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Harmonic state in an elastic dielectric

L. CHEE-SENG (SINGAPORE)

A CENTROSYMMETRIC isotropic elastic dielectric is considered under the collective influence
of an external body force, an applied electric field and a charge distribution, each serving as
a source function with an arbitrary spatial dependence that is, generally, anisotropic. Its time
dependence is subsequently specified as being harmonic. Exact and asymptotic radiation condi-
tioned solutions, which must normally be quasi-isotropic, are then secured simultaneously
in 2- and 3-dimensions for the ultimate or harmonic state. On a wave kinematical interpreta-
tion, the group velocity (with which energy is transmitted to sustain asymptotically dominant
effects) points radially outwards — a material independent outcome. The phase velocity also
points radially outwards; hovewer, material parameters dictate this outcome. A detailed appli-
cation is made to the problem for an axlsymmetnc charge distribution together with an elec-
tric field and a body force, each having axisymmetric transverse, azimuthal and axial compo-
nents.

Rozwazono centrosymetryczny izotropowy dielektryk sprezysty poddany wspolnemu dzialaniu
zewnetrznej sily masowej, przylozonego pola elektrycznego oraz rozkladu ladunkow, przy czym
kazdy z tych czynnikow stanowi funkcje Zrodel o dowolnym, w ogdlnosci anizotropowym, roz-
kladzie przestrzennym. Zalezno$¢ od czasu przyjeto jako harmoniczng. Otrzymuje si¢ wtedy
rozwiazania §cisle i asymptotyczne rozwigzania dwu- i tréjwymiarowe. W interpretacji kine-
matyki falowej predko$¢ grupowa, z ktora przenoszona jest energia, skierowana jest radialnie
na zewnatrz, co jest wynikiem niezaleznym od wlasno$ci materialowych. Wektor predkofci
fazowej jest robwniez skierowany radialnie na zewnatrz, co jednak wynika z przyjetych parame-
trow materialowych. Szczegélowo rozpatrzono zastosowanie przedstawionej metody do roz-
wigzania zagadnienia osiowo-symetrycznego rozkladu ladunkoéw oraz pola elektrycznego i sit
masowych, z ktérych kazde charakteryzuje si¢ osiowo-symetrycznym rozkladem skladowych
poprzecznych, azymutalnych i osiowych.

PaccmMoTpeH LEHTPaNbHOCHMMETPHUHLIA H30TPONHBLIA YHOPYIHil JHAJEKTPHK, IOJIBEPTHYTBIM
ofmemy mefiCTBHIO BHeIIHeH MacCOBOM CHUIBI, IPHIIOMKEHHOrO 3JICKTPHUECKOro IOJIA H pac-
TNpefeNeHnA 3apANOB, MPHYEM KaXKABIH M3 3THX (aKTOpoB cOCTABNsAeT (QYHKIHIO HCTOUHK-
KOB C NPOM3BOJBHBEIM, B 00UIeM aHHSOTPOIHBIM, IIPOCTPAHCTBEHHBLIM pPacupejleNeHHeM.
3aBHCHMOCTh OT BpPeMeHHM IPHHATA TapMoHMueckoii. ITomyuaroTcst Tora TOYHBLIC M ACHMOTO-
THUECKHE PellleHHsA ABYX M TpeXMepHbIe pellieHHdA. B HHETepHperalnu BOJTHOBOH KHHEMaTHKY
rpynnoBa#d CKOPOCTh, C KOTOPOil MepeHOCHTCA SHEPTHA, HanpaBJieHA PaJHabHO HAPYXY,
YTOo ABJIAETCA Pe3yJbTATOM HESABHCAIIMM OT MaTepHalbHBIX cBojicTB. Bextop ¢hasoBoit
CHOPOCTH TOKe HaPaBJIEH PafiHaIbHO HaPYXKY, UTO OJHAKO CJIEAYET H3 MPHHATHIX MATCPHAIb~
HBIX napamerpoB. IlogpoGHO paccMOTPEeHO NMPHMEHEHHE IIPEJICTABIEHHOTO METO/a B pellleHHH
3a7]a4H OCECHMMETPAYHOrO Paclpefie/IeHHs 3apA0B, a TAKKe 3JIEKTPHYECKOrO IOJIA 1 Macco-
BBIX CHJI, KOKJOE M3 KOTOPHIX XapaKTEPH3YeTCS OCEeCHMMeTPHUHBIM DPACHpEfieIcHHeM II0-
TepeYHbIX, A3UMYTHBIX i OCEBEIX COCTABIIAIOLIHX.

1. Introduction

THis PAPER deals with an induced harmonic state in a centrosymmetric isotropic elastic
dielectric whose variations obey MiNDLIN’S [1] extended version of TourIN’s [2]
equations; the extension was designed to include the polarization gradient. Such a har-
monic state represents an ultimate attainment of disturbances created by sources pulsa-
ting steadily with a common frequency.
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The present problem, which covers both 2- and 3-dimensional cases, is tackled as fol-
lows. The governing equations are first dissociated and reorganized into two inhomoge-
neous matrix systems, one satisfied by a column of two solenoidal vectors and the other
by a column of three scalars. The inhomogeneities arise from the sources. These corres-
pond to an external body force, an applied electric field and a charge distribution. They
are all assumed to be purely pulsatory. However, their spatial functions are arbitrary and,
generally, anisotropic. Hence the disturbances they generate are expected to be not iso-
tropic but quasi-isotropic. Both matrix systems are next related to two column equations,
each involving a determinantal scalar operator and to which a technique proposed by
the present author [3] is applicable. That technique, which has only recently been applied
[4] to the associated harmonic state problem of micropolar elastodynamics, accommo-
dates a radiation condition. This essentially prevents reception of any free wave from
infinity. Consequently, all detectable perturbations originate from the sources.

Not all roots to characteristic equations for the determinantal operators can admit
contributions into the observation field. Furthermore among those that do, real and
complex roots contribute terms with different symbolic representations. They also differ
within a physical context. Thus, for example, the radiation condition governs the admis-
sibility of any real root contribution; this propagates as a wave quantity which, though
normally subjected to a moderate algebraic attenuation, nevertheless dominates at long
ranges. This presumably occurs through sustenance by energy transported with the group
velocity [5] from the sources. On the other hand, the admissibility of any complex root
contribution depends not on the radiation condition but on a-stability hypothesis coup-
led to a convergence rule of contour integration [3]. Such a contribution decays expo-
nentially at long ranges where it is thus negligible; note, in particular, that like the in-
duced wave it cannot originate at infinity. It therefore becomes significant to distinguish
between real and complex roots, and to question admissibility. For this purpose one can
incorporate a criterion of SCHWARTZ [6] on positive definiteness pertaining to an energy
density.

Schwartz’s paper focusses on the static equilibrium state based again on the Mindlin-
Toupin equations. Working along different lines, CHowpHURY and GLOCKNER [7] have
formulated Galerkin-type representations by means of the method of associated matrices
and obtained three separate categories of 3-dimensional, harmonic state fundamental
solutions corresponding to a concentrated force, a concentradet electric field and a con-
centrated charge. Other investigations on the elastic dielectric theory include those of
ToupiN [8], MmnDLIN and ToupIiN [9] and MiNpLIN [10, 11].

2. Separated matrix systems

Within a centrosymmetric isotropic elastic dielectric, the displacement u, polariza-
tion P and Maxwell’s potential ¢ generated by the combination of an external body force
F°, applied electric field E° and a charge with density distribution D° are governed by [1]

(2.1)  ceaVu+(Ci2+Caa)VV - U+ds VP +(dy 3 +dsg) VV - P+ FO = puy,
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(22) d4472u+(d12+d44)w ‘u+ (b“+b7-;)V2P+(b12 +b44—b-;-;)VV ‘P+E°

= aP+Vp,
(2.3) V:-P+D° = ¢V,
where a, byy, bas, by7, €12, Caa, di2, dys are material constants, p is the density and &,
is an electrical permittivity.

We can extract a 2x2 system for a 2x 1 column of solenoidal vectors by operating
on Egs. (2.1) and (2.2) with the curl, as well as a separate 3 x 3 system for a 3x 1 column
of scalars by operating on Eqs. (2.1) and (2.2) with the divergence and admitting Eq. (2.3).

Thus, if
Q4) Ly = (82012, V2) = 00[0t*—c4uV?, Ly = Ly(V?) = a—(bas+b1)V?,

25 L= La(azlatzs Vz) = Qazfarz_(cu‘*'z"“)vz: L,= L4(V2)
= a—(by2+2b4s)V?,

then
2.6) L (qu) (VXFO) L :.; VD;"
' H\vxP VxE?)® 2 Vg B V. E° -

where the matrix operators

L1 -d44v2
— 2/912 Y2y =

@7 L =LY% V) (_ A )
0 -1 £g

(2.8) L, =L,(0%/0t%,V?) = | L, —(d;p+2d,4)V? 0],
—(dy,+2d)V? Ly 1

Their determinants are

(2.9 L, = L,(0%/0t?,V?) = detk, = L,L,—d3},V*,
(2.10) L, = L,(8%/0t2,V?) = detL, = e Ls+Ls,
with

(2.11) Ls = Ly(8%/0t?,V?) = LyLy—(d;5+2d.4)*V*

We next introduce a column X{ of two vectors and another column X3 of one scalar
and two vectors. Suppose these satisfy

(2.12) LX =Y’ (»=1,2),
with

Do
(2.13) Y? = (:;) Y: = (E‘;)

Then it follows from Eq. (2.6) that if

L, deg V’)

2.14 iL, =
( ) ad] LJ (d44v2 Ll
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—(d;2+2d,)V? 14+¢,L, eo(dy2+2d,4)V?
(2.15) adjL, = (_L3 go(dy2+2d,4)V? &Ly ).
Ls (d12+2d,)V? Ly

these being, respectively, the adjoints of L, and L,, we have

Vxu o [Vx 0x
(2.16) (vxl,)=adj L, (Ox Vx)x?’

V'u 10-0:
(2.17) (V'P) = adjL, (0 L& 0')X2,

V¢ 00-V-

which will enable the left columns to be computed from the solutions to Eq. (2.12).

3. The harmonic state

Throughout this paper we are solely concerned with the ultimate state induced by
purely harmonic anisotropic sources:

(3.1) D°= D(x)exp(—iwt), E°=EX)exp(—iwt), F° = F(x)exp(—iwt),
o being a real frequency. Thus if

32) Y,(0) = (:,:) Y = (E )

then Eq. (2.12) becomes
3.3) L,(9%/0t%, VH)X? = Y,(x)exp(—iwt) (»=1,2),

a quasi-isotropic equation within a class studied by Cuee-SENG [3] in n-dimensions with
n = 2; as such, its ultimate or harmonic state solution which must satisfy a radiation con-
dition is

(3.4) X? = exp(—iot) M '[Y,],

with

(3.5) MIY,] = lilf; X,,o = lim M7 ([Y,]
-0, e-+0,

denoting a limit of the inverse to the equation

(3'6) ’ Mv.cxv.s = ,(X),
whose operator M, , = L,(—(w+ie)?, V2),

The results of [3] have been recently applied to the harmonic problem of micropolar
elastodynamics [4]. To apply those results to our present problem, we first need to con-
sider the polynomials L,(—w?, —a2)(» = 1, 2). These are algebraic transforms of the
operators expressed by Eqgs. (2.9) and (2.10), accompanied by Eqgs. (2.4), (2.5) and (2.11),

VIZ.

BT)  Ly(02/02,V2) = acyy[A, V4+B, (= 02/t )V2 +C,y(= 02[012)],
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(3.8) L, (8%/0t%,V?) = (1+asgo)(cyz+2c44)[4,V*+B,(—0%/0t*)V2 + C,(— 0%/ t?)],

where

(.9 Ay = (acss) " [caa(bas+br7)—did],

(3.10) B,(w?) = pw*(acss) ™ (bsa+bar)—1,

(3.11) Cy(w?) = —pwicg

(3.12) A, = go(1+asge) t[by,+2bsg—(C12+2c44) 1 (dy2+2d44)?],
(3.13) B, (@?) = ow?eg(byz+2bss)(c12+2¢4s) (1 +ap) —

(3.14) Cy(?) = —w?(c2+2c4s) ™"

Therefore, after factorization the polynomials

(3.15) L(—w? —a?) = acgg A, (a®— a2 ) (a2 —0al),

(3.16) Ly(—w? —a?) = (1+agy)(c;2+2c44) Ay (02 — 03 )02 =03 ),
with

@3.17) 2, = 5 47 B} £[B @) 44,00} =1,2).

Now, by SCHWARTZ’s [6] argument on the energy density it is necessary that
(3.18) A, >0, A4,>0.

Furthermore, from Eq. (2.1) css0™" and (cy,+2c44) 0" are in the classical elastodynamic
theory squares of the equivoluminal and dilatational wave speeds, respectively, so that

(3.19) C(0?) <0, Cyw? <O0.
By Eq. (3.17), then, a, > 0 while «? 2 < 0. Hence the polynomial equation
(3.20) L(-0? -a®)=0 @=1,2)

has two distinct, symmetric real roots at « = |a,, |, —|,, | plus two distinct, purely ‘imag-
inary conjugate roots at « = ila, |, —ila,_|.

According to [3] (§§ 2 and 4), among those four roots only that real root denoted by
o,, = = a,,(w) whose derivative

+*

(3.21) %, (@) >0,

together with the upper imaginary root ila,_| = «,_, say, can contribute to the radiation
conditioned solution for M;* [Y,]; precisely, if in n-dimensions with n = 2 or 3,

——n 1 Hl
(3.22) S(x; a;Y,) = (__) fY( - _1(alx— YI) e L

Ix—-s?li B

wherein the integral ranges with y over the infinite n-space R, and Hfl_l(z) is a Hankel
function, then ’
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1 aS(x; «; Y,)
(3.23) MY, = ;s 2 oL (—w?, —a?)jda’
(3.249) =T=A.[S(x %,;Y,)-8(x;0, Y,)] " (= 1,2),

(3.25) A, = A(0?) = —(ac“) 1 [BY(w?)— 44, C, (0?)] 2,

1

(326) A, = Ay(0?) = —(I +ago) (e +2¢44) " [Biw?)— 44, C,(0?)] 2.

For computational purposes the expression (3.22) can be expanded into

; . 1-1, o 1 = i 1,
G27) S a;Y,) = ()2 kz_; {HE ke (o) of S 73 YL iy (@)Y dy

x 1
A (1) 5N
+J§ nk—1(0%) f Su(X; y;Y,) Hinyk—1(0y)y? dy},
0

an infinite series of Hankel and Bessel functions coupled to Hankel-type transforms of
spherical integrals of the form

(3.28) Sux;y;Y,) = (%n+ k-l)]‘(—;—n—l) fY,@ﬁ)C,%"'l(i-g)dQ,
o

which ranges with the unit position § over the surface 2 of the n-dimensional unit sphere

1
(circle if n = 2); here x = |x|,Xx = xx~!, and C‘E"-l denotes a Gegenbauer function.
Regarding Eq. (3.24), S(x; a,_; Y,), the contribution from that real root which satis-
fies Eq. (3.21) is determined by direct substitution of « = «,, into Eq. (3.22) or Eq. (3.27).
On the other band, the complementary contribution from the upper imaginary root «,_
takes the forms

(3.29) .
2 (l ,_“X— D
S(x; a,,Y)._-—(—) fY Jen — Y&,
Ix—yr
1 o
(3.30) = 2 (o' 7?" J fa K pima Gt f SiG3 v )Ia,,+k_,(|a.-|y)y2 "dy

| .
1y (1) f SiR; 3 YK 4y (5 0 ).

‘which follow from Egs. (3.22) and (3.27) via the relations between J,,(iz), H{® (iz) and the
respective modified Bessel functions I,(2), K.(2).

A general asymptotic representation ([3], Eq. (4.26)) is also applicable to M;*[Y,].
Thus, if the column
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(3.31) Y,(x) = 0 outside some finite region R,,

and its Fourier transform
(3.32) Fl; Y,) = (2m)~" [ Y,(y)exp(—iec- y)dy,
Ry

then far from R,,

(ﬂ+1) = (n 1) 2('! 3

63 M) = A} (e, % Y)exp il x— - (1—3)al}

E(IH- 1)

+0(x~ ).

This is dominated by an «, -independent term which attenuates like x_étn_n. The net
contribution from the upper imaginary root «,_ is negligible by virtue of an exponentially
decaying factor.
3.1. 2-and 3-dimensional forms. Suppose n = 3. Then using the oscillatory and exponential
forms for H) (z) and K,(z), we obtain from Eqgs. (3.24), (3.22) and (3.29),

2

2

63 M= g [ fexpa, -y —exp(~ o | x—yDldy.
Rs

Alternatively, M;*[Y,] can be evaluated from Eqs. (3.24), (3.27) and (3.30) together
with Eq. (3.28). The latter can be made more explicit. Suppose the unit vectors

(3.35) X = (sin@cosh, sin@sinh,cos@) (0<6<27,0<6<n),

(3.36) E = (sin@'cost’, sinO’sinf’,cos®) (0<6 <2%,0<6' < 7).

1

Now, CZ(x-E) = Py(X-E), a Legendre polynomial which = 1 when k = 0; for k > 1,
however, it can be expanded into a finite series by the addition rule ([12], 4.3). Thus,
from Eq. (3.28),

ov____ﬁg

(37 Sy Y )_nz(k+ ) 4o’ f Y,(E) P, (& - E)sin@'dé,
0

n 2n
R - P ' _
(3.38) = ! §in0'do af Y0840 (k= 0),
I 2n
11 .
(3.39) = 5 7 Qk+1)Py(c0s6) f P,(cos 0")sin ©'d6’ f Y,(E)do’
0 0

+ a2 (2k+1)2 gj +S;I Pi(cosO) f Pi(cos@)sin@'d6’

2n
x [ ¥,0Beosls@-00ds" (k> 1),
0
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Pj denoting an associated Legendre function.
For n = 2 we find instead

G4 M = A [ Y| g xy) =Kol Ix-yD
Ri

moreover, writing
(341) %= (cosh,sinf) (0<0<27), E= (cost,sin®) (0<6 <2n),
we have ([3], Egs. (4.11) (4.12))

2n
(3.42) Sok;y; Y,) = [ Y,(8)de,
0

n
(3.43) Sik;y;Y,) = 2 [ Y,(E)cos[k(6—071d0" (k= 1,2,..).
0

4. Choice of a,,
Now «,, (# 0) represents one of the two real roots to Eq. (3.20) and its choice must
comply with Eq. (3.21) or, equivalently,

w do?
4.1 ——— T y
@ G >0

Such a criterion actually follows from an incorporated radiation condition. From Eq.
(3.17) we derive

duvzﬁ —
(42 do? ~

oz, B)(0?)—C,(»?)
[B()—44,C,(@)]"
wherein primes denote w?-derivatives. In particular, Egs. (3.9)-(3.14) give
4.3) Bi(0?) = ea~'disc3*—4,Ci (0?02,

44 Bj(0) = geo(l+a60) ™ (d1a+2das) (12 +200s) 2 = 4, Co(0D)07,
4.5) C,(@*) = C(0P)w~? (»=1,2).

Normally ¢ > 0, and we assume that ¢, > 0, @ > 0. It then follows from Egs. (4.2)-
(4.5) together with Egs. (3.18) and (3.19) that

do?,
dw?
So, by Eq. (4.1) o,, should be that real root with the same sign as .

We shall next attach a wave kinematical interpretation associated with «,,. Accord-
ing to LIGHTHILL [5], there is a correspondence between the operator L,(d2/d¢2,V2) and
a travelling wave conﬁguration about a real frequency w and a real wave vector & neces-
sarily governed by L,(—w?, —a?) = 0. The eikonal is then

(CX)) o X—of,

?

(4.6) >0 (v=1,2).
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while the phase velocity

(4.8) v =odlat  (@=alal™),
and the group velocity
(4.9) V=VY,o,

V, being the gradient operator in a-space. Evidently, [&| = |a,,|. Whence we can show
from Eq. (4.9) that

(4.10) V = asgne, (o).

A travelling wave constituent of X? is clearly discernible through the long range es-
timate (3.33) of its spatial factor; comparison of its eikonal with Eq. (4.7) discloses

4.11) a-X = sgna,,.
Whereupon,

(4.12) V- & = 1/, (@) = |Visga[x, (@)].
Also,

(4.13) v X = oo = |v|sgn(we;!).

Therefore, the criterion (3.21) requires the group velocity V to be directed radially outwards;
furthermore, since we; ' > 0, the phase velocity v is likewise directed radially outwards.
Note that while the outward radial orientation of V is never influenced by material para-
meters and may, consequently, be envisaged as a fundamental principle, that of v relies
on the inequality (4.6) which holds through the material coefficients. Such a wave config-
uration is quasi-isotropic- “quasi” because of the normally anisotropic factors Si(X; y; Y,)
and F(a, X;Y,) involved with the respective exact and asymptotic representations (3.24)
and (3.33). The anisotropy is imparted by a directionally dependent Y,(x). Wave energy,
released by the sources, gets transported with the group velocity to sustain the travelling
wave constituent. Observe from Egs. (4.6), (4.8) and (4.10) the relationship

da?,

(“.14) (Vewt = Vit = 2,

the right side being given by Eq. (4.2).

5. Displacement, polarization and potential in a charge-free material

Let us next determine in the absence of a charge distribution
(GR))] D° =0,

the displacement and polarization vectors as well as the Maxwell’s scalar potential for
the ultimate state in terms of established harmonic inverses. First we can, by virtue of
Egs. (2.12) and (2.13), express
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(XS 0
. X2,
whose elements satisfy
(5.3) L, X}, = F° = L,X3,, L, X}, = E® = L,X2;.
Then from Egs. (2.15) and (2.17),
(5.4) Vi = (di2+2d,,)V?V X°3ML3V X2,
(5.5) Veu) Neeare, vV
: VP v- xg,
where
I+& L, go(dy2+2d44)V?
5.6 N(3%/t?,V?) = ’
(56) @/ v ("‘o(dl2‘4‘21'144)‘72 & Lj )

Also, by taking the curl of each vectorial element in Eq. (2.16) and then incorporating
Eq. (5.5), we get

.7) (VZ") N(32/ar2, vz)( ) —adjL, (32/6t2, V?) (v (Vxx?‘))
vZp VvV - X9 V% (VxX$,)
We now resolve the spatial source factors E and F into irrotational and solenoidal
constituents:
(5.8) E(x) = VE,(x)+V XE,;(x), F(x) = VF;(x)+V xF,(x).

It then follows from Egs. (3.1), (3.3) and (3.4) that the harmonic state radiation condi-
tioned solutions to Eq. (5.3) are

(5.9) X} = exP(_iw‘){VM;:[Fll‘va MI_I[F:Z]}’
(5.10) X9, = exp(—iwt) {VM1![Ej]+V x M'[E,]},
(5.11) X9, = exp(—iwt){VMz'[F,]+V x M3'[F,]},
(5.12) X9; = exp(—iwt) {VM3'[E]+V x Mz '[E,]}.

Note, for example, that the scalar M;2[F;] and the vector M;[F,] are derived from the
column M;![Y,] by substituting F, and F, respectively for Y,. The solutions we seek are,
from Egs. (5.4), (5.7) and (5.9)-(5.12),

(5.13) ¢ = exp(—int) {(dlhz +2d,44)V2M3 [Fi]4 Ly(—w?, V?) M3 ! [E1]} ’

VM3 [F V x M;* [Fy]
(.14) (;)= exp(—iwt){N(-—w’, Vz)(vny{aj +adiL;(—?, v=)(V:M;1[E2] }

6. Introduction by axisymmetric elements

Suppose the charge distribution is axisymmetric, and that the applied electric
and external body force act with axisymmetric components along the transverse, azi-
muthal and axial directions of i, = (cosf, sinf, 0), i, = (—sinf, cosf, 0) and i; =
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= (0, 0, 1), with reference to the invariant Cartesian frame in R;. Precisely, if r =

= (x§+x§)35, then

(6.1) D(x) = D(r, x3),

(6.2) E(x) = E/(r, x3)i,+ Eg(r, x3)is+ Es(r, x3)is,
(6.3) F(x) = Fi(r, x3)i, +Fo(r, x3)ig+F3(r, X3)is.

To apply Eqs. (3.38) and (3.39), we account for Eq. (3.2) and note, in particular,
that

E(yE) = (E,(ysin®’, ycos®')cos’— E(ysin®’, ycos®)sinb’,
6.9 = E,(ysin®’, ycos®)sin b’ + Eg(ysin®’, ycos@’)cosl’,
= E;(ysin@’, ycos®)),

with a similar expression holding for F(y€). Thus, if the column Y, is now substituted in
turn by the vectors E, F and the scalar D, Egs. (3.38) and (3.39) lead to

(6.5) Su(X; y; E) = Si(0; y; E )i, +St(O; y; Eg)ip+S§(0; y; Esis,
(6.6) SiX;y; F) = S£(9;y;Fr)i,+$£(9;y;Fa)ie+SE(6;y;Fa)is,
(6.7) Si(X;y; D) = 82(@;y; D),

where, for an axisymmetric function X = X(r, x;), the transforms

(6.8) 20;y;:X) = =¥ fX(ysin@’, ycos®@')sin®@'d@’ (k= 0),
0

(6.9) = 7¥2(2k+1)Py(cos6) [ X(ysin®’, ycos®’) Py(cos )
0

xsin@d® (k= 1),
(6.10) Si(@;y;X)=0 (k=0),

= 72 (1) P{(cos@)fX(ysin@', ycos®’) PL(cos®)
[1]

E1) k(k+1)

xsin@d®" (k= 1).
If these are used to define, foru = 0,1 and» = 1, 2,

_.".. o x

612)  S*(x,030,;X) = (wx) 2 D {HJ1(a, %) [ SK(O; y3 X)J ., (o, 3)ydy
k=0 [1]

+ 1, %) f S5 y; X)H 1(w, )y dy},

2 1® x
(613)  5x,0; 03 X) = — (1) 2 3 (K, 1, 19) [ SKO; y; V)., 1(1m.1y) y¥7dy
k=0 4 0

[+¢]
1,100 1x) [ SHO; 7 00K, , 11 13)y* *dy).
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and if
6.14) To(x, 0;X) = - iA[S#(x, 65 %, X)~S¥(x, 6; & X)),

then we deduce from Egs. (3.2), (3.24), (3.27), (3.30) and (6.5)-(6.7) that

3 Ti(x, 0; F,)i,+ Ti(x, ©; Folig+ T{(x, ©; F3)i;
(6.15) MY, = (Tf(x, @; E)i,+ Ti(x, 0; Epis+ T?(x, O; Ea)ia)’
T9(x,0; D)
(6.16) Mz [Y.] = | Ti(x, O; F)i,+ Ti(x, O; Fp)ig+ T3(x, ©; F5)i,
Ti(x, ©; E)i,+ Ti(x, ©; Ep)ig+ T3(x, ©; E;)is

Clearly, T#(x, 0, X) is axisymmetric, in which event

Vx0x Ui(r, x3; Fo)i,+ Up(r, x3; F,, F3)ig+ Us(r, x3; Fo)is
(6.17) MY ] = " : ’
0xVx U,(r, x3; Eg)i, + Uy(r, X3; E,, E3)ig+ Us(r, X3; Eg)is

where

(618) U, x5 X) = =92 (5,6, X),
1
(6.19) Uy, %53 X) = 2 FTICx, 6501,
(6:20) Uytrs %03 X, 1) = 2k 5, 0530~ 21 (x, 05 1),

or

0x3

with ¥ = ¥(r, x,), another axisymmetric function. Likewise, defining

(6.21) U, %33 X, V) = -2 (rTi(x, 0001+ T3 (x,0; Y)
i 3 ¥3s 4y v r 3r 2\ ’ 3]:3 » Y »
we obtain '
1 0'0' T'g(xs 9; D)
(6.22) 0 V-0- | M3'[Y,] = |U(r, x3; F;, F3) |
0 0.V- U(r’xa;EnES)

a column of axisymmetric elements,
Consider the operation by V2 on a vector, such as our present E, whose transverse,
azimuthal and axial components are axisymmetric. In this case,

(6.23) V2E = i(V2—r~?)E,+iy(V2—r~ %) Ey+i, V?E;;

on the right side, effectively,

(6.24) V2 = 02/6r2 +1-10/0r + 02/0x2

for operation on each axisymmetric scalar. Whereupon, by Egs. (2.16), (3.4) and (6.17),

6.2 Vxu . Kir'i' Vsie+ V3i3 )
() vxp| = PN o s Wsis)
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where

vV T .-z (Ur(”,xsiFs)Us(",xa;FnFa))
628) (W. %)““"’L““"’v TN, %3 ENUy(r, %33 v, Es))*
while

(6.27) (V’ ) = adjL,(-o?, vz)(
Ws

Evidently,

(6.28) V, = Vi(r, x3; Eg, Fo), W, = W,(r, x3; Ey, Fp),

(6.29) Vo = Vo(r, x3; E,, E3, F,, F3), Wy = Wy(r, x3; E,, Es, F,, F3),

(6.30) Vy= Va(r,x3; Ep, F), Wi = Wi(r, x3; Ep, Fy);

i.e. the transverse and axial components of V xu and V xP are axisymmetric and are
each induced by the azimuthal components of E and F; on the other hand, the azimuthal
components of Vxu and V xP, which are also axisymmetric, are each induced by the
transverse and axial components of E and F.

Similarly, from Egs. (2.17), (3.4) and (6.22), we have

Us(r, x3; Fa))
Ui(r, x3; Ep)]”

V-u T(x,0; D)
(6.31) (V . P) = exp(—iwt)adjL,(—w?, V?) (U(?‘, X33 F,, Fa)) .
vz¢ U(!‘, X33 Ers Ea)

which, in particular, indicates that V- u, V- P and V2¢ are all axisymmetric and are each
induced by D together with the transverse and axial components of E and F.

7. Axisymmetric asymptotics

The exact solutions expressed by Egs. (6.25)-(6.27) and (6.31) involve, through Egs.
(6.18)~(6.21), the axisymmetric T} whose values must be determined from Eq. (6.14)
by computing infinite series of the types (6.12) and (6.13). Suppose D, E and F, defined
again by Eqs. (6.1)-(6.3), are confined within finite concentric cylindrical regions:

(7.1) D = 0 outside ro(D) <7 <7 (D), Io(D) < x5 < 11(D),
(7.2) E, = 0 outside ro(E) < r < ry(Ep), Ilo(Ep) < x5 < L(Ep,
(7.3) F; = 0 outside ro(F) < r < ry(Fp), Io(F) < x3 < 1(Fp),

with & = r, 0, 3, and where ro(D) > 0, ro(E;) > 0, ro(F;) > 0. Generally, some or all
of these regions intersect; moreover, two or more of them may be identical. Far from these
regions those infinite series of the type (6.13) are insignificant by comparison with those
of the type (6.12) which therefore dominate corresponding T%. Furthermore, such in-
finite expansions for T can be replaced by single-term asymptotic approximations which
can be formulated through Egs. (3.31)-(3.33).

Now, in order that Eq. (3.31) holds for » = 1, 2, it is sufficient to consider R, as a fi-
nite cylindrical region, say,

rosSr<r, l<x3<l,
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which contains all seven cylindrical regions represented in Egs. (7.1)-(7.3). Then, using
Egs. (3.32), (3.35) and (3.36),

ri

1y
(74)  F(,%;Y,) = @n)® [ exp(~iys0,,cos0)dy, [ sds
Io

042n
x [ Y,(y)exp[—isa,sin@cos(8'—6)]d6"
]

in cylindrical coordinates with s = |y| sinf’ and y; = |y|cosf’. Each Y,(y) involves the
E-vector given within the invariant Cartesian frame by Eq. (6.4). To evaluate the inner-
most 0'-integral for the Fourier transform of E, we need the three following results. First

([12)), 3.5

2n \
(1.5) [ exp(—izcosp)dp = 2nJy(2),
[/]
so that
2
(7.6) [ exp(—izcosp)cospdp = 2niTy(z) = —27ily(2);
0
also,
2=
(1.7 f exp(~izcosf)sinfdf = 0,

owing to an antisymmetric integrand. Consequently, according to Eq. (7.1)-(7.7) it is
seen that if we define, for 4y =0, 1 and » = 1, 2,

LX) ri(X)
(18)  FO;X)=i*Q2n)? [ exp(—iysa,cos0)dy; [ X(s,y:)J,(sa,sin0)sds,
Io(X) ro(X)

a Fourier-Hankel transform of the axisymmetric scalar X = X(r, x;) which vanishes
identically outside ro(X) < r < ry(X), lh(X) < x5 </{(X), then

X F1(O; Fi,+ Fi(O; Fp)iy+ FY(O; F3)is
79 Flon, X3 Vi) = (F%(G; E)i,+ F1(6; Egig + F(0; Ea)ia)’
F2(@; D)
(7.10) F(ap,X; Y,) = | F2(O; F)i,+ F3(O; Foig+ F3(O; F3)is | .
Fi(O; Ei,+ F3(O; Epiy+ F3(O; E3)i;

Whereupon we deduce from Egs. (3.33), (6.15) and (6.16) that at sufficiently long ranges,
(7.11) Ty(x,0;X) ~ A(2n)*x~* F}(0; X)exp(ia, X).

This formula can then be applied to Eqgs. (6.18)-(6.21), (6.25)-(6.27) and (6.31) to ap-
proximate the curls and divergences of u and P, as well as the scalar V¢, '
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8. Radial action

Consider a charge-free material upon which both the applied electric field and the
external body force act radially with spherically symmetric magnitudes:

8.1) D(x) =0, E(x)= E(x)x, F(x)=F(x)%.
In this case,

(8.2) VxE =0 =VxF,

so that Eq. (5.8) is applicable with

(8.3) E,=F,=0.

Furthermore, as E and F are radial, E; and F, must be spherically symmetric: E; =
= E,(x), F; = F,(x), and we may take
(84) E\x) = [ EQ)y, Fi(x) = [F()dy.

Now, if Y, is substituted by the spherically symmetric scalar Z = Z(x), say, then Egs.
(3.38) and (3.39) reduce to, respectively,
(8.5) So(X; y; 2) = 27°2Z(y),

1
8.6)  SuX;y; Z) = Qk+1)7*2Z(y)Pi(cos®) [ Py(2)Po(2)dz =0 (k> 1),
-1

with vanishment following.from an orthogonality law governing the Legendre polyno-
mials. On applying Egs. (8.5) and (8.6) to Eq. (3.27) and replacing J1 and H{" by their

¥ = 2 2
oscilatory forms, we obtain

D S a;2)=2xa) [ {expliole—y)—explia(x-+))1} Z0)ydy,
0

which is spherically symmetric and holds for both real and complex . According to Eq.
(3.24) then,

1,
(8.8) Mz;1[Z] = 5 iA[S(x; a,,; Z)=S(x; a,_; Z)] = R(x; Z),

a Sphericafly symmetric function derived from Z.
Hence, by Eq. (5.13) Maxwell’s potential

(8.9) ¢ = exp(—iwt)[(d,,+ 2d,4)V?R(x; F1)+ Ly(—w? V?)R(x; E,)],
wherein, effectively, the Laplacian
(8.10) V? = 9%/0x*+2x~10/0x

for operation on each spherically symmetric scalar. Clearly, ¢ is spherically symmetric
and is induced by both E and F. Moreover, since M7![E,] = M7![F,] =0, and in view
of the fact that

(8.11) V2[RZ(X)] = R(V2—-2x"2)Z(%),

8 Arch. Mech. Stos. nr 1/81
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the Laplacian on the right side being given by Eq. (8.10), we deduce from Eq. (5.14) that

u : 2 X
(8.12) (P) = exp(—iwt) (xzi) L
with _

X1 g _ [OR(x; Fy)[0x
(8.13) (Zz) = N(—-w?, V2-2x 2)(6R(x; E,)_lax)'
Obviously,
(8.14) X = (x5 Eq, Fy);

i.e. the displacement u and polarization P are each induced by both E and F; further-

more, like E and F they are radially directed and possess spherically symmetric magni-
tudes.

9. Fundamental solutions

To extract fundamental solutions, say, in the absence of an applied electric fleld E° = 0,
let us suppose that the charge and external force are singularly concentrated about x = 8
and x = x respectively, viz.

©.1) D(x) = Dod(x—B), F(x) = Fod(x—%),

D, being a constant scalar and F, — a constant vector; here, é denotes the Dirac delta
function. For the (7 =) 2-dimensional problem: x = (x, x,), % = (%, %;), P =
= (B, B.), and we take Fy = (Fy,, Fo,, 0) in 3-space; in particular then, F(x) is singu-
larly concentrated along and acts perpendicularly to the line x; = %,, x, = %,; like-
wise D(x) is singularly concentrated along the line x, = §,, x, = f,. The 2- and *3-di-
mensional problems will be resolved simultaneously. Recently, CHOWDHURY and GLOCK-
NER [7] have employed another technique to' secure from first principles 3-dimensional
fundamental solutions for each of the following separate cases: (i) a concentrated force,
(ii) a concentrated electric field, (iii) a concentrated charge. However, they ignored the
radiation condition, the distinction associated with real and complex roots to charac-
teristic equations of the type (3.20), and the admissibility of the contribution from each
such root. While this remains consistent in a formal treatment, it obscures some con-
trasting features (summarized under general terms in § 1) and restricts the scope of in-
terpretation, e.g. the interpretation attempted in § 4.
On adopting Eq. (9.1) and E = 0, Eqgs. (3.2), (3.34) and (3.40) lead to

.

FoG,(Ix—x]) D, G, (Ix—Bl)
9.2) Mii[Y,] = ,  M3'[Y,] = |FoGy(Ix—x)) |,
0 0
where
9:3) G,(x) = A,(27nx)~'[exp(ia,,x)—exp(—|x,_|¥)] (n = 3),

0.4) = A,[-;- iHSO(a, %)~ 7~ Kol x)] (n=2).
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Note that with reference to Eq. (9.2), G,(|x—x|) is symmetric about x = x, while G,
(Ix—B)) is symmetric about x = .
We shall now proceed to derive explicit versions of Egs. (2.16) and (2.17). Defining

9.5) fi(x) = x—%)xF, (n=3),
(9.6) = (X, =%, %X,—%,, )xFy (n=2),
we have

©.7D V x [Fo G, (Ix—xD] = £,(x) Gi(Ix—x[) [x—%|~*,

from which it can be established that
9.8) V2V x [Fo G (Ix—x])] = £;(x)P.[G](Jx—=|) [x—x[""],

where the operator

2 d
i pr A R TR R L
(91) Pu= Vit [x—2x| dx—x|’
wit
d? n—1 d
-
219 Vi = dlx—x|? ¥ Ix—xn| dx—x| "

When operating on a function which is symmetric about x = %, V2 is essentially the
n-dimensional Laplacian. Likewise, if

(.11 £:(%) = Fo+ (x—3) (n =3,
(9.12) =Fo:(xy=%1,%X2—%,,00 (n=2),
then

(9.13) V- [Fo Go(Ix—x[)] = f2(x) Go(Ix— %)) [x—%|7%,
(9.14) V2V - [Fo Gy (Ix—x|)] = f(X)P,[G,(Ix—x[)|x—x[""].

Whereupon, from Egs. (2.4), (2.5), (2.11), (2.14)-(2.17), (3.4), (9.2), (9.7), (9.8), (9.13).
and (9.14), we deduce

(9.15) Vxu = exp(—iwt)f;(x) L(P)[G, (Ix—x[) [x—x|"],
(9.16) V xP = exp(—iwt)f; (x)das P, [G, (Ix —x]) [x— %],
V-u — Do(dy 2 +2das) V3f2(%) (1+ €0 Li(P,)) | [CUx—%D
9.17) VP | = exp(—iwt) | =Dy Ly(—w?, V3) fo(x)eo(ds2+2dss)P, | | Ga(Ix—2]) ] .
Vg _ Do Ls(—o?, V3)  fo(x)(d12+2d44)P |x — x|

Observe from Egs. (9.5), (9.6), (9.15) and (9.16) that V xu and V x P are each perpendic-
ular to F, and an observation vectors; thus, in the case: n = 2, Vxu and VxP are both
normal to the x,—x, plane.
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