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Steady linearised aerodynamics 
lll. Transonic 

D. HOMENTCOVSCHI (BUCHAREST) 

IN THIS PAPER we discuss the application of the integral equation method to the study of steady 
transonic flow of inviscid fluid past an aerofoil. For the three-dimensional nonplanar aerofoil 
the solution of the problem is reduced to that of system of two singular nonlinear integral equa­
tions. In the plane case we succeded in obtaining an integral equation whose kernel is expressed 
in terms of elementary functions only. 

Przedyskutowano zastosowanie metody r6wnan calkowych do analizy ustalonych przeplyw6w 
okolodZwi~kowych plyn6w nielepkich wok61 plata. W przypadku plata tr6jwymiarowego za­
gadnienie sprowadza si~ do ukladu dw6ch nieliniowych r6wnan 'calkowych osobliwych. W przy­
padku plaskim uzyskuje si~ r6wnanie calkowe z j<ldrem wyra.Zonym przez funkcje elementarne. 

06cym~eHO npHMeHeHl{e MeTo~a IOITerpa.ru.HbiX ypaBHemtii ~JUI aHaJIH3a yCTaHOBHBIIIHXCH 
oi<oJio3BYJ<OBbiX Tetiemtii HeBH3I<I{X ~oCTeii Boi<pyr I<pbma. B cnyqae TPeXMepHoro I<pbma 
3a~aqa CBO~CH I< CHCTeMe ~yx HeJIHHeRHbiX OC06biX HHTerpanbHbiX ypaBHeHHR. _B llJIOCI<OM 
cny-qae rrony-qaeTCH MHTerpam.Hoe ypaaHeHl{e c H~oM, Bbipa>KeHHbiM qepe3 :meMemapHbte 
<f>~MH. 

1. Introduction 

Tms WORK continues the papers [1, 2] concerning the linearised motion of compressible 
fluid past thin aerofoils. While in papers [I] and [2] we considered the subsonic-supersonic 
regimes, the regime investigated here is the transonic one. A common feature of all these 
papers is the fact that they are based on fluid motion equations (and the corresponding 
jump conditions) only, without any supplementary hypothesis concerning the discontin­
uity surfaces inside the flow. 

Thus, our analysis avoids the consideration of the sources and vortices on the body 
surface and on the vortex sheet (free vortices) behind the airfoil, as in other lifting line 
or lifting surface theories (e.g. [3]), and we do not need the replacement of the body sur­
face by a continuous distribution of momentum as assumed in [4] either. This is important 
since it proves that it is of no use to look for other "models" to describe the motion of 
in viscid fluids in the limits of the small perturbation theories. Some terms in the obtained 
representation formulae can be associated w~th contribution of sources and vortices on 
the body surface and of a vortex sheet behind the body, but this is a consequence (therefore 
an aposteriori result) of the theory and not a hypothesis in developing it. 

In all cases we succeeded in obtaining integral equations for determining the main 
parameter of interest - the local lift on the aerofoil. In the supersonic regime, for a large 
class of thin bodies this equation can be analytically solved; in the other cases the corre­
sponding integral equations are integrated numerically or asymptotically. 
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4 D. HOMENTCOVSCHI 

The approach used herein is somewhat different from those considered in the previous 

papers [1] and [2]. So, unlike the line of attack of the papers mentioned, based on the form 

of distributions of the flow equations, here the direct use of the Fourier transforms proved 

to be sufficient for developing the complete theory. Theoretically the form of distributions 

of the flow equations is more general, they being valid for general nonlinear equations; 

from the practical point of view to solve these equations one must very often linearise them 

first. The fact that we left aside the form of distributions of the flow equations consider­

ably simplyfyies the tratement. Now, the main mathematical apparatus used is that of 

integral transorms, i_n fact a "generalized operational calculus". By means of this calculus 

we obtain the integral representation of the solution and, further on, the integral equations 
of the problem. 

The geometry of the aerofoil considered in this work is more general than that studied 

in previous papers; we consider here the case of non planar thin aerofoils at a small inci­

dence angle. From the very begining the analysis of the problem puts into evidence the 

parameter of aerodynamic interest l(x, y) (the local lift on the aerofoil). The usual mathe­

matical tool, the Fourier transforms, enables us to obtain an integral representation of the 

velocity field in terms of local lift, of the aerofoil geometry and of the velocity compo­

nent Vx along the undisturbed velocity direction. This representation holds at any point 

of the space including, possibly, vortex sheets and shock surfaces within the flow. By impo­

sing the boundary condition that the fluid slides the airofoil, we obtain an integral relation 

over the lifting surface which involves the functions l(x, y, z) and vx(x, y, z). By adding 

to this integral relation the expression of the component vx resulting in the above-mention­

ed representation, a system of two integral equations (one at the lifting surface and the 

other in the whole space) is derived for determining the motion. The integral equations 

are singular and both of them contain nonlinear terms. 
We note that a complete formulation of the problem includes the system of integral 

equations discussed above. The use of a single integral relation considered by some authors 

in the planar case is incomplete, and the numerical results obtained in this way depend 

directly on the type of approximation introduced for the nonlinear term. In the case of 

planar symmetrical aerofoil the first integral equation is identically satisfied and the other 

relation is just the Oswatitsch's integral equation. 
In Sect. 4 we consider the case of plane flow. We obtain an integral representation for 

the complex velocity w = Vx- ivz and solution of the problem is reduced to the solution 

of an integral equation for the velocity component vx(x, z). The integral equation is still 

singular and nonlinear but its kernel is expressed in terms of elementary functions only. 

Thus, we were successful in incorporating more analytic steps into the theory in the prob­

lem of interest. 
For easier reading of the paper Appendices A, B, C are included containing some 

formulae concerning singular integrals occurring in the paper and also some laborious 

calculations. 
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STEADY LINEARISED AERODYNAMICS. IIJ. TRANSONIC 5 

2. Basic equations 

We consider the .steady motion of an inviscid fluid past a thin aerofoil S. The body 
is supposed to be nearly contained in a cylindrical surface S 0 with fairly arbitrary cross­
section. Let the origin of coordinates 0 be a point on S0 and let the x-axis be parallel to 
the generatrices of S0 • We write S0 (y, z) = 0 for the equation of the cylindrical surface 
and S±(x, y , z, t:) = 0 for the equations of the upper and lower sides of the aerofoil sur­
faces. Here t: stands for a small parameter characterising the thinness of the body. We 
denote by n0 the unit vector of the normal to the surface S0 and by n- the unit vector 
of the normal to the surfaces S ± directed as in Fig. 1. 

z 

s+ (x,y,z,c) = 0 

n 

FIG . 1. 

The far flow is characterised by density (! 00 , pressure p (YJ and velocity V oo . We suppose 
that the incidence angle is small (V 00 • n0 = O(t:)). 

The equations characterising the fluid motion are 

(2.1) 

(2.2) 

(2.3) 

div(e V) = o, 
e(V grad) V + gradP = 0, 

1 

(! = {l-0.5(y-l)M!(V2 -l }Y- 1. 

Also, on a discontinuity surface E inside the flow, to the above mentioned system of 
equations the jump conditions of Rankine- Hugoniot 

(2.4) 

(2.5) 

[e Vn] = 0, 

(! Vn[V] + [P]n = 0 on E 

must be added. Here [a] stands for the jump of the quantity a across the surface E. 
Relation (2.3) is the Bernoulli's equation where the hypothesis of the isentropic flow 

was included. In the case of transonic flow we shall write this relation in the form 

Here we used dimensionless variables by choosing the following characteristic quantities: 

L for space variables, e oo for density, v 00 = IV 00 I for velocity, !? oo V! for pressure. 
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6 D. HOMENTCOVSCHI 

It is assumed that the presence of the body induces small perturbations into the basic 
quantities. Let us denote by small letters the perturbations. Correspondingly, the linearised 
form of the system (2.1 )-(2.3) will be 

(2.7) {1-M!-M!(3+(y-2)M!)vx} ~; + ~; + o;z = 0, 

(2.8) 
(}v 

a:x+gradp = 0. 

Now, we introduce the reduced quantities [5] 

[J2 N 

Vx = --;;;- Vx, 
k 

x = x, fly = y, {Jz = z, 
{P N v,. = - _- v,, 
k 

[J2 N 

p = - _- p, 
k 

where {J2 = 1-M2 and k = M 2 · (3 + (y- 2)M2) is a transonic parameter. 
Denoting again by x, y, z, Vx,vy, Vz,p the new variables we obtain the system of equations 

(2.9) d
. 1 av; 

0 IVV-2---ax= , 

(2.10) 
(}v 
Tx- gradp = 0. 

The system (2.9)-(2.10) will be used at regular points inside the flow domain; on a 
discontinuity surface J: we add the linearised form of the jump conditions (2.4), (2.5) 

(2.11) 

(2.12) 

I 2] 2 [vn nx- [vn] = 0, 

[v]nx+[p]n = 0 onJ:. 

To solve the above system we need appropriate boundary conditions. Thus all per­
turbations must vanish far upstream. On the other hand, the fluid velocity must be tangent 
to the wing surface. The linearized form of this condition is 

(2.13) v · n0 = -u0 · n0 + n; on C6, 

where u0 is the unit vector along the undisturbed velocity direction; n+ = n0 + ni i + 0( t: 2
) , 

n- = - n0 + n; i + 0( t: 2 ) refer to the upper and lower side of the aerofoil surface, respec­
tively. 

3. Transonic integral equations for nonplanar aerofoils 

To solve the system (2.9)-(2.12) we apply the Fourier transform with respect to all 
space variables. We assume all dependent variables extended by zero values inside the 
body. Let 

vx(k1, k2, k3) = F[vx] = J J J Vx(x, y, z)exp{ -i(ktx+k2y+k3z)}dxdydz, 

~,. = F[v,.], Vz = F[vz], p = F[p] 
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STEADY LINEARISBD AERODYNAMICS. III. TRANSONIC 7 

be the corresponding Fourier transforms. We have [6]: 

§"[gradp] = ik · p- J J [p]ne-ik·"da- J J pne-ik·"da, 
E S 

§"[divV] = ik · V- J J [V] · ne-ik·xda- J J V · ne-ik·"da, 
E S 

where k = k 1 i+k2j+k3k, x = xi+yj+zk. 
The Fourier transform of the system (2.9) and (2.10) will be 

ik • V-0.5ik1 .v; = f f ([Vn]-0.5[v;]nx)e-ik·Xda+ f f me-ik·XdO', 
E So 

(3.1) 
ikl v+ikp = f f ([v]nx+ [p]n)e-ik·Xd(j+ J J lnoe-ik·XdO', 

E So 

where 

m = -(n:~n;) 

is a known quantity and 

remains to be determined. In fact this is the main aerodynamic term of interest in solving 
this problem. The integrals over the discontinuity surface .E vanish due to jump conditions 
(2.Il) and (2.12). 

The solution of the system (3.1) can be written in the form 
" (3.2) V=A·T, 

where 

TT = [ 0, J J I n0 ye-ik ·xda, J J I n0 ze-ik·xda, 0.5ik1 §"[vi]+ J J m e-ik·"da 
~ ~ ~ 

and A is the matrix 

1 ik1 ik2 ik3 ik1 
ik1 +---p: . 7{2 7{2 --p:-

ik2 I (ik2)2 ik2. ik3 ik2 
7{2 T+ 'k ·k2 ik1 . k 2 -v l 1 l 1 

ik3 ik2. ik3 I (ik3) 2 ik3 
7{2 ik1 . k 2 T+ ·k ·k2 ----p: 

l 1 l 1 

ik1 ik2 ik3 ik1 -v - k2 - k2 7{2 

To determine the inverse Fourier transforms of the above relations we use the formula 

(3.3) g-- 1 
[ I ] - -

4
I'" lnlx-rl, 

ik1. k 2 - , .. 
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8 D. HOMENTCOVSCHI 

where r2 = x 2 + y 2 + z2
• This formula takes into account the vanishing of all perturbations 

far upstream. 
Outside the surface S0 we have 

(3.4) v(x, y, z) =grad{ 4~ f f I' a:~ lnlx-x' -Rida' 
So 

-;,. J J ~ da'- L J J J vi(x', y', z') :x ( ~}vl 
So R3 

p(x, y, z) = -vx(x, y, z). 

VVe have denoted 

R = y(x-x')2 +(y-y')2 +(z-z')2 , I= l(x', y', z'), dv' = dx'dy'dz' etc. 

Formula (3.4) is just the representation relation looked for. If the last term in it is 
neglected, this formula may also be used to develop a nonplanar wing theory in subsonic 
flow. Here it will be used to obtain the system of integral equations to study transonic 
flow over aerofoils. 

To obtain the integral equation for determining the function l(x, y, z) we shall impose 
boundary condition (2.13). VV e get 

(3.5) __ a _ _ I_JJ/'(l+ x-x') (y-y')n~y+(z-z')n~z da'+ !!!_ 
on0 4n R (y-y') 2 +(z-z')2 - 2 

So 

__ I JJ ,_a_ (_l )-~ '-~Jff* 2(, , ')(x-x'){(y-y')no}.+(z-z')noz} d, 
4n m ono R ua 8n Vx X ' y ' z Rs v 

So R3 

= - u0 • n0 + n; for (x, y, z) E S6. 

Since the integral equation contains an unknown function v~ we have to consider also 
the first relation (3.4) in the form 

(3.6) ( ) ___ I Jft'_a (-~)~ -~, __ I JJ ~~(-I)d' vx x, y, z - 4n on~ R ,ua 4n m ox R a 
So So 

In relations (3.5) and (3.6) symbol J J J* denotes a regularization of the corresponding 
integral discussed in Appendix A. VVhen the finite part of the integral is defined by elimi­
nating a small sphere from the domain of definition we have ). = 1 /6, in case of the Os­
watitsch's definition of the principal value of the integral we have to put ). = 1 /2. 

The two relations (3.5) and (3.6) form a system of two nonlinear singular integral 
equations for determining the functions l(x, y, z) and vx(x, y, z). 

VVe can eliminate the terms containing the function m(x, y, z) in (3.5), (3.6) by means 

of Prandtl's linearised solution l(x, y, z), vx(x, y, z). These quantities satisfy relations 
(3.5), (3.6) where v~ is formally assumed to be zero. 
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STEADY LINEARISED AERODYNAMICS. III. TRANSONIC 

(3.5') _ _ a _ _ _!___ JJ ji (1 + ::_~ -x') (y- y')n~>'+ (z-z')n~z da' + m 
on0 4n R (y - y') 2 +(z-z')2 - 2 

So 

1 j"f 1 0 ( l ) d 1 _ ± - - m -- - a = - Uo • Do + nx 
4n on0 R 

for (y, x, z) on S6 , 
So 

By subtracting relation (3.5') and (3.6') from (3.5) and (3.6), respectively, we get 

(3.7) - _a __ 1_ffcr-f')(1+ x-x') (y-y')noy+(z-z')noz da' 
ono 4n ~ R (y-y')2+(z-z')2 

So 

_ 2_ Jff* 2( , , ') (x-x'){(y- y')n0,+ (z-z')noz} d , = 0 Sn Vx X , ) , z Rs v , (x y, z) E S0 , 

R3 

(3.8) v .(x, y, z) ~ ii,(x, y, z)- :"' f f (I' - i') a~;, (!) dcr' + Av~ (x, y, z) 
So 

- _1_ JJf* 2 ( ' ' ') 2(x- x')2- (y- y')2- (z- z')2 dv' 
8n Vx X ' y ' z Rs ' (x, y, z) E R3

• 

Rl 

This system of two integral equations may be solved by the method of succesive approxi­
mations, Prandtl's linearized solution being assumed as the zero'th approximation. 

The relation (3.8) over S0 also gives 

(3.9) v~ (x, y, z) = vi (x, y , z) + ~ {l(x, y, z)-i(x, y , z)} 

- ;"' J J (1'-i') a~;, (!)da'+Avi(x, y,z) 
So 

- _1_ JfJ 2( ' ' ') 2(x- x')2- (y- y')2- (z- z')2 dv' 
8n Vx X ' y ' z Rs , (x, y , z) E So. 

R3 

In the case of planar aerofoil (S0 = {z = 0}) the above relations are somewhat simply­
fying. Thus the integral containing m in Eq. (3.5) disapears as well as the integral con-

taining 1-i in Eq. (3.9). 
In this case we have 

__ a _ _ 1_ If I' ( 1 ~ x-x') (y- y')noy+ (z-z')n~z da' 
ono 4n R (y- y'}2 + (z - z')2 

So 

1 If* /' ( ' ) 1 x-x d 'd' 
= - 4n -(y-y')2 · + .. l(x-x')2+(y-y')2 x Y 

S0 f 

on z = 0, 

- _1 III'-() (_!_)da' = -_!_If I' dx'dy' , 
4n on~ R 4n {(x-x')2+(y-y')2+z2P'2 

So S 0 

z =F 0. 
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10 D. HOMENTCOVSCHI 

4. The plane flow 

For the plane flow relations (2.9) become 

(4.1) 

Ovx + Ovz _ _!_ av; = 0 
ox oz 2 ox ' 

Ovx + op = 0 
ox ax ' 

Ovz + op = 0 
ox oz . 

Likewise the boundary conditions will be 

(4.2) Vz(x, ±0) = -Uoz+n,i(x) for x E (-1, 1). 

By taking the Fourier transform with respect to both space variables the system (4.1) 
becomes 

(4.3) 

'k 1\ 'k 1\ 1 'k "2 f{[ ] 1 [ 2] l 'k ds ltVx+l 3Vz=2l1Vx+ r Vxnx+Vznz-2 Vxnx e-' ·X 

+ J (vxnx+Vznz-0.5v;nx)e-ik ·xds, 
c 

ik1 Vz + ik3p = J { [vz]nx+ [p]nz }e-ik·xds+ J (vznx+ pnz)e-ik ·xds. 
r r 

Here k · x = k 1 x + k 3 z, r is a discontinuity line within the fluid and C is the profile curve. 
Due to jump conditions (2.11) and (2.12) the integrals on r vanish and by using also the 
linearised boundary conditions we get 

(4.4) 

Hence 

(4.5) 

1 

ltVx+z 3Vz= . ltVx+ mx e 1 X, 'k 1\ 'k 1\ 0 5 'k 1\ 
2 f ( ') -/k X'd I 

-1 

1 

ikt Vz- ik3Vx = J l(x')e-iktx' dx'. 
-1 

1 

1 J {l(x1)+im(x')}e-iktx'dx' , 
kl +ik3 

-1 

To determine the inverse Fourier transform of this relation we use the formula 

(4.6) ;F-1 { 1 l = i 
kl + ik3 r 2n(x + iz) 

By considering the complex variables C = x+ iz, C1 = X
1 + iz1

, the inverse Fourier transform 
of relation (4.5) becomes 

1 

(4.7) _. _ _ 1_ J l(x
1

)+im(x
1

)d.' _1 _ _!_Jjl'v~(x',z')d 1d' 
Vx lVz - 2 . r I X + 4 ':l r r' X z' nl ~., -X n uX ~., - ~., 

-1 R2 
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where C' = x' + iz'. The last term in this relation can be written· alternatively as 

~ ~ JJ vi(x', z') d , d , = A vi (x, z) __ 1_ JJ vi(x', z') d 'd , 
4n ox C- C' x ' z 4 4n ( C- C')2 x z . 

Ra . R2 

11 

at every point where the function vi(x, z) is continuous; here A = 1 if the principal val­
ue of the integral is obtained by removing the singularity by a small circle, and A = 2 
if we use the Oswatitsch's definition of the principal value. The representation formula 
( 4. 7) is somehow similar to the formula given in [8]. 

On the segment (- 1, 1) of the real axis we have 

(4.8) 
1 

vx(x, ±0)-ivz(x, ±0) = + 2 {l(x)+im(x)} 

1 

_1_ r l(x
1

) + im(X
1

) d I+ _I_~ If vi(x', z') d 'd , + 2 . ' X 4 ~ . l"' X Z • nz .. x-x n ux x-~, · 
-1 ~ 

The boundary conditions ( 4.2) give 
1 

(4.9) _!_ J l(x'), dx' = -2u0z-(n;(x)-n~(x)) n x-x 
-1 

1 a If 2( I ') z'dx'dz' + 2..,... ~X Vx X ' Z ( 1)2 2 • • ._ u x-x +z' 
Rl 

Let us suppose, for the moment, the r.h.s. of relation (4.9) as being known. Then, the 
solution of the integral equation ( 4.9) is 

(4.10) l(x) = ! V ~~: 1 V !~: {2u0 ,+n:(t)-nX(t) 
-1 

1 d [J z'dx'dz
1 

} dt - n (;it.. vi(x', zl) (t-x')2+zl2 x-t . 
R2 . 

The Kutta-Joukowsky condition was mutually included during the inversion of equation 
(4.9). 

The real part of relations (4.7), (4.8) and (4.10) give up to some sign changes the Ni­
xon's integral relations for lifting profile in transonic flow [9]. 

Let us substitute l(x) given by relation (4.10) in formula (4.7). We get 

1 

(4 11) • 1 j' m(x') d 1 1 0 Jf'f 2( I ') dx'dzl 
• V;c-lVz = 2n C-x' X+ 4n BX Vx X, Z ,_,1 

-1 R1 

1 -. lc=l j~-. IT+t( 1 d JJ 2 , , Z
1

dx'dz' ) 
2ni V C + 1 _

1 
Jl 1-t 2n dt Rl vx(x' z) (x' -t)2+z'2 

x _!!!_+ _1 __ • I C -1 j~-. I 1 +t 2uoz+n~(t)-n~(t) dt. 
t- C 2ni V C + 1 V 1- t t- C 

-1 
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12 D. HOMENTCOVSCHI 

It is next possible to perform analytically the integration in the last term of relation 
(4.11). The details of calculation are given in Appendix C. We obtain 

(4.12) 

1 1 

-. - _1_ r m(x') d ' __ 1_v c-.1 f v 1 +t 2uoz+n:(t)-n;(t) d 
v x zv z - 2 r ' x + 2 . r 1 1 C t n ~, - x nz ~, + - t t-

-1 -1 

). vi(x, z) 1 JJ { 2 ( , ') 2 ( , ')} dx'dz' + 4 gn Vx X, z +vx X, -z (C-C')l 
R2 . 

+ 8~ J J {vi(x', z')-vi(x', -z')} K(C, C') dx'dz', 
R2 

where 

The real part of relation ( 4.12) gives the integral equation of the lifting profile problem 

in transonic flow [10] 

1 1 

(4.14) 1 I { 1 1 1 _1 rv~ + _ vx(x, z) = - m(t) - - + -. - dt+ 
4 

. - {2uo::+nx(t)-nx(t)} 
4n _ 

1 
C- t C- t nz _. 

1 
1 - t 

·IJ/C-1-_1 __ .. / -C-1 ~~dt+l. vi(x,z) 
· C+I t-C Jl C+l t-C 4 

--
1-JJ {vi(x',z')+vi(x', -z')}{ 

1 
-+ 

1 
}dx'dz' 

16n Rl · (C- C')2 (C- C')2 

+ 1 ~n .f J {vi(x'z')-vi(~', -z')} · {K(C, C')+K(C, C')}dx'dz', 
Rl 

where 

C = x+iz, C' = x' +iz', m(t) = Vz(X, +0)-vz(X, -0), 

2uoz+ni-n; = -(vz(X1 +O)+vz(x-0)). 

This integral equation holds at every point of the plane including, possibly, the dis­

continuity surface (shocks) inside the flow. 
For the symmetrical profile and zero incidence angle we have vx(x+O) = Vx(x-0) 

and the integral equation (4.14) reduces to the Oswatisch's integral equation [11, 12]. 

To obtain the lift on the profile we can use the velocity component Vx (x, ±0). By 

using relation (B.6) we get 

(4.15) 

1 1 --

v (x+O) = _1_ J m(x') dx' + ·-1_ -. I 1-x j",. I _!_2-~ 2uoz+n:(t)+n;(t) dt 
x - 2n X- X

1 
- 2n Jl 1 +X Jl 1 - t t - X 

-1 -1 

+ ~ {v~(x, +O)+v;(x, -0)} 
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STEADY LINEARISED AERODYNAMICS. Ill. TRANSONIC 13 

( 4.15) 
(cont .) 

1 JJ (x-x')2 -z'2 
- &l {vi(x', z')+vi(x', -z')} {(x-x')2 +z'2 } 2 dx'dz' 

Rl 

+ 8 ~ i J J {vi(x', z')-vi(x', -z')} K1(x, C') dx'di', 
Rl 

where 

Appendix A 

We shall consider now the definition of principal part of the integrals appearing in 
Sects. 3-4. Let q; E ~(R 3) be a test function [7]. We have 

(A.J) ( ::z 4~r' rp(x, y, z) ) = - ( :x 4~r' ~~ ) = J 1 J 4:,' ~~ dv. 

The last term can also be written as 

Here Da is a domain containing the origin, whose volume vanishes as e-+ 0, Sa is the 
boundary surface of this domain and n-the external with respect to the domain D a nor­
mal to the surface S6 • Since the last integral in relation (A.2) is semiconvergent, we obtain 
different expressions for different domains Da. Let Da be the sphere r < e. We have 

If ( ) X d q;(O, 0, 0) If d 
lp X, y, z 4nr3 nx (] = 4ne3 Xnx (] 

S e S 6 

+ 4~83 JJ { q;(x, y, z)- q;(O, 0, 0)} xnxd(]. 
Sa 

But 

I J J { q;(x, y, z)- q;(O, 0, 0)} xnxd(]l 
S £ 

2n n/2 

~ e3 J dq; J iq;(ecosOcosq;, ecosOsinq;, esinO)-q;(O, 0, O)idO, 
0 -n/2 

J J xnxd(] = J J J dv = 4~e3' 
S D _ 

http://rcin.org.pl



14 D. HOMENI'COVSCHl 

such that we have 

(A.3) Iff _x_ ~ dv = - qJ(O, 0, 0) + JJJ 
4nr3 ox 3 

R3 0 

Relations (A.1) and (A.3) give 

(A.4) 
02 ( 1 ) 1 { 2x2 - y2 - z2 } 
ox2 4nr = - 3 d(x, y, z) + 4nr5 

0
. 

The sign 0 indicates the regularization of the corresponding distribution by means of 
spheres. 

Let now 

D, = {(x,y, z) l-e < x < e}. 

We have 

2n co 

I f ..1 f qJ(e, eecOSqJ, eesinqJ)+qJ(- e, eecoSqJ, sesinqJ) d 
= 4n uqJ (I + e2)3/2 e e. 

0 0 

We have also 

2n co 

I f d f qJ(e, secoSqJ, sesinqJ)+qJ(-e, secoSqJ, sesinqJ)-2qJ(0, 0,0) d 
+ 4n 9J (I +e2)3/2 · e e. 

0 0 

The last integral vanishes as s --+ 0 so that we have 

Iff x oqJ JJJ 2x2 _ y2 _ z2 
(A.6) 4n,3 ox dv · = - qJ(O, 0, 0) + 4n,s <pdv. 

R3 1·1 

Finally, we can write 

(A.7) fP ( I ) { 2x2 - y2 - z2 } 
~ -4 = -d(x,y,z)+ 4 s ' 
uX nr nr 1·1 

where now last term indicates the distribution 

({ 
2x2-y2-z2} ) JJJ 2x2-y2-z2 

(A.8) ,s , qJ(x, y, z) = ,s qJ(x, y, z) dv 
1·1 1·1 

. JJJ 2x2-y2-z2 = hm 5 qJ(x. y, z) dv. 
~~-o r 

lxl>e 

http://rcin.org.pl



STEADY LINEARISED AERODYNAMICS. Ill. TRANSONIC 15 

Likewise, in the plane case we obtain 

(A.9) 

0 1 1 { 1 } Tx -2nC = -f <5(x, z)- 2nC2 
0

' 

0 1 J 1 } 
Tx 2nC, = <5(x, z)-\ 2nC2 

1
•
1
• 

Appendix B 

In this appendix we shall calculate the derivative 

~_!_ JJ f(xl,zl) d ld I 

ox n · C - C~ x z 
Rl 

at a discontinuity point of the function f(x , z). Let Z
1 = z be a discontinuity line of the 

function f(x', Z
1
), and let us put 

(B. I) lim f(x , z1) = f(x, z -t- 0), lim f(x, z1) = f(x, z -0). 
Zt -+Z 
Z1 < Z 

We have 

(B.2) 

where 

But 

(B.3) 

~ _!_ JJ f(x
1

' z
1

) dx1 dz' = ~ _!_ Jj. f(x
1

' z
1

) 1 1 

ox n C-C1 ox n C-C' dx dz 
~ ~-~ 

~ _!_ JJ f(xl, zl) d 'd I ~ _!_ JJ f(xl' zl) d ld I 

+ ox n C- C' x z + ox n C- C1 x z ' 
D; Di 

Dt = {(x1
, Z1)lx-e < X

1 < x +e, z' > z}, 

D; = {(X1Z1) Ix- e < X1 < x+ e, Z1 < z}, 

I . ~_!_ JJ f(x~, zl) d ld I 
lffi '.:l ,_ ,_1 X Z 

t: -+0 uX n "'-~, 
Rl-Ds 

D.= DtuD; . 

=I' - _!_ JJ f(x~, zl) d ld I = _ __!__ JJ f(x~, zl) d ld I 

~ n ("- "')2 x z n (C- Cl)2 x z . 
e 0 Rl-Ds I, I, \·1 

We have also 

(B.4) ~ f f f~x~[,l) dx
1
dZ

1 = - ~I I o~' {f(x
1

, Z
1

) In(C-C1
)}dx

1

dZ
1 

D~ Dt 

+ ~ J J :; In(C-C1
)dx

1
dZ

1 
= - ! J f(x

1

, Z1)In(C-C1)dz~ 
D~ q 

+ ! J J ::, In(C-C1

)dx
1

dZ
1

, 

Da 

http://rcin.org.pl



16 D. HOMENTCOVSCHI 

where c: is the boundary curve of domain D:. Hence 

(B.5.) ~_!_ff f(x', z') d 'd' = - _!_ J f(x' , z') d' _ _!_ If -of !!_x'dz' 
ox 1'l c- C' X z 1'l c- C' z + 1'l ox' c- C' . 

~ . q ~ 

The last term in (B.5) vanishes as B--+ 0 and the other gives 

<X) <X) 

_ _!_ J f(x' , z') dz' = _!_ J f(x+ B, z')dz' + __!__ J f(x - B, z') d
7

' 

n C-C' n B-i(z-z') n t: +i(z - z') -
c; z z 

2 (c ')2 f(x', z')dz' +m(B). 
B + z+z 

As B/{n(s2+z2)} is a o(z) sequence, we obtain [7] 

1. o I j"'J f(x', z') d 'd , ji'f ) 
6~ -ax -;- C -C' x z = \x, z +O. 

D+ 
6 

The integral on D; can be calculated similarly. Finally we get 

~-~- JJ f(x', z') d 'd, = f(x, z+O)+f(x, z-0) _ _ I_JJ f(x', z') d 'd, 
ox 2n C-C' x z 2 2n (C-C')2 x z · 

R2 1·1 

(B.6) 

In the case of the continuous f(x, z), formula (B.6) coincides with (A.IO). 

Appendix C 

Now, we shall transform the term 

- -1 --

(C:I) I= ~i V ~~: J V :~: (~ J J v~(x', z') (x'~~~:d~2, 2 L~c 
-1 Rl 

occurring in relation (4.11). 
By using the result of Appendix B we have 

-- 1 - -

(C.2) I= ~i V ~~: J V :~~ ( 2~ J J v~(x', z') :, (x' _,;:+z'2 dx'dz'),~C 
-1 R2 

-- 1 - -

1 -. / C- 1 J 1 j 1 + t ( 1 JJ 2 ( , ') o z' d 'd ') dt 
=- 2in Jl C+I Jl I-t 2n Vx x,z ox' (x'-t) 2 +z'2 X z t-C. 

-1 Rl 

Hence 

(C.3) I= _ _ I t/C-1 (J 2( I '), _!_ (_I J1

VI+t 
2 . J- l Vx X , Z Z ':l 1 2 l 

Jtl ~, + . uX n - t 
~ -1 

X I __!!___) d I d I 

(x't-t)2 +z'2 t-C x z · 

http://rcin.org.pl



STEADY LINEARISED AERODYNAMICS. III. TRANSONIC 17 

The inner integral in relation (C.3) can be estimated by means of the residue theorem. Let 

(C.4) F(Z) = _1_-. I Z+l 1 _I_ 
2ni V Z-1 (Z-C')(Z-C') Z-C' 

where Z = X+ iY, C' = x' + iz' are complex variables and the square root is equal to 1 
at infinity. We shall integrate this function along the contour given in Fig. 2. 

y 

FIG. 2. 

We have 

(C.5) f F(Z)dZ+ J F(Z)dZ+ J F(Z)dZ+ J F(Z)dZ+ J F(Z)dZ 
CR AB d-l) CD C~l) 

-. I c + 1 1 -. I C' + 1 1 .. I C' + 1 1 
= V C- I ( C- C') ( C- C') + V C' -I ( C'- C')( C'- C) + Jl C'- I ( C'- C')( C'- C) . 

The integrals along CR, C!- 1>, C! 1> are vanishing as Rand e ~ 0, and the other two give 

(C.6) 

By using this result we obtain 

2 Arch. Mech. Stos. 1/90 
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18 D. HOMENTCOVSCHI 

(C.7) I = - - v 2 x' z' - dx' dz' 1 If ( 1 1 ) 
8n Rl x( ' ) (C-C')2 (C-C')2 

Finally we can write 

(C.8) I 1 JJ { 2( , ') . 2( , ')} dx' dz' 1 JJ { 2( , ') = - g;r Vx X, Z -Vx X, -Z {C-C')2 -gn Vx X, Z 
Rl Rl 

2( , ')}, I c -1 , I C' + 1 ( 1 1 ) d 'd ' 
-Vx X, -z V C+1 V C'-1 (C'2 -l)(C-C')- (C-C')2 X z . 
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