)1J0 , 

R 
tp+(O, e,v) = [cv+c.t(l-v)] (0*+0) [1-ln(O*+O)]+-_-v(O*+O)lnev 

c m 

R 
+ -_- (1-v) (0* + O)lne(1-v). 

c m 

In Eqs. (4.1) m and mA are the molecular masses of the evaporating substance and of 
the mixture; R is the universal gas constant c = c+ fc-' CA = cfc- are the rates of the 
specific heats of the vapour, liquid and second gas phases. The remaining constitutive 
equations can be derived from Eqs. ( 4.1) and the well-known thermodynamicaf relations 
that, in terms of the chosen dimensionless variables, can be.written as 

(4.2) E = tp+01J, p:;::: (!2 ~tp, 1J = - ~:, ,U = c;:. 
(! 

The constitutive equations (4.1) and (4.2) permits us to put Eq. (3.4)8 in the form 

6 

- A mA v+m(I-v) (0* O)-Y - o•+o 
P - --- + e mAv t . ' 

(4.3) 

where A, y and ~are constants. The external pressure being fixed, Eq. (4.3) supplies a rela­
tion v = v(O) between the temperature 0 and concentration von the interface. In particular, 
at ordinary pressure (p = 1), the evaporation temperature corresponding to a given con­
centration v is obtained by intersecting the curve 

6 

(4.4) Y = A(O* + O)-" e- o•+o 
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with the straight lines 

(4.5) 

In Fig. 1 the. curve (4.4) is represented together with the straight lines (4.5) for different 
values of v under the assumption that the physical parameters refer to the water evapor­
ation in the air. The figure shows, in agreement with experience, that the evaporation 
temperature decreases together with the vapour concentration on the interface. 
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If we define the latent heat 

/ 
I 

60 

A= (0*+0) [rJ] 

the condition (3.4)8 assumes the form 

I 

(4.6) [e]+-4- + (1-v)~-t = A 
(! 

and therefore (3.4), can be written as 

As= 0;-akOI. 

I I 

80 

0 1 

0 
100 

This relation is formally similar to the Stefan condition that we have already deduced 
in the case of liquid evaporation. However, there is a substantial difference between these 
two cases. In fact, in the former case A is constant whereas in the latter case it depends on 
the unknown value of temperature on the interface. 

We suppose that the whole system is constrained between a fixed plane x = 0, on the 
liquid phase side, and a moving plane x = l(t) on the mixture side. The task to determine 
the curves x = s(t) (interface), x = l(t) (free surface) and the fields O(x, t), e(x, t), v(x, t), 
v(x, t) is entrusted to the system (3.4) equipped with suitable initial and boundary condi­
tions. 

6* 
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In particular cases it is possible to reduce the whole problem to the study of tempera­
ture and concentration fields. In order to prove this, we observe that the energy balance 
equation in the mixture can be written in the form 

(4.7) 

where e and e are expressed by the equations 

(4.8) e= ~mAc R 
p 

[m"" v+m(l-v)] (fJ* + fJ) ' 

e = [cv+c...t{l-v)] (fJ*+fJ), 

which can be deduced from Eqs. (4.1) and (4.2), whereas L is the dimensionless energy 
ftux to which we have assigned a constitutive law that, owing to Eqs. ( 4.8), has the general 
form L = L(fJ, v, Ox, vx). 

If the two gases in the mixture ·are both mono atomic or biatomic, then the specific 
heats c and cA are inversely proportional to the molecular masses m and m.t. In this hypo­
thesis the energy E = ee and enthalpy H = ee+p per unit volume are constant and Eq. 
(4.7) leads us to the following equations for v: 

(4.9) v = cxkfJx;L+f ' 

where f is a time function that we must determine starting from the interface data. 
Relations (4.8)1 and (4.9) can be introduced into the mass and concentration balance 

equations; simple calculation lead us to the following system of nonlinear parabolic equa­
tions in the unknowns (J and v 

H[m...tv+m(l-v)] fJ,+ H(mA -m) (fJ* + fJ) v,+ (cxkfJx+L+fl [(mA v+m(I-v) (fJ* + fJ)]x 

= [m...tv+m(1-v)] (fJ*+fJ) (cxkfJx+L)x 

(4.10) 
u. ( kfJ L f) _ HR[m...tv+m(l-v)] (fJ*+fJ) (.£) nv1+ CX x+ + Vx - _ • 

mm""c p f.l x 

With the temperature field we have to associate the initial data as well as the values 
at x = 0 and x = /(t). We shall suppose that the initial concentration v0 and the boundary 
concentration and chemical potential are given on /(t). 

Finally, we need a further equation in order to determine the free boundary l(t); such 
an equation is supplied by the global mass balance that can be written 

l(t) 

s(t)+ r e(v(x, t), fJ(x, t))dx = const 
s(t) 

(see [2]), where the function e(v, fJ) is expressed by Eqs. (4.8). 
In conclusion, the temperature and concentration fields fJ{x, t ), v(x, t ), the interface 

s(t) and the free boundary /(t) represent the unknowns of the following system: 

( 4.11) fJ, = (Jxx, 0 < x < s(t ), t > 0, 

H[m...tv+m(I-v)]fJ,+H(m.t-m) (fJ*+fJ)v, 

+ (cxkfJx+L+fl [(m...tv+m(l-v) (fJ*+fJ)]x = [m...tv+m(l-v)] (0* + fJ) (cxkfJx + L);"' 

s(t) < x < l(t), t > 0, 
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(4.11) 
(cont.) 

H ( -·'·O L f) _ HR[m .... v+m(l-v)] (0*+0) (_£) 
Vt+ Wf.- x+ + Vx- _ , 

mm .... c p p, x 

0(0, t) = 01 (t), O(l{t), t) = 02 (t), 

v((l(t), t) = v2 (t), p,(v(l(t), t), O(I(t), t)) = ,u2 (t), t > 0, 

l(t) 

O{x, 0) = 00 {x), 0 ~ x ~ 1(0), 

v{x, 0) = v0 {x), s(t) ~ x ~ 1(0), 

b 
f(v, 0) = [tp]+----=i="""+(l-v),u = 0, 

(! 

,t8 = 0;-rx.kOt, 

s(t)+ j e(v(x,t),O{x,t))dx=const, t~O, s(O)=t0 , 1(0)=10 • 

s(t) 

85 

Once the fields v{x, t) and O(x, t) have been obtained, it is possible to evaluate the 
remaining fields by resorting to the constitutive equations and the relation (4.9). 

The equations represent a complex nonlinear problem and it seems to us that it is not 
possible to solve it by means of the known methods of analysis. 
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