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Supersonic nozzles without shocks
M. BURNAT (WARSZAWA)

TH MeTHOD of Bernoulli manifolds [2-5] provides a generalization of the hodograph method
to three dimensional flows of ideal gases. Here using the Bernoulli manifolds technique we show
that there exists a wide class of nozzles which transform one uniform supersonic flow into
another one without shock.

Metoda rozmaitosci Bernoulliego [2-5] jest uogdlnieniem znanej metody hodografu na prze-
plywy tréjwymiarowe gazu idealnego. W niniejszej pracy metode rozmaitoici Bernoulliego
wykorzystujemy dla wykazania, Ze istnieje szeroka klasa dysz przetwarzajacych jednorodny
przeplyw na wejéciu na inny, rowniez jednorodny, przeplyw naddzwigkowy na wyjsciu dyszy,
bez przejécia przez fale uderzeniowa.

Meron muoroobpasmu Bepuymmu [2—5)] aBnserca oGobllieHHeM Ha TpexXMepHBIE TeUEHHS
HJIeanbHOro rasa HM3BECTHOro MeTofa rogorpada. B macrosmieit pabore meron muorooGpasum
Bepuymin mcnomsayerca mus Toro, urobbl IIOKAsaTh CyllecTBOBaHpe ODLIMpHOro Kijacca
comexn, npeoGpasyioluX OJHOPOJHOE TEUYeHHE HA BXOJe HA [APYroe, TAKyKe OFHOPOIHOE,
CBEPX3BYKOBOE TeUeHHe Ha BhIXofe coma Gea nepexofa yepes yHapHYIO BOJIHY.

1. Introduction

IT 18 kNOWN that using the Busemann hodograph technique and Prandtl-Mayer flows,
it is possible to construct nozzles which transform one uniform (i.e. constant velocity)
supersonic flow into another one. However, this technique is limited by two factors:
first, it is confined to plane nozzles; second, for plane nozzles there exists a one-to-one
relation between initial and final velocities angles and between the velocity ratios at the
ends of the nozzle.

Our aim is to extend the above technique to three-dimensional nozzles. We show that
there is a wide class of nozzles having the demanded property and that there is some
possibility to “regulate” the acceleration produced by the nozzles. Also the shape of the
nozzle is not uniquely determined.

The method used throughout this paper is based on geometrical considerations and
appriopriate theorems are proved. These. theorems, however, can as those of Busemann
provide a basis for a numerical method aimed at constructing nozzles with a priori given
characteristics.

We consider the inviscid, isentropic, compressible flow, described by the system

c ..
u‘cx1+uzc,=+u"’cxa+? divu = 0,

(1.1)

wlud, +ulus, +utud, +kees =0, s=1,2,3.
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Our method, however, is applicable to more complicated systems when the motion is
governed by the nonelliptic quasi-linear system of equations of the form

I n
(1.2) D (v, V=0, s=1,..,1.
j=1 i=1
For the system (1.1) U = (¢, u!, u?, u®) where ¢ is the speed of sound, u = (u', u?, u®)
is the flow velocity. We denote by C3} (D) the class of functions having continuous first
derivative except perhaps on a finite number of smooth surfaces. On these surfaces the
normal derivatives are not continuous.
We seek the solution of (1.1), Ue CL(D) satisfying the following two conditions:
1) The domain D contains two subdomains Dy and Dy such that for x € Dy

U(x) = Uy = const

and for x € Dy
U(x) = Uy = const.

2) There exists a stream line # = D joining D; and Dy (Fig. 1).

The solution U e CL(D) which satisfies the conditions 1) and 2) defines the required
nozzle.

The simplest solutions of that type may be found in the class of plane potential flows
using the Busemann method [1]. The construction consists of two steps. First we construct

FiG. 1.

the Busemann epicycloids and choose the set H which is a part of one epicycloid bounded
by the points u; and uy (Fig. 2) (the set of values of the solutions in the plane u', u?).
The second step is the parametrization of H by the independent variables x! and x2,
The simplest possible parametrization is the conical one. To perform it we draw through
the point x, the family of lines X' (z) where X' (x) is perpendicular to H in the point
u (Fig. 2 and 3).:
To obtain the conical parametrization we define the flow by the condition

u(x) =u for xeZ(u).
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The flow may be prolonged by the constant values 1 and uy; chosen beforehand. Thus
we obtain two kinds of domains D (Fig. 3) in which the flow obeys the conditions 1)
and 2), One of them defined the accelerating nozzle (the stream line T°), the other one
gives the decelerating nozzle (the stream line 7).
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FiG. 2.

In the present paper we generalize the method of solution of the problem 1), 2) to
the wide class of three-dimensional isentropic flows.

2. Bernoulli manifolds

The k-dimensional manifold H, — R' will be called the Bernoulli manifold for the
system (1.2) if for H, there exists an infinite class of solutions K(H,) such that for
Ve K(H,) the set of values V(D) satisfies the conditions

V(D) c Hy, dimW(D) = k.
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For example, the Bernoulli law for the system (1.1) reads |u?+kc? = g = const,
|uj2 = > u'u’. It gives two kinds of Bernoulli manifolds: the three-dimensional manifold
i

H(gq) = R*
Hy(q): [ul*+kc*—q* =0
and the two-dimensional manifold H,(q) = R*

[u]*+ke*—g% = 0,
HZ(Q): ua - 0

The class K(Ha(q)) contains solutions describing the three-dimensional, potential
steady flows and the class K(H,(g)) contains solutions describing the two-dimensional
potential, steady flows. It should be noticed that the Busemann epicycloid H (Fig. 2) is,
according to our definition, one-dimensional Bernoulli manifold.

Now returning to the system (1.2) we will construct one and two-dimensional Berno-
ulli manifolds H; and H,. For this purpose we introduce two characteristic cones A(V)
and I'(V):

R > A(V)={A= (4 ... &): det’j; ai (M| = o},

1
R's T(V)={y = G ... y): rank| Y a(")y]| < n).
j=1
We will write y > 4 (y is knotted with 1) if y is the right null vector for 4, i.e.

DNy =0, s=1,2,..,1.

%]
If the system (1.2) is nonelliptic (i.e. the cones A(¥) and I'(V) are not empty), then

the curves H:V = V(u), H; = R', are one-dimensional Bernoulli manifolds (Bernoulli
curves) if the following condition is satisfied:

dV(y) e I(V()).

The geometrical meaning of this condltzon is that the curve H, is at the point VF(u) tan-
gent to the cone I'(V(u)).
Let 1(;4)_ ~ p(#) and y(u) = dV/du. Further we introduce the plane IT, by

I,:: (%, M) —xo(w)) =0,
where x,(ux) is an arbitrary regular function.
The class of solutions K(H,) is called simple waves (see [2, 3]). It contains functions
obeying the condition
V(x)= W(w) for xell,.

(Thls statement generalizes the Busemann relation for a much wider class of equations).
For dlﬁ‘erenz xo(,u) we obtain different parametrization of H; by the independent
variables x!, x’ » X" If xo(u) = const, the parametrization is conical,
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Now we pass to two-dimensional manifolds. The two-dimensional Bernoulli mani-
fold H,:V = V(u), u = (4, u?), H, € R, is defined by the conditions

@ Vi = '.:’(#)EP(V(M)), i=12,

i.e. the tangent plane to H, is spanned by two vectors which we denote, as usual
Tyw(H?) = [?(P)ag’(ﬁ)]
(II) There exists two linearly independent vectors:
;{’(}1.) ed(Vw), i=1,2,
such that
M)y = Vu
and ‘ i
6!_1/3#" = [al'l(u), tz’a(#)] for i#j, 1j=12.
We denote by X' () the n-2 dimensional space spanned by the vectors
?, g-, ...,Hc_rz, (c:(p).i.(p)) =0, i=1,2,..,n=-2, j=1,2,

The solutions belonging to the class K(H,) are constant on n-2 dimensional planes parallel
to Z' (u) [5].

To obtain solutions of class K(H,) the parametrization of H, by x!, ..., x" is used
[4]. The simplest possible parametrization is the conical one [5] and it can be performed
for the conical Bernoulli manifolds defined as follows.

The manifold H,:V = V(u', u?) is called conical Bernoulli manifold if the map-
ping (¢, ...,1""2, p*, u?) - (x%, ..., x") given by the equation

n=2
@.1) x= ) tio(ut, u?)
i=1 ¥
is one-to-one for ¢ # 0.
In the conical parametrization of the conical Bernoulli manifold we put
V(x) = V', u?)
for points x such that

n-2
X = Zt‘a(pi,;ﬁ), —o0 < tt < 400,
i=1 i

This ¥(x) is a solution in the class K(H,).
Now we will use the concepts introduced above to the system (1.1) and for this partic-
ular system in the supersonic case we will give the form of corresponding cones A(U)

and I'(U).
Let us denote
y= (yo’ 7’1: }’23 ya)r ? = (yls ?2: ya)’
}‘ = (;'1’ 229 AS)'
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The cone 4 is given by
1 2
A(U) = AU)vA) < R,

where

1 2
A: (u, A*=c|A2=0; A4:(u,4)=0.

1 2
The cone A is perpendicular to the Mach cone and A is a plane.
The cone I'in our case is given by :

(W) = [U)UI(W) < R,

where

[ PR-cr =0 2
2.2) I =k0y°+(u,?) _0 I y°=0.

It can be shown that
1 1
23 - I'sy—l=7e4d
and :
2 2
(2.4) I'sy« d=ept+eped,t)
1 2

where e = (u?, —u', 0), e = (43, 0, —u') and ¢ and y are arbitrary real numbers.
1 2
For the above form of cones it follows that the system (1, 1) possesses the following

1,1
three types of Bernoulli manifolds: (i) H,, characterized by the property that the tangent

1
plane to this manifold is spanned by vectors belonging to I" only, i.e.

1,1 : S | 11 1
T(H,) = [y, r,yel‘.
+ _—

1,1
The corresponding class of solutions K(H,) consists of potential flows. The classical Ber-
1,2
noulli manifolds H,(g) are of this type. (ii) H, for which

1,2 12 11 2 2
T(Hs) = [y,9], vel, yel.
) ' 2,2
This class contain both potential and nonpotential flows. (iii) H,, described by the

relation

2,2 2 2 39 3
THy) = [y,7], v,7el.
+ - + -
The flows belonging to this class have the property that the sound velocity at each point
of the flow field is the same. As no solutions of our problem 1), 2) belong to this class,

it will not be considered here.

- . 5 _
(") The right form of this formula is I'sy = (0, %)~ 4 = ep+ey, (4,7 = 0. Our considera-
11

tions is part 4 must be correspondingly changed.
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3. The conical Bernoulli manifolds ?Ilz for the system (1.1)
First we shall consider the problem of existence of the conical }‘I; ‘Bernoulli mani-
folds. If }';3: U = U(u', u?), then due to Eq. (2.2) the condition I
Ui(w) EII‘(UQ.«)), ii=nd, 2,
has the form
3.1 (w,u)?=c2ug? =0, kecg+@,uy)=0, i=1,2.
For
y = Uy = (e ule, udt, ud)
(2.3) may be written
(3.2 Il-'aUﬂl=yq--;.(y)=u“lE/i.
Hence the condition II takes the form
(Uprpas Uy AUy) = 0,

where A denotes the vector product and we assume that U is a twice continuous differ-
entiable function.

According to the notation introduced already u = (u', 2, 4®) and U = (¢, ) =
= (¢, u', u%, u®); by projection | W < R? of the set W — R* we understand the set of #,
such that there exists at least one ¢ for which U = (c, u) € W.

The second set of equations (3.1) is equivalent to

kc?+|u|?* = const = g2.
11 1,1
Hence to construct H, we need only to find | H,:u = u(u', u?) satisfying the system

(u:u#')z-cz(u)[u#‘lz =0, i=12,

(HFI#Z ] ups A uﬂz) = 0,

(3.3)

where ¢2(u) = (q’—|u]’)~;—. Differentiating the first equation with respect to u? and the
second with respect to u' the system (3.3) can be reduced to the hyperbolic system

(3.4) Upras = SO, Uyr s U,s).

It is known that for differentiable functions, ¢(u!, u?) = 0 iff

¢, p?) =0 and ¢(0,u*) =0,
or

¢, p) =0 and (', 0) = 0.
Applying this fact we conclude that the solution of Eq. (3.4) satisfies Eq. (3.3) iff
(', 0), g (pt, 0))*—c?(u(u, 0)luu (s, 91> = 0,
(00, #2), 4,50, 42))? —c*(u(0, p2)l,a(0, p2)? = 0.



124 _ M. BURNAT

This means that for the solution u = u(u!, u?) of Eq. (3.4) the curves # = u(u’, 0) and
u = u(0, u*) are Beroulli manifolds H,.

Let us consider for the system (3.4) the boundary problem with the following bound-
ary conditions:

(3.5 u(p', 0) = u(@'), u(, ‘uz) = "(ﬂz).
1 2
where u(u'), u(u?) are arbitrary functions satisfying the relation
1 2
u(0) = u(0).
1 2

The following theorem for the system (3.4) holds [6, 7]:
TueoreM 1. If fe C!, ue CY, i = 1, 2, then there exist two numbers, a >0, f > 0
i

such that in M = (0, «)x (0, B) there exists only one solution
u € CA(M)nCY{(M)
of the system (3.4) satisfying (3.5).
From this theorem and the above considerations it follows:

THEOREM 2. Through each pair of smooth curves hy and kY of the kind | H,_ such that
hinhY = u and such that the vectorsy', ¥ tangent to hi and kY at u are linearly independ-
0 0

ent, there passes exactly one surface h, of the kind .],}"I!,

This means that through each pair of H; curves there passes exactly one Hz Bernoulli
manifold. The remaining question is when this manifolds are conical.

For H,:U = U(u*, y*) we have, according to Eq. (3.2),

Up=Ap)—y=Uy, i=12.

We may put
Uy AUy
[ths Aty

o(p) =

and the resulting X () are one-dimensional spaces.

1,1
Let (Fig. 4) H{, HY < H,, H;: U = U(u', u?), Hy: U = U(p!, p*), where u*, u?
0 0 0 0

FiG. 4.
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are constants. By P'(u', u?) and P”(u', u*) we denote contact planes of the curves | H,
0 0 0o o0
and | H} at the point u = u(u', u?). Using this notation we can express the condition
0 0 0

for Bernoulli manifold to be conical in the form of the following:
THEOREM 3. The Bernoulli manifold H,:U = U(u*, u?) is in the neighbourhood of U =
0

= U(u!, u2) conical if o(u', u') is not perpendicular to any of contact planes P'(u', u?)
0 0 o 0 o 0
and P"(u', u?).
0 o0
It should be noticed that for the system (1.1) at each point U = (c, u, u?, u3), ¢ >
0 00 0 0 [\]

> |u| we may construct infinitely many distinct pairs of Bernoulli curves H;, Hi such
that

HInH! = U,
0
and | H{: u=u(u), | H': u = u(p) satisfy the conditions of Theorem 2 and that.
' 2
the planes P’(u), P"(u) contact to | Hj, | H; are not perpendicular to
0 0

d d
e s

o(p) = .
“ L uyn L
dp 1% du 2%
Hence, making use of Theorems 2 and 3 we may construct a wide class of conical
1,1
Bernoulli manifolds H,.

The classical Bernoulli manifold H,(g) is of the kind }{; and, obviously, does not
satisfy the conditions of Theorem 3. Indeed | H,(q) is the plane u® = 0; it is a contact
plane for each Bernoulli curve | H, = | H,(gq) and o = (0, 0, 1) is perpendicular to
it. Therefore H,(q) is not a conical manifold.

Proof of Theorem 3. For g = (;;1, {)&2) we have

P'(F;) = [upl(@.f)s uﬂigl({:)]!
P"(,u) = [upi(ﬂ): uﬁl’ﬂ’(}‘)}
0 0 0
and (o, ) = 0, i = 1, 2. Hence the conditions of Theorem 3 may be formulated as

(3.6) (o), @) # 0, i =1,2.

1,1
The manifold H, is conical if the mapping (2.1) is one-to-one and this is equivalent to
the condition that the vectors

3.7 a(‘;;), a,,,(ﬁ), o'#,(;:)

are linearly independent. Differentiating the equation (o, u,u)= 0 we obtain (o, u,0)+
+(¢, ) = 0, i = 1, 2. Hence from Eq. (3.6) it follows that
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(3.8) o) #0, i=1,2.
0
Differentiating o(u) we get
0
G = (u,,l,,,;\u,.,+u,,,Au,,,,,,)|u,,,Auy,1‘1+u,,,Auﬁ.aﬁ(iupmuﬁ,l").

But #,, A4, |0 and therefore

Oy = €0+ By AUy,

1 1

and similarly
G2 = 00+ Py, AU, ,
2 2

where «, § depend on u.
i
Due to Eq. (3.8) and the condition (o, 0,) = 0 we have § # 0. Hence the vectors
i

(3.7) are linearly independent if the vectors
3.9) O Upnps Allas Uz Al
are linearly independent. For the planes
RP=0l: (x,u) =0, i=1,2,
we have

0 = U Al €11, 92 = Uy Al €11,
1

ag EH]J’\H;,

M

My

Fi1G. 5.

(Fig. 5). Therefore the linear dependence of the vectors (3.9) means that at least one of
the following conditions is obeyed

? = Uy All,l|lo = (o, u,z,‘z') =0,
29 = Uy Alla| |0 = (0, Upup) = 0,

but these conditions contradict Egs. (3.6). Thus the theorem is proved.
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1,2
4. The conical Bernoulli manifolds /,

1,2 1,1
The H, Bernoulli manifolds can be constructed similarly as H, in Sect. 3.

1,2
If Hy: U = U(u', p?), then the condition I takes the form

1 2
Up = ?EF(U(N))’ Ups = Y e I(U(w)

that is

4.1) (U, ty)* —c*lu,l> =0,  kee,+(u,u,)=0
and

4.2) €= 0.

Moreover, the vectors y «» 4 entering the condition II are
i i

1
;}’(ﬂ) : (c,ul- > u;l L] uﬁl ] “,31) =¥ f’(‘u) = ?(“) = n;zl € A(U(#)):

00 = (st 12) o 26) = eqli)-+e() € A(UG),

where @(u), p(u) are arbitrary functions.

According to II
Aa=typnel[d, 4], A.e€l[i 4]
1 1 2 2 1 2
and thus
(4.3) (uwmu,n(fwgw)) =0,

where, as before e = (u?, —u',0), e = (3, 0, —u') and
1 2

WPo+ud), up, We+uy
-(ule),, uk, -—u'p [=0.
—Wy, uh, —u'p

This determinant leads to the expression

(4.4) P Y=Y = Su, Upr s Py p).

We shall present the system (4.1), (4.2), (4.3) and (4.4) in a form similar to (3.4). This
1,2
form allows us to prove the existence of H, manifolds and is well suited to numerical

computations of corresponding nozzles.
Differentiating Eqs. (4.1) and (4.4) in respect to u® and Eq. (4.2) in respect to u' we
obtain

(45) (u#’.ﬂz! (ﬂ, Hﬂ‘)u_czu.ul) = (u.ul H H.u?)(u 3 ”w)’
(4'6) (u,m,uz » u) = (upl ] “_u:),
(4?) Puip2 = ‘P(us u.ﬂ‘ sUpas @5 Y, Purs ‘p#u Wpi ) "szs %ﬁ.l,uz)’

(4'8) cﬂu_u = 0.
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The system (4.3) (4.5) and (4.6) is equivalent to
4.9) - Uprpr = F (U, U, 12, @, 9)
provided that
dim [(u, u)u—cPuy, u, uy A (ep+ep)] = 3.
1 2
Introducing Eq. (4.9) to Eq. (4.7) we get
(4'10) Purpz = E(u, Uprs Upzs @5 Vs Purs Puas Wrs Yuas "';L’gl#:)-

The system (4.8), (4.9) and (4.10) has the same form as the system (3.4) with an arbi-
trary function y. This system is equivalent to the system (4.1)~(4.4) if we assume that the
unknown functions U and ¢ obey the boundary conditions

d 1
(4.11) i U(ut, 0) e (U4, 0)),
(412) ?’w(ﬂl: 0)?"(1”1! 0)'"?“.“1(1“13 0) (P(‘uis 0) = f(u(y’, 0): uﬁl(‘ul’ 0)’ ?’(.uli 0): 'P(Hl, 0)):
(413 U, ) = (2, u(u?)

0 0
with an arbitrary constant ¢ and arbitrary functions u(u?).

For our system we can now prove the following:
THEOREM 4. For each pair of functions

U:R'—>RY, U()=(c(s),u(s)), u:R'-SR? UeC? i=1,2,
i i i i B

(11(0) = U(0) satisfying the conditions
2

au | du
1 1
ar Ve), #0

0
and :‘g = (¢, u(s)), where c is an arbitrary number and u(s) is an arbitrary function such
2 2

that

du
= #0
there exists an infinite family of different Bernoulli manifolds ?J?Z:U = U(p!, u?) e C?
which are conical in the neighbourhood of U(0, 0) and such that
UG, 0) = UGe), U, ) = UG,
Proof

L2 1,2
Solutions of the class K(H,), (H,) :U = U(u', u?) are constant along the lines par-
allel to the vectors

o) = s (e 1)+ £9()-

Hence it is sufficient to show that we can choose g(ut, 0), (4!, 0), (0, 4), (0, u?)
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such that Eq. (4.12) is satisfied and the mapping (¢, u', u?) = (x', x2, x*) given by the
relation

X = lu(ﬂls 'uZ)’

t # 0, is one-to-one in the neighbourhood of (¢, 0, 0).
Therefore, for any solution U(u) of the system (4.8)-(4.10) with the boundary condi-
tions (4.11)-(4.13) we must check that the vectors

(4.14) 0(0,0), 0,(0,0), 0,(0,0)

are linearly independent.
First we show that u,,,, # 0. Indeed, differentiating (4.1), we obtain

(uy ) [l |2+ (0 000)] = €l |2 = €2 (U i) = 0
But the assumption u,,,, = 0 together with Eq. (4.1), leads to
(1 +K)(u, wy)ul® = 0,

which is not possible because k > 0 and (w, u,.) # 0.
Second, we check that

(4.15) (0,:(0, 0), u,.(0, 0)) # 0.
From the definition of ¢ we have

(4.16) (o,u,) =0

and hence

(o-pl ) uyl)"l-(o” u‘.ﬂ“l) =, 0-
As ., # 0 we may choose ¢(0, 0) and (0, 0) such that
(U(OO 0)‘! uﬂl.ﬂl (0: 0)) ?é 0
and therefore the required inequality (4.15) follows.
Third, we need to show that ¢,.(0,0) is linearly independent of both ¢(0, 0) and 6, (0, 0).
The vector 0,.(0,0) depends on g¢,.(0, 0) and 9,.(0, 0). According to the definition
of ¢ we have
0‘#1(0, 0) = uﬂ”‘g Ad(o, 0)+u#|(0, O)A dp;(o, 0),
where

d(u', u?) = g(,u‘, 1) o(ut, u2)+§(1u‘, u2)p(ut, p?)
We can write

(4'1?) d;ﬂ. . W(¢) W)"l'f?’yz "!":w‘u: .

Any point on the plane
(x— W, y),u(0,0) =0
can be presented in the form (4.17), where x4 = (0, 0), by an appropriate choice of
%ua (0, 0) and ,.(0, 0). Hence the vector o u,,(0, 0)A d,:(0, 0), x € R, is an arbitrary pomt
on the plane (x, %,.(0, 0)) = 0.
If we change ¢,.(0, 0), (0, 0), then d(0, 0) and u,,,:(0, 0) remain unaltered as
follows from Eq. (4.9). Hence ¢,.(0, 0) is an arbitrary vector on the plane

5 Arch. Mech, Stos. nr 1/81
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(4.18) (X—t3,5(0, 0) Ad(0, 0), u,,(0, 0)) = 0.

Because of Eqs. (4.15), (4.16) and (4.18), the linear independence of the vectors (4.14)
follows.

5. Construction of nozzles without shock

Now we intend to parametrize the conical Bernoulli manifold H,, where H, denotes

1,1 1,2 .
either H, or H,, H,:U = U(p', p?), ue€ M = 0, o) x{0, B). This procedure leads to

the solution U e Cj (D) satisfying the conditions 1) and 2).
We define the lines /*(u) and I=(u) by
l“f(‘u): x = to(w), t>0,
I"(u): x = to(y), t<0,
Z+=UlF@, Z- =UI(W), Z=Z'UZ.
peM HeM

Using the conical parametrization (2.1) we obtain the solution
U,.n € CH(Z)NK(H,).
Now we shall prolong this solution to the neighbourhood of Z through the lines /* (),

I=(u), u € M using simple waves and constant solutions. To this end we use character-
istic vectors A(u) «~ y(u) = U,(u) and the planes
i i

1G: (x, ) = 0.

According to our definition we have
(', 0) < (u',0), I*(@,p) = Iy, p).
1 1

The solution defined already on lines /*, we prolong it in such a way that it remains con-
stant on the corresponding I7-plane .(Fig. 6). Therefore, in the region adjacent to Z we
obtain solutions of the type of a simple wave.

In the corner bounded by the planes .{I (0, 0) and iI (0, 0) (Fig. 6) we put

U,..(X) = U(0, 0) = const
and, similarly, in the corner bounded by I1(x, ) and i]' (e, B) we put
1

U.n(x) = U(a, f) = const.

For the conical solution U,,, we have U, € Cy(D), where D o Z,D = D*uD~, and
D#* are the neighbourhoods of Z*.
Now we can choose u(0, 0), [u(0, 0)] > ¢(0, 0) > 0, such that the stream lines of
the solutions U,,,(x) crossing [*(0, 0) enter the set Z*.
Intersecting the domains D* and D~ by planes Q*, 0~ which are perpendicular to
(0, 0),
o (x_o(os 0), o(0, 0)) =0, Q*: (x"l'o‘(os 0), o(0, 0)) =0,
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we get the picture shown in Fig. 7 (for D*). Here #; and iy denote the projections of
uy = u(0, 0) and uy = u(a, ) on Q* and T'* denotes the trajectory tangent to the field
u(x).

The existence of stream lines T* joining the regions of the constant solution depends
on the velocity distribution in Z. But if b, ¢ (Fig. 7) is sufficiently small, then such stream
lines do exist. This condition is fulfilled if we put # in M = {0, o) x<0, f> small enough.
If the nozzle in D* accelerates the flow, then the nozzle in D~ slows it down and vice versa.
The p', u* map of the set of values of the nozzle is shown in Fig. 8.
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