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Supersonic nozzles without shocks 

M. BURNAT (WARSZAWA) 

TH METHOD of Bernoulli manifolds [2-5] provides a generalization of the hodograph method 
to three dimensional flows of ideal gases. Here using the Bernoulli manifolds technique we show 
that there exists a wide class of nozzles which transform one uniform supersonic flow into 
another one without shock. 

Metoda rozmaitosci Bernoulliego [2-5] jest uog6lnieniem znanej metody hodografu na prze­
plywy tr6jwymiarowe gazu idealnego. W niniejszej pracy metod~ rozmaitosci Bernoulliego 
wykorzystujemy dla wykazania, ze istnieje szeroka klasa dysz przetwarzaj~cych jednorodny 
przeplyw na wejsciu na inny, r6wniez jednorodny, przeplyw naddtwi~kowy na wyjsciu dyszy, 
bez przejscia przez fal~ uderzeniow~. 

MeTop; MHoroo6pa3H:H EepHYJIJrn: [2-5] HBJIHeTCH o6o6~eimeM Ha TpeXMepHbie TetteHH:H 
a.u;eanF>Horo ra3a H3BeCTHoro MeTop;a rop;orpa<Pa. B HacTo~eH: paooTe MeTop; MHoroo6pa3HH 
EepHynna acrroJID3yeTc.a .u;n.a Toro, 'tlTOOhi rroKa3aTb cy~ecTBOBaHHe o6111HpHoro KJiacca 
corren, rrpeo6pa3yro~ax o,JJ;Hopo,JJ;Hoe Te'tleime Ha Bxo.u;e Ha .u;pyroe, TaiOKe o,JJ;Hopo,JJ;Hoe, 
cBepx3ByKoBoe Te'tleime Ha BhiXop;e corrna 6e3 rrepexo.u;a ttepe3 y.u;apJIYIO BOJIHY. 

1. Introduction 

IT IS KNOWN' that using the Busemann hodograp~ technique and Prandtl-Mayer flows, 
it is possible to construct nozzles which transform one uniform (i.e. constant velocity) 
supersonic flow into another one. However, this technique is limited by two factors: 
first, it is confined to plane nozzles; second~ for plane nozzles there exists a one-to-one 
relation between initial and final velocities angles and between the velocity ratios at the 
ends of the nozzle. 

Our aim is to extend . the above technique to three-dimensional nozzles. We show that 
there is a wide class of nozzles having the demanded property and that there is some 
possibility to "regulate" the acceleration produced by the nozzles. Also the shape of the 
nozzle is not uniquely determined. 

The method used throughout this paper is based on geometrical considerations and 
appriopriate theorems are proved. These. theorems, however, can as those of Busemann 
provide a basis for a numerical method aimed at constructing nozzles with a priori given 
characteristics. 

We consider the inviscid, isentropic, compressible flow, described by the system 

(1.1) 
1 2 3 c d.. . 0 U Cxl+U Cx2+u Cx3+k IVU = , 

u1u~1 +u2u~2+u3u~3+kccxs = 0, s = 1, 2, 3. 
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Our method, however, is applicable to more complicated systems when the motion is 
governed by the nonelliptic quasi-linear system of equations of the form 

l n 

(1.2) ~ ~ si(Vl Vl) vj _ 0 .L.J.L.Jai , ... , "x'- , s=1, ... ,l. 
j=l i=l 

For the system (1.1) U = (c, ul, u2 , u3
) where c is the speed of sound, u = (ul, u2 , u3

) 

. is the flow velocity. We denote by C~ (D) the class of functions having continuous first 
derivative except perhaps on a finite number of smooth surfaces. On these surfaces the 
normal derivatives are not continuous. 

We seek the solution of {1.1), U E C~(D) . satisfying the following two conditions: 
1) The domain D contains two subdomains 1)1 and Du such that for x E D1 

U(x) = U1 = const 

and for x E Du 
U(x) = U11 = const. 

2) There exists a stream line t c D joining D1 and D11 (Fig. 1). 
The solution U E C~{D) which satisfies the conditions 1) and 2) defines the required 

nozzle. 
The simplest solutions of that type may be found in the class of plane potential flows 

using the Busemann method [1]. The construction consists of two steps. First we construct 

FIG. 1. 

the Busemann epicycloids and choose the set H which is a part of one epicycloid bounded 
by the points u1 and u11 (Fig. 2) (the set of values of the solutions in the plane u1, u2). 

The second step is the parametrization of H by the independent variables x1 and x2 • 

The simplest possible parametrization is the conical one. To perform it we draw through 
the point x0 the family of lines E (u) where E (u) is perpendicular to H in the point 
u (Fig. 2 and 3). · 

To obtain the conical parametrization we define the flow by the condition 

u(x) = u for x E E(u). 
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The flow may be prolonged by the Constant values U1 and Uu chosen beforehand. Thus 
we obtain two kinds of domains D (Fig. 3) in which the flow obeys the conditions 1) 
and 2). One of them defined the accelerating nozzle (the stream line T0

), the other one 
gives the decelerating nozzle (the stream line Tb). 

FIG. 2. 

FIG. 3. 

In the present paper we generalize the method of solution of the problem 1 ), 2) to 
the wide class of three-dimensional isentropic flows. 

2. Bernoulli manifolds 

The k-dimensional manifold H" c R1 will be called the Bernoulli manifold for the 
system (1.2) if for H" there exists an infinite class of solutions K(H") such . that for 
V e K(Hk) the set of values V(D) satisfies the conditions 

V(D) c H", dim V(D) = -k. 
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- . 
For example, the Bemoulli law for the system (1.1) reads lul2 +kc2 = q2 = const, 

juj2 = 2 u1u1• It gives two kinds of Bemoulli manifolds: the three-dimensiotial manifold 
I 

H 3 (q) c R.4 

H3(q): lul 2+kc2-q2 = 0 

and the two-dimensional manifold H 2 (q) c R4 

lul2+kc2-q2 = 0, 

u3 = 0. 

The class K(H3 (q)) contains solutions describing the three-dimensional, potential, 
steady flows and the class K(H2 (q)) contains solutions describing the two-dimensional 
potential, steady flows. It should be noticed that the Busemann epicycloid H (Fig. 2) is, 
according to our definition, one-dimensional Bemoulli manifold. 

Now returning to the system (1.2) we will construct one and two-dimensional Bemo­
ulli manifolds H 1 and H 2 • For this purpose we introduce two characteristic cones A(V) 
and F(V): 

n 

R" => A(V)= {A= (A1 ••• A,.): detiJ7 aj1(V)A,, = o}, 
i=l 

I 

R1 => F(V) = {r = (y1 
•• • y): rankjJ7 aj1(V)yil < n}. 

j=l 

We will write y ~ A (y is knotted with A) if y is the righf null vector for A, i.e. 

J7 aj1(V).A,yi = 0, s = 1, 2, ... , l. 
i,j 

If the system (1.2) is nonelliptic (i.e. the cones A(V) and F(V) are not empty), then 
the curves H 1 :V = V(p), H 1 c R1

, are one-dimensional Bemoulli manifolds (Bemoulli 
curves) if the following condition is satisfied: 

d~~) eF(V(p)). 

The geometrical meaning of this condition is that the curve H 1 is at the point V(p) tan­
gent to the cone F(V(}t)). 

Let A(p~ ~ y(p) and y(p) = dVfdfl. Further we introduce the plane liP by 

liP: (x, A{j.t)-x0(p,)) = . 0, 

where x0 (p,) is an arbitrary regular function. 
The class of solutions K(H1) is called simple waves (see [2, 3]). It contains functions 

obeying the condition 

V(x) = V(,u) for x E llw 

(This statement generalizes the Busemann relation for a much wider class of equations). 
For different x0 (p) we obtain different parametrization of H 1 by the independent 

variables x1
, x2 , ... , x". If x0 (p) = const, the parametrization is conical. 
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Now we pass to two-dimensional manifolds. The two-dimensional Bernoulli mani­
fold H 2 : V= V(ft), # = (p,\ ~-t2), H 2 ER', is defined by the conditions 

(I) ~~ = y(ft) EF(V(u)), i = 1, 2, 
i 

i.e. the tangent plane to H 2 is spanned by two vectors which we denote, as usual 

Tv<ll>(H2) = [y(ft), Y(~-t)]. 
1 2 

(11) There exists two linearly independent vectors: 

A.(~-t) E A(V(u)), i = 1, 2, 
i 

such that 

and 

oAfoftiE[A.(u),A.(~-t)] for i:f:j, i,j=l,'2. 
i 1 2 

We denote byE (p) the n-2 dimensional space spanned by the vectors 

a,a, ... ,a, (a(u)A.(~-t))=O, i=l,2, ... ,n-2, }=1,2. 
1 2 n-2 i j 

The solutions belonging to the class K(H2 ) are constant on n-2 dimensional planes parallel 
to E (p,) [5]. 

To obtain solutions of class K(H2 ) the parametrization of H 2 by x 1, ••• , xn is used 
[4]. The simplest possible parametrization is the conical one [5] and it can be performed 
for the conical Bernoulli manifolds defined as follows. 

The manifold H 2 : V = V(p1, ~-t2) is called conical Bernoulli manifold if the map­
ping (t\ ... , tn- 2 , #\ P-2 ) ~ (x\ ... , xn) given by the equation 

n-2 

(2.1) X = }; ti~(#l, #2) 
i=1 l 

is one-to-one for t ¥= 0. 
In the conical parametrization of the conical Bernoulli manifold we put 

V(x) = V(u\ ~-t2) 

for points x such that 
n-2 

X = }; ti C!(fl1, ft2), - 00 < ti < + 00 • 

i=1 ' 

This V(x) is a solution in the class K(H2). 

Now we will use the concepts .introduced above to the system (1.1) and for this partic­
ular system in the supersonic case we will give the form of corresponding cones A(U) 
andF(U). 

Let us denote 

y = (yo, yl, y2, y3), y = (yl, y2, y3), 

A.= CA.1, A.2, A.3). 
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The cone A is given by 
1 2 

A(U) = A(U)uA(U) c R3
, 

where 
1 2 

A: (u, A)2 -c2 !AI 2 = 0; A: (u, A)= 0. _ 

1 2 
The cone A is perpendicular to the Mach cone and A is a plane. 

The cone r in our case is given by 

where 

(2.2) 

It can be shown that 

(2.3) 
and 

1 2 
r(U) = r(U)ur(U) c R\ 

t {(u, y) 2 -c2 !yl 2 = 0 r· . 
· kcy0 +(u,Y) = 0 ' 

2 

r : y0 = o. 

2 2 
(2.4) r3 y ~A= ecp+e"P e A,(l) 

1 2 

M. BURNA1 

where e = (u2 , -ul, 0), e = (u3 , 0, -u1) and cp and "P are arbitrary real numbers. 
1 2 

For the above form of cones it follows that the system (1, 1) possesses the following 
1' 1 

three types of Bernoulli manifolds: (i) H 2 , characterized by the property that the tangent 
1 

plane to this manifold is spanned by vectors belonging tor only, i.e. 

1,1 1 1 1 1 1 
T(H2) = [y,_y], y, y er. 

+ - + -
1,1 

The corresponding class of solutions K(H2 ) consists of potential flows. The classical Ber-
1,2 

noulli manifolds H 2 (q) are of this type. (ii) H 2 for which 

1, 2 1 2 1 1 2 2 
T(H2 ) = [y, y], y er, y er. 

2,2 

This class contain both potential and nonpotential flows. (iii) H 2 , described by the 
relation 

2, 2 2 2 2 2 2 

T(H2 ) = [y, y], y, y er. 
+ - + -

The flows belonging to this class have the property that the sound velocity at each point 
of the flow field is the same. As no solutions of our problem 1), 2) belong to this class, 
it will not be considered here. 

2 e) The right form of this formula i'i F3 y = (0, y) ~A= ecp+elp, (A, y) = 0. Our considera· 
1 1 

tions is part 4 must be correspondingly changed. 
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1, 1 

3. The conical Bemoulli manifolds H 2 for the system ( 1.1) 
1, 1 

First we shall consider the problem of existence of the conical H 2 'Bemoulli mani-
t,t I 

folds. If H 2: U = U(p,1, p,2), then due to Eq. (2.2) the condition I 

has the form 

(3.1) 

For 

1 
UP, (p,) e F(U{p)) ~ i = 1, 2; 

{2.3) may be written 
1 1 

(3.2) F3 up,= i' ~ A(p) = Upt eA. 

Hence the condition 11 takes the form 

(up1p2, up•" Upz) = 0, 

where " denotes the vector product and we assume that . U is a twice continuous differ­
entiable function. 

According to the notation introduced already u = {u1 , u2 , u3) and U = (c, u) = 
= ( c, u1

, u2 , u3); by projection ~ W c R3 of the set W c R4 we understand the set of u, 
such that there exists at least one c for which U = (c, u) e W. 

The second set of equations (3.1) is equivalent to 

kc2+lul2 = const = q2. 

1' 1 1, 1 
Hence to construct H2 we need only to find ~H2 :u = u(p,t, p,Z) satisfying the system 

(3.3) 
(u, upt)2-c2(u)luP'I 2 = 0, i = I, 2, 

where c2 (u) = {q2 -lul2) ! . Differentiating the first equation with respect to p,z and the 

second with respect to p,1 the system (3.3) can be reduced to the hyperbolic system 

(3.4) 

It is known that for differentiable functions, cf>(p,1, p,2) = 0 iff 

t/>JJ.(pt, p,2
) = 0 and t/>(0, tt2

) = 0, 
or 

cf>p2(pt, /.t2
) = 0 and cf>(pt, 0) = 0. 

Applying this fact we conclude that the solution of Eq. (3.4) satisfies Eq. (3.3) iff 

(u(pt, 0), ftp•{ft1
, 0)) 2 -c2(u(p,t, O))lup.(#t, U)l 2 = 0, 

(u(O, ftz)! Up2(0, ft2))2-c2(u(O, ft2))1up2(0, #2)12 ~ 0. 
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This means that for the solution u = u(p1
, p,2 ) of Eq. (3.4) the curves u = u(p1

, 0) and 
u = u(O, p2 ) are Beroulli manifolds H 1 • 

Let us consider for the system (3.4) the boundary problem with the following bound­
ary conditions: 

(3.5) 

where u(p1 ), u(p2 ) are arbitrary functions satisfying the relation 
1 2 

·· u(O) = u(O). 
1 2 

The following theorem for the system (3.4) holds [6, 7]: 
THEoREM 1. If f e C1, u e C1, i = I, 2, then there exist two numbers, ex > 0, p > 0 

i 

such that in M = (0, ex) x (0, p) there exists only one solution 

u E C2(M)()C1(M) 

of the system (3.4) satisfying (3.5). 
From this theorem and the above considerations it follows: 
THEOREM 2. Through each pair of smooth curves h~ and h~ of the kind l H 1 such that 

h ~ ()h~' = u and such that the vectors .;Y', y" tangent to h ~ and h~ at u are linearly independ-
o 0 

~. 1 
ent, there passes exactly one surface h2 of the kind !H2 • . 

This means that through each pair of H 1 curves there passes exactly one H2 Bernoulli 
manifold. The remaining question is when this manifol,ds are conical. 

For HJ.: U = U(p1, p 2) we have, according to Eq. (3.2), 

We may put 
Upf = ).(p,) ~ y = uP'' i = I ' 2. 

a{p) = U11 1. A U112 

!U111 AUp2! 

and the resulting .E (p,) are one-dimensional spaces. 
1.1 

Let (Fig. 4) H~ , H~' c H 2 , H~ : U = U(p1
, p,2), H~' : U = U(p,1

, p 2), where p 1
, p,2 

0 0 0 0 

f'IG.4. 
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a~e constants. By P'(p,t, p,2) and P"(p,t, p,2) we denote contact planes of the curves ~ H1. 
0 0 0 0 

and ~ H~' at the point u = u(p1
, p,2). Using this notation we can express the condition 

0 0 0 

for Bernoulli manifold_ to be conical in the form of the following: 
THEOREM 3. The Bernoul/i manifold H2 : U = U(p,1, p,2) is in the neighbourhood of U = 

0 

= U(ft1
, p,2) conical if u(p,1

, p,1) is not perpendicular to any of 'contact planes P' (p,1, p,2) 
0 0 0 0 0 0 

and P" (p,1
, p,2) . 

0 0 

It should be noticed that for the system (1.1) at each point U = (c, u, u2 , u3), c > 
0 0 0 0 0 0 

> lul we may construct infinitely many distinct pairs of Bernoulli curves H~, H~' such 
that 

H{nH~' = U, 
0 

and ~ H~: u = ut(p,), ~ H~': u = u(p,) satisfy the conditions of Theorem 2 and that. 
2 

the planes P'(p,), P"(p,) contact to ~ H~, ~ 11~' are not perpendicular to 
0 0 

d d 
-d u(p)/\ -d u(p) 

1'10 P,2o 

I dd u(p,)/\ dd u(p)l. 
P,1o P,2o 

u(p) = 
0 

Hence, making use of Theorems 2 and 3 we may construct a wide class of conical 
1,1 

Bernoulli manifolds H 2 • 

1,1 
The classical Bernoulli manifold H 2 (q) is of the kind H 2 and, obviously, does not 

satisfy the conditions of Theorem 3. Indeed ~ H 2 (q) is the plane u3 = 0; it is a contact 
plane for each Bemoulli curve ~ Ht c ~ H 2 (q) and e1 = (0, 0, 1) . is perpendicular tQ 
it. Therefo'e H 2 (q) is not a conical manifold. 

Pro of of Theorem 3. For p, = (p1, p,2 ) we have 
0 0 0 

P'(p) = [u141(p), uplpl(p)], 
0 0 0 

P"(p) = [u14z(Jt), Upzpz(/t)] 
0 0 ' 0 

and (u, up•) = 0, i = 1, 2. Hence the conditions of Theorem 3 may be formulated as 

(3.6) ( U(p,), UP1#'1(p)) =/= 0, i = 1, 2. 
0 0 . 

J. J 

The manifold H 2 is conical if the mapping (2.1) is one-to-one and this is equivalent to 
the condition that the vectors 

(3.7) 

are linearly independent. Differentiating the equation ( u, Upt) = 0 we obtain (u14 t, up•) + 
+ (u, U14t14t) = 0, i = 1, 2. Hence from Eq. (3.6) it follows that 
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(3.8) 

Differentiating. a{p) we get 

a 
Gpt = (uplpt A Upa +up, A Uptpa)lul', A Up2l-l +up1 A Up2 op.l (!Upt A Upal- 1

). 

But u"', A up,11all0' and therefore 

and similarly 

where IX, p depend on p. 
i I 

M.BURNAT 

Due to Eq. (3.8) and ihe condition (0', 0'"'1) = 0 we have p =1= 0. Hence the vectors 
I 

, (3. 7) are linearly independent if · the vectors 

(3.9) 

are linearly independent. For the planes 

R3 ::>Il1: (x, u1if) = 0, i = 1, 2, 

we have 

(! = U11 2112AU11 , El11, (! = U111p1AU11 2 E[]2, 
1 2 

a E Il1 nll2 , 

FIG. 5. 

(Fig. 5). Therefore the linear dependence of the vectors (3.9) means that at leart one of 
the following conditions is obeyed 

(! = U112p2 A Up1lla => (a, U112112) = 0, 
1 

(! = Up1p1 A Up2lla => (a, Uplpt) = 0, 
2 

but these conditions contradict Eqs. (3.6). Thus the theorem is proved. · 
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1,2 
4. The conical Bernoulli manifolds H 2 

1,2 1, 1 
The H 2 Bernoulli manifolds can be constructed similarly as H 2 in Sect. 3. 

1,2 
If H 2 : U = U(p}, p,2), then the condition I takes the form 

that is 

(4.1) 

and 

(4.2) 

Moreover, the vectors y ~ A entering the condition 11 are 
i i 

1 

y(p,) = (c111, ut~, u;~, u;J ~ A(p,) = y(p,) = u11 1 E A(U(p,)), 
1 . 1 1 

2 . 

y(p,) = (c112, u1~2, u;l, u1~2) -<-4 A(p,) = ecp(p,) + e1p(p,) E A(U(ft)), 
2 2 1 2 

where cp(p,), 1p(p,) are arbitrary functions. 
According to 11 

Ap2 = Uplp2 E [A, A]' Apl E [A, A] 
1 1 2 2 1 2 

and thus 

(4.3) 

where, as before e = (u 2 , -u\ 0), e = (u3 , 0, -u1) and 
1 2 

(u2cp+u3cp)11t, .u~~, 
- (u 1 cp)11 ~, u;l, 

- (u11p)11 H u~~, 

This determinant leads to the expression 

u2cp+u31p 

-:-utcp 
-U11p 

= 0. 

( 4.4) f{Jpl 1p -:-1ppl cp = f( u' u,o ' cp' 1p). 

127 

We shall present the system (4.1), (4.2), (4.3) and (4.4) in a form similar to (3.4). This 
1,2 . 

form allows us to prove the existence of H 2 manifo,ds and is well suited to numerical 
computations of corresponding nozzles. · 

Differentiating Eqs. (4.1) and. (4A) in respect to p,2 and Eq. (4.2) in respect to p,1 we 
obtain 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

( U11111 2, ( u, u11~)u- c2u11 1) = (u111, U112)(u, U111), 

(u11 1112, u) = -(u111, u112), 

f{J11 1112 = ~( u, U111, uiJ2, cp, 1p, cp11 1 , cp112, 1p111, 1p112, 1p1tlp2), 

C1tl,l2 = 0. 
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The system (4.3) (4.5) and (4.6) is equivalent to 

(4.9) uf.llp2 = F(u, uf.ll, up,2, cp, '1fl) 

provided that 

dim[(u, u111)u- c2uf.l1, u, uf.ll 1\ (ecp+ e'!jJ)] = 3. 
1 2 

Introducing Eq. (4.9) to Eq. (4.7) we get 

(4.10) cpf.l1f.l2 = E(u, up,H UP2' cp, 'ljl, C{J111, cpf.l2' '1flf.l1, '1flf.l2' 'ljl1,1p2). 

The system (4.8), (4.9) and (4.10) has the same form as the system (3.4) with an arbi­
trary function '1fl· This system is equivalent to the system (4.1)-(4.4) if we assume that the 
unknown functions U and cp obey the boundary conditions 

(4.11) d~' U(p1
, 0) E hu(p1

, 0)), 

(4.12) cp11 ~(#1, 0)'1fJ{t-t\ 0)-'1jJ11l(ftl, O)cp(ftl, 0) = f(u(p-1, 0), uf.ll(p-1, 0), cp(ftl, 0), '1fJ(t-t\ 0)), 
0 0 

{4.13) U(O, ft 2
) = ( c, u(t-t2

)) 

0 0 
with an arbitrary constant c and arbitrary functions U(ft2). 

For our system we can now pro_ve the following: 
TH~OREM 4. For each pair of functions 

U:R1 ~R4, U(s) = (c(s),u(s)), u:R1 ~R3, UEC2 , i = 1,2, 
i i i i i i ' 

U(O) = U(O) satisfying the conditions 
1 2 

dU 1 

-d
1 EF(U(s)), 
s 1 

0 

du 
_1 ¥=0 
ds 

and U = (c, u(s)), where c is an arbitrary number and u(s) is an arbitrary function such · 
2 2 2 ' 

that 

du 
_2 :;l:O 
ds 

1,2 
there exists an infinite family of different Bernoulli manifolds H2 : U = U(p}, p,Z) E C2 

which are conical in the neighbourhood of U(O, 0) and such that 

U(t-t\ 0) = U(t-t1
), U(O, ft1

) = U{p-2
). 

1 2 

Proof 
1,2 1,2 

Solutions of the class K(H2), (H2) : U = U(t-t1, ftz) are constant along the lines par· 
allel to the vectors 

Hence it is sufficient to show that we can ~hoose cp(ft1, 0), '1fl(ft1, 0), cp(O, !-'2), '!jJ(O, t-t2) 



SUPERSONIC NOZZLES WITHOUT SHOCKS 129 

such that Eq. (4.12) is satisfied and the mapping {t, p 1, p 2)-+ (x\ x2 , x3} given by the 
relation 

x = ta(pl, p 2
}, 

t -:/: 0, is one-to-one in the neighbourhood of (t, 0, 0). 
Therefore, for any solution U(p) of the system (4.8)-(4.10) with the boundary condi­

tions (4.11)-(4.13) we must check that the vectors 

(4.14) a(O, 0), a11 t(O, 0), a1,z(O, 0) 

are linearly independent. 
First we show that Uptpt :F 0. Indeed, differentiating (4.1)1 we obtain 

(u, Upt)[!uptl 2 +(u, u11 tpt)]-ccptluptl 2 -c2(upt' Uptpt) = 0. 

But the assumption Uptpl = 0 together with Eq. (4.1)2 leads to 

(1 +k)(u, U11 t)lu14 tl
2 = 0, 

which is not possible because k > 0 and (u, u14 1) =F 0. 
Second, we check that 

(4.15) ( apl(O, 0), Upt(O, 0)) =F 0. 

From the definition of CJ we have 

(4.16) 

and hence 

(a14 t, u14 t)+ (a, U141141) = 0. 

As uplpl =F 0 we may choose cp(O, 0) and 1p(O, 0) such that 

( a(O, 0), u14 1141(0, 0)) "# 0 

and therefore the required inequality ( 4.15) follows. 
Third, we need to show that CJ142(0,0) is linearly independent of both CJ(O, 0) and CJ141(0, 0). 
The vector ct14z(O,O) depends on cp142(0, 0) and 1p14z{O, 0). According to . the definition 

of CJ we have 

where 

We can write 

(4.17) 

Any point on the plane 

(x- W(cp, 1p), u(O, 0)) = 0 

can be presented in the form ( 4.17), where p = (0, 0), by an appropriate choice of 
rpf.ll (0, 0) and 1p142(0, 0). Hence the vector a u141(0, 0)1\ d112(0, 0), rx eR1

, is an arbitrary point 
on the plane (x, u111(0, 0)) -= 0. 

If we change (/Jp2(0, 0), 1p142(0, 0), then d(O, 0) and u1,1p2(0, 0) remain unaltered as 
follows from Eq. (4.9). Hence a"2(0, 0) is an arbitrary vector on the plane 
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(4.18) 

Because of Eqs. (4.15), (4.16) and (4.18), the linear independence of the vectors (4.14) 
follows. 

5. Construction of nozzles without shock 

Now we intend to parametrize the conical Bernoulli-manifold H 2 , where H 2 denotes 
1,1 1, 2 

either -H 2 or H 2 , H 2 : U = U(p,t, p,2), p, EM= <O, a.) x (0, p). This procedure leads to 
the solution U E Cft,(D) satisfying the conditions I) and 2). 

We define the lines f+(J.L) and z-(J.L) by 

J+(j,t): x = ta(p,), t > 0, 

z-(p,): X = ta(p,), t < 0, 

z+ = u z+(p,), z- = u z-c,), z = z+uz-. 
peM peM 

Using the conical parametrization (2.1) we obtain the solution 

ucon E C1(Z)nK(H2)· 

Now we shall prolong this solution to the neighbourhood of Z through the lines f+ (p,), 
J-(p,), p, E oM using simple waves and constant solutions. To this end we use character­
istic vectors A(p) ~ y(p,) = U1Att) and the planes 

i i 

IJ(p,): (x, A(p,)) = 0. 
i i 

According to our definition we have 

1! (p,1 ' 0) c Il(p,1
' 0)' [± (/,t1

' {3) c Il(p,1
' {3) . 

1 1 

The solution defined already on lines [±, we prolong it in such a way that it remains con­
stant on the corresponding Il-plane . (Fig. 6). Therefore, in the region adjacent to Z we 
obtain solutions of the type of a simple wave. 

In the corner bounded by the planes Il(O, 0) and Il(O, 0) (Fig. 6) we put 
1 2 

Ucon(X) = U(O, 0) = const 

and, similarly, in the corner bounded by Il(r:x, {J) and Il(r:x, {J) we put 
1 2 

Ucon(x) = U(r:x, {3) = const. 

For the conical solution Ucon we have Ucon E C/y(D), where D :::> Z, D = D+ uD-, and 
D± are the neighbourhoods of Z±. 

Now we can choose u(O, 0), ju(O, 0)1 > c(O, 0) > 0, such that the stream lines of 
the solutions ucon(x) crossing[+ (0, 0) enter the set z+. 

Intersecting the domains n+ and n- by planes Q+, Q- which are perpendicular to 
<1(0, 0), 

Q-: (x-a(O, 0), a(O, 0)) = 0, Q+: (x+a(O, 0), a(O, 0)) = 0, 



FIG. 6. 

FIG. 7. 

,l 

f3 f---------:;;;---v Ucon {a, f3) = Urr 

FIG. 8. 
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we get the picture shown in Fig. 7 (for n+). Here i/1 and i/11 denote the projections of 
u1 = u(O, 0) and u11 = u(a, P> on Q+ and T+ denotes the trajectory tangent to the field 
u(x). 

·-

The existence of stream lines · T± joining the regions of the constant solution depends 
on the velocity distribution in Z. But if b, c (Fig. 7) is sufficiently small, then such stream 
lines do exist. This condition is fulfilled if we put p in M = (0, a) x (0, P> small enough. 
If the nozzle in n+ accelerates the flow, then the nozzle in n- slows it down and vice versa. 
The p/, p,2 map of the set of values of the nozzle is shown in Fig. 8. 
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