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General closed-form solutions of the equations of one-dimensional 
nonstationary isentropic motions of . isotropic elastic media subject 
to finite · deformations 

E. WLODARCZVK (WARSZAWA) 

THE PAPER presents a relatively wide class of functions determining the internal energy of an 
isotropic elastic medium subject to ono-dimensional large deformations. The functions make 
it possible to construct a closed-form, general solution of the equations of one-dimensional 
motion of a geometrically nonlinear isotropic elastic medium with constant entropy. By means 
of a special change of independent variables, the problem is reduced to a linear partial second­
-order differential equation with variable coefficients. Superposition of certain limitations upon 
the coefficients multiplying the first derivatives enables us to reduce the equation to the tele­
graph or Euler-Darboux equations. It is known [3, 4] that these equations have closed-form 
general solutions. The arbitrary functions appearing in the general solution are determined 
by the boundary and initiCJI conditions of the problem considered. 

Wyznaczono do5C obszem~ kl~ funkcji dla okre8Ienia energii wewn-etrznej , izotropowego 
o8rodka sp~zystego ~cego w jednoosiowym stanie duzych odksztalcefl. Funkcje te pozwa­
Jaj~ skonstruowac .zamkni-ete, og61ne rozwill23Die r6wnafl jednowymiarowego plaskiego ru­
chu, geometrycznie nieliniowego, izotropowego o§rodka spri(Zystego ze stabl entropi~. Doko­
nuj~c specyficznej zmiany zmiennych niezalemych, sprowadzono problem do liniowego r6w­
nania c~stkowego drugiego I'ZI(du o zmiennych wsp61czynnikach. Przez naloi:enie odpowied­
nich ograniczefl na wsp61czynni.ki sto.itlce przy pierwszych pochodnych, r6wnanie to moma 
sprowadzic do r6wnania telegrafist6w lub r6wnania Eulera-Darboux. Jak wiadomo [3 i 4], 
r6wnania te maj~ zamkni~tte og6lne rozwi~ia. Dowolne funkcje wyst~tpuj~ce w rozwi~niu 
og61nym determinowane ~ przez warunki graniczne konkretnego problemu. 

Haii~eH ~OCT8TOliHO muporodt KJI8CC <I>~ wm onpe,tteJICHHJI BHYTPeHHeH :mepi'HI! 
H301'pOIIHOH ynpyroii cpe,Itbl B COCTOHHHH O~OOCHhiX OOJILIIIHX .z:teciK>pM;mWi. 3TH ~ym<I.tllll 
D03BOJVIIOT DOC1'p01ff& 33MKH}'TOC, oomee pemeHHe ypaBHemdi O~OMepHOro reOMeTpJAeCKH 
Hemmemroro IIJIOCI<Oro ~H>KeHHJI H301'pOHHOH cpe,Itbl C DOCTOHHHOH 3H1'pOIJHeH. IlyreM CDei.Ol­
aJII>HOH saMeHbi nepeMeHHbiX ~qa CBO,ItHTCH I< JIHHeHHOMY ypaBHeHHIO BTOporo DOpH,Itl<a 
B t~aCTHhiX npOH3BOAHbiX c nepeMeHHbiMH I<03~~HimeHT&MH. HanaraH cOOTBeTCBYJOilUle 
OrpaH~AeHHJI H8 1<03~~JmHeHTbi DpH DepB:biX DpOH3BO~ 3TO ypaBHeHHe MO>KHO CBecTil 
1< ypaBHemuo Tenerpa~HCTOB JIHOO 1< ypoBHemuo 3iinepa-.Ilap6y. KaJ< H3BectHO [3, 4) 
3Tll ypoBHeHHH o6n~aiOT 38.MJ<HYTI>IMH o6IIUtMH pemeHHJIMH. IlpoH3BOJILH:ble cPYHI<IUm 
B:&ICTYDaiOmHe B o6meM pemeBJUl onpe,ttemuoTCH t~epes rpa!Dl'UI:bie ycnoBM I<Om<peTHoA 
~aliH. 

1. Introduction 

CERTAIN ·sets of quasi-linear differential hyperbolic equations may be reduced, by means 
of suitable changes of variables, to the linear second-order equation with variable coeffi­
cients [1, 2]. Such a change of variables proves to be particularly expedient in the case 
when the corresponding linear equation possesses an accurate, general- solution, like in 
the cases of the telegraph or the Euler-Darboux equations [3, 4]. They have been util-
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74 E. Wr.oDARCZYK 

ized by the author in constructing closed-form solutions of the problems of propagation 
of one-dimensional stress waves in nonelastic media subject to small deformations [5-11]. 

In the present paper an analogous method will be used to construct the exact, general 
solution of equations governing the one-dimensional motion of a geometrically nonlinear, 
isotropic elastic medium with constant entropy. The corresponding class of functions 
will be found to determine the internal energy of the isotropic elastic medium subject to 
large one-dimensional strains. The functions make it possible to reduce the entire problem 
to a linear partial differential equation of second order with variable coefficients, which 
may be identified with the telegraph or Euler-Darboux equations possessing general 
closed-form solutions. ' 

2. Equations of a one-dimensional plane isentropic motion of an isotropic elastic medium 
with finite deformations 

Plane one-dimensional isentropic motion of a compressible isotropic elastic medium 
in the state of one-dimensional large deformations is governed by the equations [12, 13] 

ov - 2( ) om om - ov 
<2·1) Tt - a m ox ' at - ox · 
Here 

ou 
V=­

Ot ' 
ou 

m= Tx' 
u - displacement, fJ - velocity of motion, m - deformation of the medium; x and t 

are Lagrange coordinates, and a(m)- velocity of propagation of the disturbances. The 
latter magnitude may be expressed by the following formula: 

1 

(2.2) ( ) _ [-1 d2 W(m) ]2 
am- d 2 ' eo . m 

where W(m) is the. internal energy of the dynamic deformation of the medium, and eo 
denotes its initial density. In the case of an elastic isotropic medium subject to isentropic 
deformations, W(m) is usually represented in the form of a power series [13], 

(2.3) W(m) = ~ E0 m2 +-} E1 m3 +0{m4
). 

Here 

Eo= A+2p, E, = 3(; +.u+r+b+~). 
A and p, are Lame's constants, and"'· b,, denote the third-order elasticity moduli. 

The set of Eqs. (2.1) may be replaced by an equivalent system of two ordinary equa­
tions 

(2.4) 

provided 

(2.5) 

dv = ±a(m)dm 

dx = ±a(m)dt. 
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It is seen that Eqs. (2.4) may be integrated along the characteristics (2.5). Then 

(2.6) v-F(m) = const if dx = a(m)dt 

and 

(2.7) 

where 

(2.8) 

v+F(m) = const if dx = -a(m)dt, 

m 

F(m) = J a(m1)dm1 • 

0 

3. Reduction of Eqs. (2.1) to the Euler-Darboux equation 

Let us introduce new independent variables ~ and 'YJ in the following manner: 

(3.1) 

(3.2) 

v-F(m) = 2; = const, 

v+F(m) = 2'Y] = const. 

The Lagrange variables x, t occurring in this relation will be treated as functions of 
the characteristic variables ;, 'YJ, that is 

(3.3) 
x=x(;,'YJ), 

t=t(~,rJ). 

Because along the first family of characteristics (2.5) the variable e = const (cf. Eqs. (2.6) 
and (3.1)), variables x and t at ·these characteristics are functions of the only variable rJ, 

ox at 
(3.4) dx = arj d'Y], dt = arj d'Y]. 

Consequently, on the characteristics of the first family (positive), we have 

(3.5) 
ax at 
arj = a(m) arj' 

An analogous expression is obtained on the characteristics of the second family 
(negative), 

(3.6) 

Equations (3.1) and (3.2) yield 

(3.7) F(m) = rJ-e. 

Moreover, from Eqs. (2.2), (2.3) and (2.8) we obtain, by disregarding the terms O(m4), 

the formulae 
- 3 

(3.8) 
F(m) = 3~1 [(1+2 ;: m)' -+•• 
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On comparing Eqs. (3. 7) and (3.8) we obtain 

1 

(3.91 a(m) = [:.~. ('}-~)+1 ]'a0 • 

Finally, substitution of Eq. (3.9) into Eqs. (3.5) and (3.6) yields the necessary system of 
equations which is equivalent to the set (2.4), 

(3.10) 
I 

ax [ 3El ]3 at 
O'YJ = aoEo ('Y}-E)+ 1 aoa:q· 

It is the canonical system of equations of nonlinear elasticity for a one-dimensional plane 
motion with constant entropy. It should be observed that, in contrast to the set of quasi­
linear equations (2.1) or (2.4), the system (3.-10) derived here is linear and has variable 
coefficients. 

The system may be reduced to a single second order equation. To this end let us differ­
entiate the first equation· of the set (3.10) with respect to 'YJ, and the second one- with 
respect to ~. As a result we obtain 

(3.11) 
1 2 

o2x [ 3El ]3 o2t E1 [ 3El ]- 3 at 
O'YJOE = aoEo ('YJ-~)+ 1 00 O'YJO~ - E

0 
a

0
E

0 
('Y}-E)+ 1 ai/' 

Subtraction of' both sides of Eqs. (3.11) yields 

(3.12) 

Further simplifications are introduced by means of the following change of variables: 

(3.13) ' 

a= 3Et ~-1, 
- aoEo 

P= 3El 'YJ· 
aoEo 

Equation (3.12) expressed in terms of the variables (3.13) assumes (in passing from the 
variables E ~nd 'YJ to ex and p, the form of the notation for t and x remains unchanged) 

(3.14) -o2t 1 ( at o( ) 
aaap =:= 6(a-p) a;- ap . 
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It is the linear partial second-order differential equation of the Euler-Darboux type [4]. 
Its general solution may be written in the form [4] 

2 1 1 1 

(3.15) t(rJ.,{J)= {ft-«)f f <l>(rt+{ft-rt)T]T- 6 {l-T)- 6 dT 
0 

1 5 s 
+ f !fl(rt+{P-rt)T)T- 6 (1-T)- 6" dT, 

0 

where (/) and 'l' are arbitrary functions of one variable. Their form is determined by the 
suitable· boundary and initial conditions. 

Once the' function t(rx, P> is determined, Eqs. (3.10) yield the function x(rx. fJ) which 
assumes the form 

~ p 

(3.16) x(rx, {J) = x(«o, Po)+ J P(«t, {J)d«t + J Q(«o, Pt)dPt· 

Here 

(3.17) 

and 

(3.18) 

~o Po 

.!. at 
P(rx, P> = a0 (rx-{J) 3 "Ta:' 

.!. at 
Q(rx, P> = -ao(«-PP ap 

oP(rx, {J) oQ(rx, P> 
ap u arx . 

The general solution represented by Eqs. (3.15)-(3.18) is constructed for the partic­
ular form of W(m) expressed by Eqs. (2.3) in which the terms O(m4) have been disre­
garded. The question arises: what is the class of W(m) which enables the construction of 

1 

a closed-form solution of the equations· of a one-dimensional plane motiOn of geometric­
ally nonlinear isotropic elastic media with constant entropy? The .. question will be and 
swered in the following section. 

4. Qosed solutions for a definite class of functions W(m) 

From the expressions (2.2}, (2.8)," (3.5)-(3.7) it follows that 

(4.1) 

and 

(4.2) 

ox =, j_l_ W"(m)~, 
a~ 11 eo . a~ 

ox = _, j_l_W"( ) ~ 
oE 11 eo m o~ 
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Let us · assume that 

(4.3) .. /_I W"(m) = f!J(rJ-E), V (!o 

E. WWDAJlCZ'YJC 

where f{J(f}- E) is a positive definite differentiable function of the argument fJ- E. Then 

ax ot - = f!J(rJ-E)-, 
OfJ OfJ 

(4.4) 
ox ot 
'oE = -f{J(rJ-E)a{. 

Differentiation of the first equation of the set (4.4) with respect to E, and the second­
with respect to fJ, yields 

(4.5) 
o2x 02 t I . ot 

oEorJ = -f!J(rJ-E) oEorJ -f{J (rJ-E)a[. 

By eliminating the derivative (J2xjaEorJ from Eqs. (4.5) we obtain the final equation 
of the problem under consideration 

(4.6) 

where 

(4.7) 

Let the function v(f}- E) be such that the equation 

o
2
t ( ot ot) 

oEorJ +v(rJ-E) ~- Trj = o 

has a closed-form' solution. Then, denoting for the sake of simplicity 

(4.8) rJ-E = z, 

we,may easily determine the character of f{J(z} from the following equation: 

__!_ f!J'(z) = v(z) 
2· f{J(Z) 

or 

(4.9) ( ) C 2J r(z)dz f!JZ = 1 e , 

where C 1 is an arbitrary constant. 
Introducing the notation (4.8) into the expressions (4.2) and (4.3), we obtain 

(4.10) 

(4.11) 

m J -. /_I_ W"(m1) dm 1 = z, 
0 

V (!o 

-. /_l W"(m) = q:>(z), 
V eo 
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what leads to the following relation between m and z: 

dz 
dm=--

tp(z) 

or 

(4.12) 

Here C2 is an arbitrary · constant. 
The function z(m) and tp[z(m)] are determined from Eq. (4.12). The function qy[z(m)] 

is then substituted into the formula (4.11) which, after double integration, yields , 

(4.13) 

C3 , C4 are constants of arbitrary value. 
From the relations obtained it follows that once a definite function 11(z) is selected, 

the internal energy W(m) is determined by the functional equation (4.13) in which four 
arbitrary constants appear: cl, c2, c3, c4, apart from the constants which may be 
contained in the function 11(z). 

Thus the question posed at the end of the preceding section has been answered, and 
we may formulate the answer in the following way: there exists a relatively broad class 
of functions W = W(m) allowing for a general closed-form solution of a certain nonlinear 
one-dimensional motion of elastic bodies. 

5. Example 

Assume the function 11(z) to have the form 
I 

(5.1) 
n · n 

1'(z) = -- = -, '1}-e z 

where n is a real number. Then, according to Eqs. (4.9) and (4.13), 

(5.2) 

whence 

{5.3) 

and 

(5.4) 

tp(z) = cl z 2
", 

1 1-2rt c 
m= C

1
(1-2n) z + 2 ' 

1 
n =F2' 

1 

z = [C1(1-2n)(m-C2)] 1
-

2
" 

12n 

tp[z(m)] = C1 [C1(1-2n)(m-C2)]
1

-
2
". 

On substituting the expression (5.4) into the formula (4.13) we obtain, after integrations 

1 4n 2 [ ( 1 2n )2 2 ] {5.5) -W(m) = (1-2n)l-2n C1 1-2n - (m-C2)1-ln +C3 m+C4 • 
f!o 2(2n+ 1) 
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80 E. WLODAltCZU 

Hence, if the internal energy of the medium considered is expressed by the formula (5.5), 
the plane motion of that medium subject to one-dimensional finite deformation is describ­
ed by the Euler-Darboux equation 

o2t n ( ot ot) -- 0 
(5.6) oE 011 - E -11 af- a1j - ' 

the general solution of which has the form 

(5.7) 

for positi~e integral n, the form 

(5.8) t(E .,) = (E-.,)2•+1 o2" [tP<E).~lJ'(fJ)] 
' ., ., oE"o11" E -11 

for ~gative integers n, and the form 

1 

(5.9) t(E, 1J) = (1J-E}1- 2" f 4>[E+(1J-E}-r]-r-"(l--r)-•d-r 
0 

1 

+If Y"[E+(f}-E)-r]T'-1(1--r)ll-ld~ 
0 

for fractional n satisfying the conditions 0 < n < 1 and 2n :F 1. 
If 2n = I, then 

1 

(5.10) t(E,1J) = f 4>[E+(1J-E)-r]-r-•(l--r)"- 1d-r 
0 

1 

+ f 1JI[E+(1J-E)-r]-r-"(1--r)"-11nf-r(1--r)(1J-E}]d-r. 
0 

Here tP and 1JI are arbitrary functions of a single variable. Their form is determined by 
the boundary and initial conditions of the particular problem considered. 

To conclude, let us present the solution for the case n = 0. According to the derived 
formulae 

(5.11) t(E, 1J) = tP(~)+1JI(1J), 

while the function W(m) assumes the form 

W(m) = ~ eoCfm2+eoCf(C.-C2)m+eoCf ( ~ C2 +c.) 
or 

W(m) = k0 +k1 m+k2 m2
• 

Here ko, k1 , k2 are arbitrary constants. 
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