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Perturbation solution for viscoplastic beam under ideal impulse loading

W. WOINO (WARSZAWA)

A PERTURBATION approach is proposed to get approximate solutions for a wide class of prob-
lems for dynamically-loaded rigid viscoplastic structures. The procedure consists in assuming
a constant shape function for all values of a small parameter and then using the Galerkin weighted
residual method combined with the general averaging technique for an amplitude. Such an ap-
proach admits nonhomogeneous forms of governing equations and does allow to apply the
inhomogeneous rigid viscoplastic constitutive relation due to Perzyna. The method is illustrated
by a problem of an impulsively-loaded fully clamped beam. A relatively simple approximate
solution for large central deflections is obtained and compared to other existing perturbation
solutions and available experimental data.

Zaproponowano metode perturbacyjna poszukiwania rozwigzan przyblizonych dla szerokiej
klasy probleméw dynamicznie obcigzonych konstrukcji lepkoplastycznych. W metodzie tej
zaklada si¢ stala dla wszystkich wartosci malego parametru funkcj¢ ksztaltu, a nastepnie sto-
suje sig rnetodt; Galerkina pozostaloici z waga oraz uogélniona technike usredniania dla wy-
zZnaczania amp]itudy Takie podejscie dopuszcza niejednorodne réwnania opisujace material,
a zwlaszcza rownanie konstytutywne lepkoplastycznoSci sformulowane przez Perzyne. Spo-
sobem tym rozwiazano zagadnienie obustronnie utwmrdzone_; belki, poddanej obcigzeniu im-
pulsowemu. Uzyskano stosunkowo proste rozwiazanie dla ugie¢ w xrodku belki, ktore porow-
nano z innym, istniejagcym w literaturze rozwiazaniem perturbacyjnym i z dostepnymi wynikami
badan eksperymentalnych.

Ilpennosken nepTypGamlOEHbLT METON HAXOMUEHHA NMPUOMIMHEHHBIX pelleHmii HuA IHpo-
KOTO HJacca 3afay IHHAMHYECKH HArPY)KeHHBIX BiSKOMIACTHUECKHX KOHCTpYKImii. B aTtom
MeTofe TpelnonaraeTcAd IOCTOAHHASM, MJU1 BceX 3HAueHMII Majoro napamerpa, (QYHKIHA
dopubl, a saTem npumensercs merox Ianepxnua ocraTka ¢ Becom K 000GlleHHAs TeXHHKA
YCpemHeHus VISl onpefeNeHus aMnanTyabl. Takoil mojaxox JonycKaeT HeOMHOPOAHbIE ypa-
BHEHHS, OINHCHLIBAIOLINE MaTepHan, a ocoleHHO onpefiensiollee ypaBHeHHe BA3KOIIACTHY-
Hoct chopmynupoBannoe IToxuna. DTiam cnocobom pelllena 3afaua 3axkpernentoil ¢ ofoux
cTopoH OanKy, IOABEPrHYTOH HMIIyJbCHOI Harpyake. IlonydeHo cpaBHHTENBHO IIPOCTOE
pettleniie A mpornboB B LeHTpe GanKi, KOTOpDOE CPaBHEHO C APYrHM, CYIECTBYIOIM
B JITepaType, NepTypOaloHHbIM pelleHHEeM 11 C JIOCTYIHBIMII PE3VIIBTaTaMi 9IKCIIepHMeH-
TaJbHbIX MCCIe0BaHMil.

1. Introduction

ReceNT literature on plastic structural dynamics put forward an interesting idea of ap-
plying perturbation methods to solve a class of nonlinear initial boundary-value problems
for rate-sensitive structures. In the paper [5] the concept of perturbation around a rigid
perfectly-plastic solution was introduced and explained on the basis of an example of the
impulsively loaded thick-walled spherical container made of incompressible, homoge-
neous, rigid-viscoplastic material, obeying the constitutive relation due to Perzyna. Both
the exact and the small parameter perturbation solutions, developed by means of the Lin-
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stedt-Poincaré technique, were then modified using Shank’s transformation to extend
the admissible range of the small parameter. Direct comparison of the exact solution
with the perturbation solution revealed surprisingly good accuaracy of the latter within
a rather wide range of the small parameter.

The idea of perturbation around a rigid-perfectly plastic solution was further extended
in the papers [6] and [7] where the problem of the fully clamped viscoplastic beam and
circular plate subjected to ideal impulses was considered. The main concept involved
there was to apply a homogeneous viscous type of constitutive equation in order to get
separable form solutions with stationary modes. What is worth emphasizing is the expo-
nent in the constitutive relation which was identified as a small parameter. It was pointed
out, see Ref. [6], that when the small parameter goes to zero, the power stress-strain rate
constitutive law reduces to the equation describing perfectly plastic material with a con-
stant, but raised, yield stress. This property was then used to obtain-approximate solutions
for viscous structures by perturbing the solutions of the corresponding reduced problems,
that is problems for perfectly plastic structures. The perturbation solutions were worked
out by means of the Rayleigh-Schrodinger method, and sufficiently good accuracy was
obtained for a quite wide range of the small parameter, considering only first perturba-
tions. A rather weak dependence of the shape functions on the small parameter was ob-
served.

We shall make use of these important results to develop in the present paper an
alternative perturbation approach for solving a wider class of problems for dynamical-
Iy-loaded viscoplastic structures. The proposed procedure consists in assuming a constant
shape function for all values of a small parameter and then reducing by means of Galer-
kin’s weighted residual method the initial boundary-value problem to an initial-value
problem for a nonlinear ordinary differential equation for the amplitude. Such a proce-
dure admits a nonhomogeneous form of governing equations and does allow to apply the
inhomogeneous rigid viscoplastic constitutive relations due to Perzyna.

This approach is used to solve the problem of the impulsively-loaded fully clamped
beam which was previously considered in [6]. Assuming a sine shape function, a pertur-
bation solution to the initial problem for the amplitude is developed by means of the ge-
neral averaging technique frequently used in problems of weakly nonlinear oscillations.
A relatively simple approximate solution for large central deflections is obtained and com-
pared to other existing solutions and available experimental data.

2. Formulation of the problem

Consider a fully clamped beam of thickness /, length / and mass per unit lenght m,
see Fig. 1, made of rigid-viscoplastic material obeying in a one-dimensional state of
strain and stress the Cowper-Symonds power type constitutive equation

1
(2.1) ¢ = o'o[l+(v:7)n], n=1,223,...

Here o, & denote respectively stress and strain-rate, o, is the static yield stress in tension,
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y and n are material constants. In particular, y = 40 s~%, n = 5 for mild steel and y =
=120 5%, n =9 for titanium.

It is seen that by letting y — oo with o and & kept fixed, Eq. (2.1) is reduced to one
describing a rigid plastic material with static yield stress ¢, see Fig. 2. This limit tran-
sition will be used for developing an approximate solution to the title problem.

v
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Let the beam be subjected to an ideal impulse uniformly distributed over the length
so that at an initial time # = 0 a constant velocity ¥ is prescribed over the beam. Our task
is to apalyse the subsequent motion of the beam.

Following the approach taken in [6] we will disregard entirely the flexural resistance
of the beam so that the only component of the generalized strain rate vector is the exten-

o)

n.'

sion rate d,4, but we will retain nonlinear geometrical effects. Under these assumptions
the von Kérmén equations of moderately large deflections of beams, involving strain-
displacement relations and equations of motion, are reduced respectively to

@2) B2 QOGW,
(2.3) 0(N 0, W) = MW,

where w is a vertical deflection, N denotes an axial force and x,¢ stand respectively for
space coordinate and time.
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By integrating Eq. (2.1) over the beam thickness, we obtain the constitutive relation

1
2.4 N = No[l+ ( a;f)"].
in which
(2.5) No - ﬂ'ah

is the reference plastic axial force.
Assuming that the beam is initially undeformed, the initial conditions take the form

(2.6) w(x,0) = 0,
(VX)) ow(x,00=V for O0<x<l.
For clamped ends beam the boundary conditions are
(2.8) w(©0,1) =0,
29) wl,t)=0 for t>0.
Let us introduce the following nondimensional independent variables
X p_q/Not
(2.10) X1y t—]/m T
and the nondimensional dependent ones
¥ N KB
(2.11) W= Ne=gm, =

Then, Eqs. (2.2)-(2.4) together with the auxiliary conditions (2.6)-(2.9) can be rewritten
in the form

@2.12) BsdFm DawtBisav®,
2.13) 3 o(N* Do W*) = BpueW®,

2.14) . N = 1A AT,

2.15) WH(x*, 0) =

(2.16) Oew*(x*,0) =YK for 0<x<l;
2.17) w¥0,t*) =0

(2.18) w¥(1,t¥) =0 for *>0,

where the nondimensional and non-negative parameter p. is defined by

M

and

myv3|?

"Noh?*

is a nondimensional kinetic energy of the beam at the initial time ¢* = 0. From now on
the “star” will be omitted for the sake of simplicity.

(2.20) K=



PERTURBATION SOLUTION FOR VISCOPLASTIC BEAM UNDER IDEAL IMPULSE LOADING 87

3. Stationary mode solution

Eliminating d,4 and N between Eqgs. (2.12)-(2.14) we obtain the following equa-
tion:
1
(3°l) axxw-allw+ﬁnax[(axwaxs w):ax W] = 0)

which, together with the conditions (2.15)-(2.18) furnish an initial boundary-value prob-
lem for the beam deflection w(x, ¢). It can be easily checked that Eq. (3.1) does not admit
for any x and ¢ stationary mode solutions, that is solutions in a separable form. Conse-
quently, contrary to the technique used in [6], the set of equations (3.1), (2.15)-(2.18)
cannot be reduced to a nonlinear eigenvalue problem for an ordinary differential equation
describing the mode of deflection. We shall, however, seek an approximate stationary
mode solution, denoted in what follows by w,, making use of the Galerkin’s weighted re-
sidual method (see for example [1]).

We observe that in the sine Fourier series representation of the constant initial veloc-
ity distribution of the beam over the interval 0 < x < 1, the greatest Fourier coefficient
corresponds to the term sin zzx. Hence we take this function as the “trial function” and
following the Galerkin’s technique we assume the sought solution to be of the form

w, = A(t) ]/fsinmc,
i a‘;‘ = A(t)y2sinnx,
where A(t) is an amplitude function to be found.

The solution (3.2), satisfies the boundary conditions (2.17) and (2.18) and the require-
ment of the symmetry with respect to the beam center. It is worth noting that the ortho-
normal mode shape J/2 sin zx chosen here does not differ much from the one obtained
in the paper [6] by considering a nonlinear viscous constitutive equation.

In view of Eq. (3.2),,,, the differential equation residual R, is

= 2+4n 24n An+l) 1+m 1 2 -
(33) Riw) = —(A-{-:t’A)l/IT.sina:x—ﬂ,Z 2n —"—n n A4 " Anrsinmxcos"mx,

and the initial condition residuals R, and R,, respectively, are

(3.4) R,(w,) = A(0) Y2 sinzx,

(3.5) R3(w,) = VK —A(0)y/2 sinzx.

Now, taking /2 sin zx as the weighting function and setting the weighted integrals
1

{ R, |/ 2sinzxdx (j = 1, 2, 3) equal to zero, we arrive at the nonlinear initial value prob-
lem

n+2

. 1 3n+4 I'(—___) k.

(3.6) A+n*A = —p,27x 20 n n+2 2n P
n+1 1
riz)
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3.7 A(0) = 0,
: 2y2
13.8) A0) = Tf VK,
for the sought amplitude function A(f), where I'(- ) is the Gamma function. Note that

1
because of the uniform distribution of mass, the condition _fR;,-(w,)VZ sinxdx = 0
o

represents the balance of the weighted initial momenta in the exaet and approximate so-
lutions.

4, Perturbation solution for amplitude

In most practical applications to metals the value of the constant in the constitutive
equation (3.1) does not exceed 9. Hence the numerical coefficient on the right hand side
of Eq. (3.6) can-be treated as not greater than 14.82 f,. Moreover, in the limit case when
y — oo, that is when the material becomes rigid-plastic, the parameter 8,, given by Eq.
(2.19), tends to zero and, consequently, the right hand side of Eq. (3.6) disappears reduc-
ing Egs. (3.6)-(3.8) to the linear problem

4.1) Ay+72A4, = 0,

4.2) 40(0) = 0,

@3 FROMEIERY 3
whose solution is

(4.4) Ay = 2522 VK sinnt,
(4.5) Ay = 2':2 l/ffcosm.

Since the motion of the plastic beam has a purely dissipative character, the phase st

in the solution (4.4) and (4.5) should be limited to the segment [0, %] which corresponds

to the time interval [0, -:12—] At time ¢ ='—;— the plastic beam comes to rest.

For appropriately small values of 8, # 0 Egs. (3.6)~(3.8) of the rigid viscoplastic
beam can be treated as the regularly perturbed problem (4.1)-(4.3) for a rigid plastic
one. In what follows we shall make use of this property and find a perturbation solution
to the problem (3.6)-(3.8) applying the approach developed by Krylov and Bogoliubov,
see [2] or [3].

Thus, in accordance with this approach, for small § we assume the sought solution
to have the form

4.6) A= 2

‘ﬁz YK a(®)sing (0),

F. 4
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(4.7 A= 2f VK a(t)cosg(t),

with an unknown ume-varying amplitude a(f) and a not known phase ¢(¢), such that
(4.8) a(0) = 1,

(4.9 ¢(0)=0

to fulfill the initial conditions (3.7) and (3.8).

We also postulate that, as in the plastic case, the phase ¢(¢) changes from 0 to %.

Treating the relations (4.6) and (4.7) as a transformation from the variables 4 and A
into the new variables a and ¢, by a standard procedure described in detail in Ref. [2] we
obtain the system of two equations of the first order:

dﬂ n+2 n+1 n+1

(4.10) —B.aa " sin " ¢ cos_"-r,b,
2 2n41 1
4.11) ‘? 4+ Paxasin " pcosne,
where
[27)
1 n=-2 — 1
4.12) a=160a mpit2 N\ 28 | o
n+1 1 -
. (—)

which, together with the conditions (4.8) and (4.9), furnish a nonlinear initial-value prob-
lem for the amplitude @ and the phase ¢. This problem will now be solved by a general
averaging method, see for example [3].
With this purpose let us introduce a new time variable
(4.13) t= af,
n+1 n+1 2n+1 1
and expand the terms sin 7 ¢cos ” ¢ and sin " ¢cos”¢ into the cosine trigonomet-

ric series in the interval 0 < ¢ < % Then, Eqs. (4.10) and (4.11) take the form

da T(o 3 )
(4.14) = b T+ﬂ2cmc052m¢ :
dp 7, 2dy \
(4.15) = +ha (“:T + m;:d,,costhﬁ),

in which the Fourier coefficients are

.LT n+1 n+1
(4.16) =%!m » poos * oos2kdds,
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w1
sin " pcostpcos2kpdd, k=0,1,2,3,....
0

To integrate approximately the system of Egs. (4.14) and (4.15) for a small g, # 0,
we introduce a near identity transformation
(4.18) a = a+p,a,(@,$)+p2a,@, )+ ...,
(4.19) ¢ = ¢ +Pad:(@, )+ pi¢2@, 9)+ ...,

from the variables a, ¢ to other variables, @, 3 such that the transform of the system of
Eqs. (4.14), (4.15) is of the form

a s

@17 i

.20) i‘i = Bl @)+ B2 4@+ ..,

@21) i"i' BB @B B -

with the functions 4,, Az, iy B Bagen dependent only on a.
Let us now substitute (4.18)-(4.21) into Eqs. (4.14) and (4.15) and expand the result

in the powers of the small parameter f,. Then, equating the coefficients of f, we arrive
at the set of two equations

” da _'“'2

(4.22) = 6¢l +A4;,=—-a " ( +,,,_El c.c032m¢)
n 0¢ =

@23 S in, = ( +m§-l'd,.c032m¢)

for the functions a,, ¢,.
According to the method of averaging we choose 4, and B, to be equal to the long-
period terms on the right hand side of Egs. (4.22) and (4.23). That is we put

_n+2 d _3
4.24 i O AR s
-and as a result we get the equations
aa a _B‘l‘l 2 s
(4.25) o WO B ( aCOS2M ),
TR |y et
¢ 6. x ( )
4.2 et SN
(4.26) Rk ar gd,,cosZm(ﬁ

which, by integrating, give

@27 - i (j’fﬂ—" sin2m$).
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1L L
an (; ?stmqb) i

Thus, to the second order, the perturbation solution of Eqs. (4.14) and (4.15) is

(4.28)

u+2
(4.29) a=d-fur-a (;—usm 2m¢)+0(ﬁ
S e d
Y & Om ; 5 2
(4.30) 6 =F+hrea (; = sm2m¢)+0(ﬁ,,),
where the functions @ and ¢ are defined by the system of the differential equations
d s ll-[-!
(4.31) Rl —By “oa " +0(82),
dt
432) %‘% - g ar o).

If on the right hand sides of Eqs. (4.29)-(4.32) we retain only the terms up to the or-
der 0(8,), then, bearing in mind the transfgrma.tion (4.13), we have the following approx-
imate solution for the functions @ and ¢:

(4.33) ax (D+ﬁ,, a2 )_E,

(4.34) ¢~ m+—d—ln(l+ﬁ. fol )+E,

where D and E stand for constants of integration. Next, substituting Eqs. (4.33) and
(4.34) into the simplified relations (4.29) and (4.30) we conclude that in order to satisfy
the initial conditions (4.8) and (4.9) there can be D = 1, E = 0 and the approximate
expressions for the amplitude a and the phase ¢ are

SRR [:4]

(4.35) a~(1+ﬂ. e )“;-—ﬁ,. ;(1+ﬂ, 0 ) : {Z’%sinzm[m

m=1

v st

(436) ¢ =~ :zr-l- In(l+ﬁ. fatt )+ﬁ. = (1+ﬁ. = ) {Z—szrn[ﬂ:!

o2 n dy ln(1+ﬁ.. Co )]}
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5. Approximate mode solution

On behalf of applications we simplify further the above relations by retaining only
the first non-zero terms in the sums on the right hand sides of Eqgs. (4.35) and (4.36).
Let a, and ¢, denote the simplified amplitude and phase. Then, in view of the expres-
sions (4.16) and (4.17) we have

1
2
1 jh(21?:) n+1

©=mer) 1) T 0. &=-z3
7
E2)
5] ;
b=\’ 4" Tmae

() |

and the simplified formulae for the amplitude and phase become

n+2

6 = (ion S Cen gt (n st o
ndo Col
T_ (l+ﬁl 2 ):I’
do coo doan coa \7'.
(5.3) ¢,~m+—2-—ln(l+ﬁ,. )-ﬁ,. (l+ﬁ,-n—r) st[m

2n@n+1)
+%%m(1+ﬁ.";—“ )]

Next, with the help of these relations and Egs. (3.2), (4.6) and (4.7) as well, we get
the approximate expressions

(5.9) W, = 4:’:? a,(t)sin ¢,(t)sinzx,
(5.5 %‘i = 4';? a,(t)cos ¢,(t)sinmx,

respectively, for the displacement and velocity of the beam. By setting x = 1/2 in Egs. (5.4)

o)

ot

and (5.5) we obtain the formulae for the displacement w,(l) and velocity

2
in the mid-span

56) v 3) = 2LE atsing.o.

""‘”’(%) 4K
5.7 g —e a,(t)cosdy(1).
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Finally, denoting by #, the response time, that'is the time at which the phase ¢, reach-
T
2
pression for the permanent deflection w,, of the mid-span:

K
(5.8) w,,(%) " 4—;/2—@.

es the value -, and by a, the corresponding value of a,, we obtain the following ex-

6. Ilustrative example and conclusions

We shall correlate now the results predicted by the present “string” solution with
that obtained in [6] and also with the experiments on impulsively-loaded mild steel clamp-
ed beams reported in [4]. To this end we shall consider the same numerical values for
geometrical and mechanical constants as in [6], namely

h=0,1 in, do = 30.5 10 Ib in~2,
l=35in, n=>5,
o= 0.732 1073 Ib s* in™%, y =40 s~

The corresponding value of the small parameter is fs = 0.41897, the quantity « =
= 4.04843 K2 and the first Fourier coefficients are equal to ¢, = 0.52294, d, = 0.76884.

The approximate formulae (5.6) and (5.7) for the mid-span displacement and veloc-
ity take the form

(6.1) ' w(%) = 0.40528 )/ K a,(t)sing(t),
{3
—— 21 = 1.27324y/Kay(t)cos §,(t),

(6.2) o

where, according to Eq. (5.2) and (5.3), the quantities a,(f), ¢,(f) are expressed as fol-

lows:

(6.3) a, = (1+40.17740 K°2t)~2-5 +0.02647 K 3(1 +0.17740 K®2t)~*-3sin4 [t +
+3.67557In(1+0.17740 K°2¢)],

(64) ¢, = mt+3.67557In(1+0.17740 K*21)—0.09434 K**(1+0.17740 K°2t)~1sin2[nt
+3.67557In(1+0.17740 K°21)].

1 a“"'( l )
Plots of the functions w,(T) andf—gt—— versus time for the initial energies K =

= 175, 200, 400, 700 are represented, respectively, in Figs. 3 and 4. The dashed lines in
these figures denote the approximate perturbation solution whereas the solid lines refer
to the exact solution obtained directly from the numerical solution of the initial-value
problem (3.6)-(3.8)

(6.5) A+n2A = —6.987024124%2, A(0) =0, A(0) = 0.90032 K°5.



94 W. Womo

&
—_
Kol
—
- }

n=5, y=40, Bs5=041897
Numerical solution

——=—= Perturbation solution

|

1 1
020 030 040

FiG. 3.

It is seen from these figures that the results of both solutions are generally n satis-
factory agreement. As the value of the initial kinetic energy decreases, this agreement
become more pronounced. The response time obtained from the approximate pertur-
bation solution is always smaller than that resulting from the numerical solution. This
is illustrated more clearly in Fig. 5. However, the most important conclusion is that in

the considered range of the initial kinetic energy the final mid-span deflections v,f(%) .

1
wa,,.(-:l?)( )predicted by both solutions are practically the same, see Fig. 6. More exactly,
1 1 1
War ? — Wagn 35

/ wm(—) does not exceed 1.7%.
1 7 : : ;
™ w.,.(—i) denotes the final mid-span deflection obtained numerically.

the percentage relative error 1009, 5
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Fig. 7 reveals fairly good agreement between the experimental results reported by SYMONDS
and Jones in [4] and the final mid-span deflections obtained from Egs. (6.1), (6.3) and
(6.4). These permanent deflections seem to fit better the trend of experimental points
than the final deflections predicted by the solution obtained in the paper [6].

The advantage of the proposed approach is that it can be easily extended to more

complicated two-dimensional viscoplastic structures subjected to impulsive and general
pulse loading.
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