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General closed-form solutions of the equations of one-dimensional
nonstationary isentropic motions of isotropic elastic media subject
to finite deformations

E. WLODARCZYK (WARSZAWA)

THE PAPER presents a relatively wide class of functions determining the internal energy of an
isotropic elastic medium subject to one-dimensional large deformations. The functions make
it possible to construct a closed-form, general solution of the equations of one-dimensional
motion of a geometrically nonlinear isotropic elastic medium with constant entropy. By means
of a special change of independent variables, the problem is reduced to a linear partial second-
-order differential equation with variable coefficients. Superposition of certain limitations upon
the coefficients multiplying the first derivatives enables us to reduce the equation to the tele-
graph or Euler-Darboux equations. It is known [3 4] that these equations have closed-form
general solutions, The arbitrary functions appearing in the general solution are determined
by the boundary and initigl conditions of the problem considered.

Wyznaczono do§¢ obszerna klas¢ funkcji dla okreflenia energii wewnetrznej izotropowego
osrodka sprezystego bedacego w jednoosiowym stanie duzych odksztalced. Funkcje te pozwa-
laja skonstruowaé zamknigte, ogblne rozwigzanie réwnafi jednowymiarowego plaskiego ru-
chy, geometrycznie mehmowcgo izotropowego osrodka spreZystego ze staly entropig. Doko-
nujac specyficznej zmiany zmiennych niezaleinych, sprowadzono problem do liniowego réw-
nania czastkowego drugiego rzedu o zmiennych wspoiczynnikach. Przez natozenie odpowied-
nich ograniczei na wspolczynniki stojace przy pierwszych pochodnych, réwnanie to moina
sprowadzi¢ do réwnania telegrafistdw lub réwnania Eulera-Darboux. Jak wiadomo [3 i 4],
réwnania te maja zamkniete ogblne rozwigzania. Dowolne funkcje wystepujace w rozwigzaniu
ogbélnym determinowane sa przez warunki graniczne konkretnego problemu.

Haiigen pocraTtouno Iupokmi Kiacc Gymamait ana ompeneneHMs BHyTpeHHeH JHeprHM
H3OTPOIHOI YIPYTOl Cpefibl B COCTOAHHH OHOOCHBIX Gonmpumix Aedopmammit, i Qymramm
TO3BOJISIOT NMOCTPOHTE 3aMKHYTOE, oblllee pelleHHe YPABHCHMI OHOMEPHOTO IeOMETPHUECKHA
HEJTHHEAHOTO IUIOCKOr0 ABIYKEHUA NSOTPOHHONK CpeMibl ¢ nocTOAHHOHA sHTpommeit, ITyTem cieim-~
ANBHOH 3aMeHBI NMepeMeHHBIX 3afada CBOAMTCA K JMHEHHOMY YPABHEHHIO BTOPOIO HOpAOKa
B YACTHBIX NPOM3BOMHBIX C HepeMeHHBIME Koadduimenramu. Hanaraa coorsercyromiue
orpaHMYeHHA Ha K03t HIMEHTH! NPH NepBHIX MPOHSBOHBIX 3TO YPABHEHHE MOMKHO CBECTH
K ypaBHemmio TeserpaducToB muGo K ypoBHemmio Oiinepa-Iapby. Kak nasecrmo [3, 4]
9TH YPOBHEHMS OGJNANAIOT SAMKHYTHIMM OOmmMH pemlenmaMH. ITponsBosbHBIC
BBICTYNAIOUINE B OOILEM pPeICHMK ONPENE/IAIOTCA HYepe3 rPAHMYHBbIC YCIOBHA KOHKPETHOHN
3a/1auH.

1. Introduction

CERTAIN sets of quasi-linear differential hyperbolic equations may be reduced, by means
of suitable changes of variables, to the linear second-order equation with variable coeffi-
cients [1, 2). Such a change of variables proves to be particularly expedient in the case
when the corresponding linear equation possesses an accurate, general solution, like in
the cases of the telegraph or the Euler-Darboux equations [3, 4]. They have been util-



74 E. WLODARCZYK

ized by the author in constructing closed-form solutions of the problems of propagation
of one-dimensional stress waves in nonelastic media subject to small deformations [5-11].

In the present paper an analogous method will be used to construct the exact, general
solution of equations governing the one-dimensional motion of a geometrically nonlinear,
isotropic elastic medium with constant entropy. The corresponding class of functions
will be found to determine the internal energy of the isotropic elastic medium subject to
large one-dimensional strains. The functions make it possible to reduce the entire problem
to a linear partial differential equation of second order with variable coefficients, which
may be identified with the telegraph or Euler-Darboux equations possessing general
closed-form solutions. '

2. Equations of a one-dimensional plane isentropic motion of an isotropic elastic medium
with finite deformations

Plane one-dimensional isentropic motion of a compressible isotropic elastic medium
in the state of one-dimensional large deformations is governed by the equations [12, 13]

v, | 0m om v
@10 =M T
Here
du ou

T " e

u — displacement, v — velocity of motion, m — deformation of the medium; x and ¢

are Lagrange coordinates, and a(m) — velocity of propagation of the disturbances. The
latter magnitude may be expressed by the following formula:

1
|1 d? W(m) 2
22) a(m) = E_Emz_ ’

where W(m) is the internal energy of the dynamic deformation of the medium, and g,
denotes its initial density. In the case of an elastic isotropic medium subject to isentropic
deformations, W(m) is usually represented in the form of a power series [13],

(2.3) W(m) = %Eum‘-}- % E,m*+0(m*).

Here
Eo= A+2u, E;= 3(% +,u+y+6+v),

A and g are Lamé’s constants, and y, 4, v denote the third-order elasticity moduli.
The set of Eqgs. (2.1) may be replaced by an equivalent system of two ordinary equa-
tions

(2.49) dv = ta(m)dm
provided
(2.5) dx = ta(m)dt.
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It is seen that Egs. (2.4) may be integrated élong the characteristics (2.5). Then

(2.6) v—F(m) = const if dx = a(m)dt
and

2.7 v+F(m) = const if dx = —a(m)dt,
where

(2.8) F(m) = [ a(m,)dm,.

']

3. Reduction of Egs. (2.1) to the Euler-Darboux equation

Let us introduce new independent variables & and # in the following manner:
3.1 v—F(m) = 2£ = const,
(3.2) v+F(m) = 2n = const.
The Lagrange variables x, ¢ occurring in this relation WIH be treated as functions of
the characteristic variables &, %, that is
x = x(§,7),
t=1&,n).

Because along the first family of characteristics (2.5) the variable & = const (cf. Egs. (2.6)
and (3.1)), variables x and ¢ at these characteristics are functions of the only variable 7,

(3.3)

ox ot

3.4 = =—dn.

(34 dx o0 dn, dt 7 dn

Consequently, on the characteristics of the first family (positive), we have
ox at

3. i et

(3.5) oy =AM 5

An analogous expression is obtained on the characteristics of the second family
(negative),

(3.6) ox

d
o= —a(m)—a-;—.
Equations (3.1) and (3.2) yield
3.7 F(m) = n=&.

Moreover, from Egs. (2.2), (2.3) and (2.8) we obtain, by disregarding the terms 0(m*),
the formulae

3
E, P
F(m) = -2 [(1 +2-L ) - 1]ao,
(3.8) e ’f"

2
a(m)=(l+2£m) ag, Qap= Eo
E,

o
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On comparing Egs. (3.7) and (3.8) we obtain

1
(3.9 a(m) = [%; (n—E)H] o,

Finally, substitution of Eq. (3.9) into Egs. (3.5) and (3.6) yields the necessary system of
equations which is equivalent to the set (2.4),
1

Ox 3E 3 ot
TE—-= [ 1 (7}‘ E)‘i‘l] Ao — ae,

(3.10)

ox 3E, 3ot
—a'q— [a E, (1}' E)'f']] 605_1}.

It is the canonical system of equations of nonlinear elasticity for a one-dimensional plane
motion with constant entropy. It should be observed that, in contrast to the set of quasi-
linear equations (2.1) or (2.4), the system (3.10) derived here is linear and has variable
coefficients.

The system may be reduced to a single second order equation. To this end let us differ-
entiate the first equation of the set (3.10) with respect to %, and the second one — with
respect to & As a result we obtain

1

%
?x 3E, 3 3E, T3 ot
Eon [aozo ("""’)“] Yo%Fm " Eo [aoEo n E)J'l] %’
(3.11) 2

1
x 3E, 3 3E, ]" 3 ot
= [ - o+ e amge 5 [y 0-0+1]
Subtraction of both sides of Eqgs. (3.11) yields
E,

2%t ayE, a ot
(3.12) o = (Fs"'"‘")‘
i [33‘ E-n)- 1] “

Further simplifications are introduced by means of the following change of variables:
3E,
aoE,

3E,
ag Ec

é"' 1 ’
(3.13)

ﬁ_

Equation (3.12) expressed in terms of the variables (3.13) assumes (in passing from the
variables £ and 7 to a and 8, the form of the notation for 7 and x remains unchanged)

| 9% 1 (at ar)
20 - 6(a—p) \0a _ 9B

(3.14)
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It is the linear partial second-order differential equation of the Euler-Darboux type [4].
Its general solution may be written in the form [4]

2 1 gl _1
(15 1o, B) = B-a)’ [ Pla+@-w)rlr *(1-7) “dr
0

3 5

1
+ [ Pla+B-0)dr C(1-7) ®dr,
o

where @ and ¥ are arbitrary functions of one variable. Their form is determined by the
suitable boundary and initial conditions.

Once the function #(a, p) is determined, Eqs. (3.10) yield the function x(a, §) which
assumes the form

a (]
(3.16) x(a, B) = x(do, fo)+ [ P2y, Bdey + pf (0, B1)dB, -
Here
1 o
P(z, ) = ao(e—B) 7 -,
3.1
; a:
Q(x, f) = —ap(a— ﬁ)a
and
(3.18) oP(a, ﬁ) 6‘Q(a h)

FT] )

The general solution represented by Egs. (3.15)-(3.18) is constructed for the partic-
ular form of W(m) expressed by Egs. (2.3) in which the terms O(m*) have been disre-
garded. The question arises: what is the class of W(m) which enables the construction of
a closed-form solution of the equations of a one-dimensional plane motién of geometric-
ally nonlinear isotropic elastic media with constant entropy? The question will be and
swered in the following section.

4. Closed solutions for a definite class of functions W{(m)

From the expressions (2.2), (2.8), (3.5)-(3.7) it follows that

gx _l/ 1 W (m) jt
@.1) U i

R AR
and
(4.2) of ]/ % Wr(my) dmy = n—¢.
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Let us assume that

1

4.3) ]/—é: W'(m) = ¢(n-$§),

where @(n—¢£) is a positive definite differentiable function of the argument %—£. Then
ox ot

== 9’(7}—5)_’
(4.4) on on
dx ot
K3 = _9’(’?—5)-(?-
Differentiation of the first equation of the set (4.4) with respect to £, and the second —
with respect to , yields
2x 2%t ot
a8 = P=8) 35—z 91— >
oot = P ;
@.5) nz an 2 U
d%x 0*t ; . Ot
Eon _?(ﬂ*é)ﬁa—n —-@ (?1‘5)—5?-
By eliminating the derivative d2x/d£dn from Egs. (4.5) we obtain the final equation
of the problem under consideration

1 gn-9 (a: a:) _
@9 oo " 2 g=9 \ & 0] =
where
4.7 p(n—§) # 0.

Let the function »(n—§&) be such that the equation
0%t ot at
agan T4 (“EE B 6_7}) =0
has a closed-form 'solution. Then, denoting for the sake of simplicity
(4'8) 7?—5 =z,
we may easily determine the character of ¢(z) from the following equation:

1 ¢'(2) _
20 P
or
(49) 9(2) = C, ",
where C; is an arbitrary constant,
Introducing the notation (4.8) into the expressions (4.2) and (4.3), we obtain

(4.10) a( ]/ % W) dms =z,

@.11) ]/ L wrimy = o2),
o
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what leads to the following relation between m and z:

dz
dm = ——
™ o(z)
or i
dz
4.12 = | e #0s.
L m=) et

Here C, is an arbitrary constant.
The function z(m) and ¢[z(m)] are determined from Eq. (4.12). The function ¢[z(m)]
is then substituted into the formula (4.11) which, after double integration, yields

(4.13) é W(m) = f { f g;’[z(m)]dm+C3} dm+C,,

C,, C4 are constants of arbitrary value.

From the relations obtained it follows that once a definite function »(z) is selected,
the internal energy W(m) is determined by the functional equation (4.13) in which four
arbitrary constants appear: C,, C,, Cs, C4, apart from the constants which may be
contained in the function »(z).

Thus the question posed at the end of the preceding section has been answered, and
we may formulate the answer in the following way: there exists a relatively broad class
of functions W = W(m) allowing for a general closed-form solution of a certain nonlinear
one-dimensional motion of elastic bodies. '

5. Example

Assume the function »(z) to have the form
n
n-&
where n is a real number. Then, according to Eqgs. (4.9) and (4.13),

P(z) = Cyz*",

(5.1) ¥(z) =

‘n
..—--—z—-,

(5.2) e c,(ll—zn) 224 C,, %
whence
1

(5.3) z = [C(1-2n)(m—C;)] ">
and

i}g—
(54) plz(m)] = C,[C;(1=2m)(m—C)] "™ .
On substituting the expression (5.4) into the formula (4.13) we obtain, after integrations

4n 2 (1-2n)?

2
(5.5) -EI—W(m) = (1-2n)1-28 C, 1-2n (m—=Cy) -2 +Csm+C4].
0

20n+1)
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Hence, if the internal energy of the medium considered is expressed by the formula (5.5),
the plane motion of that medium subject to one-dimensional finite deformation is describ-
ed by the Euler-Darboux equation

&t n ( ot ot
9 oEen ~ E-m \0E o)
the general solution of which has the form

2n—-2 et
&) K1) = g | ],

0,

§-7
for positive integral n, the form
- wt1_ 0" [ PE)=¥(n)
(5'8) ‘(E! '1) - (E"ﬂ)z 4 asnaqu [ s_’?

for negative integers », and the form
1
69 M= -9 [ BE+(—-H T (1-)"dx
[1]

1
+ lf YE+(n=&)7v ' (1-) dv
0

for fractional n satisfying the conditions 0 < n < 1 and 21 # 1.
If 2n = 1, then

1
(510) 1€, n) = [ BlE+(—E)er"(1—7)~"dx
/]

1
+ [ PlE+ (=8 v"( - o~ Unfr(1 - 7)(n—H)ldz.
0

Here @ and ¥ are arbitrary functions of a single variable, Their form is determined by
the boundary and initial conditions of the particular problem considered.

To conclude, let us present the solution for the case n = 0. According to the derived
formulae

(5.11) t(&, ) = D) +¥(n),

while the function W(m) assumes the form

1 1
W(m) = 5 Qo Cim*+0,C}(C3—C;)m+0,C? (T C, +C4)

or
W(m) = ko+kym+k,m?,

Here kg, ky, k, are arbitrary constants.
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