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Direct continuum model of an elastically-deformable polarizable and , 
magnetizable body 
I. Lagrangian function ( *) 

Z. BANACH (WARSZAWA) 

THE NONLOCAL theory of an elastically-deformable, polarizable and magnetizable body under 
electromagnetic fields is introduced. We adopt in our considerations Tiersten's model of a po­
larizable continuum and Zorski's method based on the interactions between particles. The 
macroscopic state of the body is described by using the concept of generalized two-point 
densities which obey deterministic divergence equations very 'similar to those used for one-point 
densities in classical continuum mechanics. 

Rozpatruje si~ nielokaln~ teori~ spr~zyScie deformowalnego, polaryzowalnego i magnetyzowal­
nego osrodka ci~glego znajduj~cego si~ pod wplywem pola elektromagnetycznego. Korzysta 
si~ z modelu Tierstena polaryzowalnego kontinuum oraz z metody Zorskiego opartej na od­
dzialywaniach mi~c~steczkowych. Makroskopowy stan ciala opisywany jest przy uzyciu 
koncepcji uog6lnionych dwupunktowych gC(sto5ci, kt6re spelniaj~ deterministyczne, dywer­
gencyjne r6wnania podobne do tych, kt6rych uzywa s~ w klasycznej teorii kontinuum dla 
jednopunktowych 8C(stosci. 

PaccMaTpHBaeTCJI HeJioi<am.HaJI reopWI ynpyro ~e<PopMHpyeMoH:, noJIJip~3yro~eH:cJI ~ Ha­
MarHWIHBaro~eH:cJI cnnoiiiHoH cpe.z:t~>I, Haxo~~eH:CJI no~ B~eM :mei<TpOMarmrrHoro 
noJIJI. HcnoJII>3yeTcJI MO~em. THpCTeHa noJIJip~3yeMoro I<OHTHH}'YMa ~ MeTO~ 3opCKoro, 
onHparouurlicJI Ha Me>KMoJieKYJIJIPHble B3~Mo~eH:CTB~JI. Ma~<poCKonHtteci<oe cocrorume 
TeJia on~ChiBaeTCJI np~ ~cnoJII>30B8lDI~ I<o~eiii.Uf~ o6o6~eHHbiX ~Byx-roqeqm,xx nnomo­
creH:, I<OTOpbie y~osnemopmoT ~erepMIUD{CTHttec~, ~epreHTHbiM ypasHeHHJIM, a.Hano­
r~IX TeM, I<OTOpbie ~CnOJI1>3yK>TCJI B KJiaCC~tteCI<OH Teop~ I<OHTHHYYMa ~ 0,!7;HOTO­
qe11HbiX nnomocreii. 

1. Introduction 

THE PROBLEMS concerning interactions of electromagnetic fields with elastically-deform­
able, polarizable, and magnetizable bodies, in which there appear couplings between 
the different material fields, have been extensively considered in recent years by many 
research workers, beginning with the works of TouPIN' [I] and ERIN'GEN' [2]. On the other 
hand, the ways of investigating these problems are very often similar in this sense that 
some global equations of motion .and fields are postulated [3]. The problem of the local 
statements of these equatiGns is still open at this moment, mainly in the nonlocal formula­
tion [4], but after that the special material is proposed by means of the constitutive prin­
ciples. There exist, of course, many different, sometimes very interesting methods (a va­
riational approach [5] and the so-called Principle of Virtual Power used by PEN'FIELD 
and HAus [6], MAUGIN' and COLLET [7, 8]) but these formulations seem to shift the pos­
tulates to another place of essentially equivalent theories and then, confirming the global 
approach cannot be paradoxically a serious verification of the latter. It is to be noticed 

(*)The second part of this paper will appear in Arch. Mech., 33, 2, 1981. 
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that the questions associated with a more direct and integral inclusion of different kinds 
of interactions to the theory appear very seldom or never in these studies. We believe 
that a simple, direct, particular, because of special kinds of interactions described in the 
notable books on the subject [9, 10], and reversible formulation will be necessary if it 
allows one to discuss the fundamental mechanical assumptions or results of the phenom­
enological theories. Of interest are then the studies: of the form of the antisymmetric 
portion of the mechanical stress tensor, the concept of the local magnetic field vector, 
the exchange forces permitted to be of the contact type, the idea of the higher order sur­
face couplings. We shall try to adopt in our considerations TIERSTEN'S model of a · po­
larizable continuum [11] and ZoRSKI's method [12, 13] based on the interactions between 
particles. For the sake of simplicity, we restrict our considerations to two point potentials 
and include the central two point interactions, the spatially nonlocal spin-spin interac­
tions, and the nonlocal interactions · between the spin continuum and the lattice conti­
nuum (the one-ionic anisotropy effect). The polarization follows from the existence of 
two strictly interpenetrating ionic continua which are needed to allow the body to respond 
to actions of external electromagnetic fields. We refer the reader to the paper of 'fmRSTEN' 

and TsAI [14], in particular to their model of a polarizable and magnetizable continuum 
and to ZoRSKI's papers [12, 13] for an explanation of the basic principles of construc­
tion of the direct and nonlocal model of a continuum. In accordance with these remarks, 
our model consists of two strictly interpenetrating ionic continua and in a certain sense 
it may be understood as a generalization of the theories mentioned above. The lllicro­
scopic particles, which build two continua, interact by means of two point potentials of 
different kinds. The transition from the microscopic level to the macroscopic level is 

· possible by using the concept of generalized two-point densities [15, 16, 17], which obey 
deterministic divergence ·equations very similar to those used for one-point densities in 
classical continuum mechanics. When this is done, the model becomes simultaneously 
nonlocal and purely phenomenological but with a new concept of generalized densities. We 
are now in a position to construct a variational principle in order to obtain the equations 
of motion and fields, equations of conservation of energy, momentum, and moment of 
momentum and also equations of conservation connected with the internal symmetry of 
the body. It must be possible, of course, to obtain the local version of the theory. The 
way of taking into account the interactions of a magnetizable and polarizable continuum 
with electromagnetic fields should become clear while reading this paper. The resulting 
description is not Lorentz invariant. No boundary conditions are considered due to the 
strictly nonlocal formulation -of the problem; the Lagrangian function does not depend 
on the material gradients of the material fields under considera~on. Moreover, we as­
sume that the body contains no surfaces of discontinuity. 

l. Generalized densities 

We assume that the body under consideration consists of two strictly -interpenetra­
ting !onic continua numbered a= a, b. Initially, both continua occupy the same region 
of space and, hence, have tlie same material coordinates X in a fixed Cartesian rectangu-
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Jar coordinate system which is used throughout the paper; we shall frequently write X 
rather than X if no confusion results. The microscopic characteristics in such a body are 
the molecular masses mtJ and mb of the a-component and the b-component, respectively, 
and their molecular charges qtJ and qb. The macroscopic state of both .continua at any 
given time (t) is described by the following set of generalized densities: 

ii«P(x(u y11 , t), 

£!t%/1(x(u y11 , t) ::: ma.mpiia.IJ(xa., Yp, t), 
(2.1) (a, p = a, b) • ( ) _ ( ) 

~t%/1 Xa., Yp, t = qa.qpna.IJ X11 , YtJ~ t , 

where the quantity iicxp(Xa., Yp, t) dxa.dYp expresses the probability of finding a molecule 
of the a-species in the volume element dxa., and a molecule of the p-species in the volume 
element dyp, at timet. As a rule we use either the usual tensor notations Xa., Ya., dxa., dya. 
(a = a, b) or the simplified notations Xa., Ya., dxa., dya. (a= a, b) if there is no ambi­
guity. In view of the physical interpretation of the generalized densities, we have 

(2.2) 

It is not difficult to obtain the following relations between the usual one-point densities 
of classical mechanics and the generalized two-point densities introduced above: 

na.Cxa., t) = f dypnt%jJ(xa,, Yp, t)/ f dyflnp(yp, t), 
<X> <X> 

ea.(Xcx, t) = mcxna,(Xcx, t), 

(a, P = a, b) <Ta(Xcx, t) = qcxiia.(Xcx, t), 
(2.3) 

where the quantity iicx(Xcx, t) dxa. expresses the probability that at timet the volume ele­
ment dxa. is occupied by a molecule of the a-species, and the quantities ea. and ~a. can be 
interpreted as a mass density and a charge density, respectively. The body contains no 
surfaces of discontinuity. The generalized two-point densities are continuous functions 
of their arguments. Moreover, we assume that the mass densitye(x, t) vanishes when xis 
large enough. First of all we are interested in processes occurring during the time interval 
which is much larger than the time interval of the establishment of the quasi-equilib­
rium distribution of magnetization in the whole body [1 0]. It is reasonable then to as­
sume that the generalized two-point densities describe the spatial distribution of parti­
cles under the strictly given distribution of the macroscopic magnetic moment per unit 
mass. To derive the equations governing the behaviour of iia.fJ observe that if we follow the 
trajectories of the particles, the probabilities do not change. Thus 

d dt [iicxp(Xa., Yth t)dxa.dYp] = 0, 

~t n) + · ~ 0 (iia.pV~(Xa., t))+-:--- (iiapvJ(ytJ, t)) = 0, 
u UXa.p uypp 

(2.4) (a,p =a, b) 

where the usual summation convention over repeated indices is applied. dfdt, a jat 
are the convective derivative with respect to time following Xa. and/or yiJ, and the partial 
derivative with respect to time, respectively. "Va.(Xa., t) = ix(xa., t) = dia,(Xa., t)/dt de-
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notes the macroscopic velocity of t~e ex-subcontinuum measured at the instant t at the 
point Xcx. The solutions of the above equations have the form 

(2.5) ii~(Xa., Yth t) = n~(X, Y)la.(Xa., t)Jp(y11t t), 

where J.(x., t) =I ::.1 {ot =a, b) is the Jacobian determinant of motion 

(2.6) X= Xa.(Xa., t). 

The quantities n211(X, Y) (ex, p = a, b) define the macroscopic state of the body at the 
initial instant t = 0. They can be determined theoretically or better by the experimental 
technique of X-ray scattering [15, 18, 19]. The continuity equations for the one-point 
densities result directly from Eqs. (2.3) and (2.4). To finish this point, we assume that at 
the initial instant t = 0 it is permitted to write 

(2.7) ~ a2(X) = 0, 
(a.) 

where we used the following abbreviations: 
b 

3. Polarization 

~=~, 
(a.) a.=a 

a~(X) = qa.n~(X) (ex, p =a, b), 

n~(X) = f dYn~11(X, Y)j f dYn~(Y). 
CO CO 

The motion of our complex system is described completely by two sets of equations: 

(3.1) 

(3.2) 

X a. = xa.C X, t) (ex = a , b), 

where it is supposed that Xa(X, t) and xb(X, t) possess unique inverses, X= Xa(Xa, t) 

and X= Xb(xb, t), at any given time t at all points of the a-subcontinuum and the b­
subcontinuum, respectively. In addition, we assume that Xa(X, t) and xb(X, t) are differ­
entiable as many times as required [20]. The quantity ILa.(X, t) = IJ.a.[Xa.(Xa., t), t] = 
= ILa.(Xa., t) denotes the magnetic moment per unit mass in the ex-subcontinuum. For the 
sake of simplicity, we used the same notation to express that the magnetic moment per 
unit mass depends on Xa. rather than X. At this point our attention will be directed at the 
transformation of the motions (3.1) into the motion of a point of the resultant continuum, 
which occurs at the center of mass of the ionic continua, and into the ionic polarization 
per unit volume or per unit mass, respectively. It should be noticed that the differences 
between the motions (3.1) in. the two continua are caused by the different microscopic 
characteristics of molecules of the first and the second species, and also by the macro­
scopic states of the two continua described by means of the generalized densities. The 
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macroscopic states of the two continua appear to differ in many respects at the initial 
instant t = 0. Thus, even if the reversible processes are under consideration, the exter­
nal agencies (electromagnetic fields) and the internal agencies (the internal volume for­
ces) influence the behaviour of the a-subcontinuum and the b-subcontinuum in a differ­
ent way. The motion of the center of mass of the ionic continua is given by the equation 

(3.3) 

at all points of the body, where 

(3.4) 

For the sake of simplicity, we confine ourselves to a homogeneous body at the initial 
instant t = 0; this means that the quantities A a and A6- are constant coefficients. At the 
same time the case of sufficiently short range forces, which is supported by the experi­
mental investigations [21], allows one to assume that the influence of the boundary on 
the behaviour of the complex continuum can be neglected at all points of the body where 
the homogeneity assumption is accepted. 

Generally, the mapping (3.3) is not one-to-one. The condition 

(3.5) 1\ {(X#: Y)=> ((xak-Yak)(xt-y:) ~ 0)} 
t 

assures the existence, but in the algebraic sense only, of the unique inverse X= X(x, t) 
of the mapping (3.3) at all points of the body. It will be convenient to introduce the fol­
lowing set of quantities: 

Zab = X;,-Xa, ia = lx!, Kl, ib = lxt, Kl, 

iab = lz!b, Kl, j = lxk, Kl, 
(3.6) 

where the commas denote partial differentiation with respect to X or x (here with res­
pect to X), ja. is the strictly positive Jacobian determinant of the cx-subcontinuum for 
all t, and j is the Jacobian determinant, of the resultant continuum. After a simple calcula­
tion, we obtain 

oirx ) 
ox~,K . 

The usual properties of the motion of the center of mass will be satisfied if we write 

(3.8) j>O 

at all points of the body. · 
The conditions (3.5) and (3.8) will be guaranteed if we assume that the displacements 

of the a-subcontinuum and the b-subcontinuum with respect to the resultant continuum 
associated with the center of mass of the ionic continua are small enough. We are now 
in a position to write 
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(3.9) 
Xcx(X, t) = Xcx(X(x, t), t) = Xcx(X~ t), 

Wcx(X, t) = Xcx(x, t)-x ((X= a, b). 

Foil owing Tiers ten, we assume 

(3.10) w!,k = 0 ((X = a, b) 

Z.BANACH 

in order to assure that elements of the different continua .with the same material Coordi­
nates have equal volumes at all times. Using Eq. (3.10) we obtain directly 

(3.11) nap(x,y, t)dxdy:: nap[Xcx(X, t),yp(y, t), t]dxdy 

= ncxp(Xcx, Yp, t)dxa.dYp (a, p = a, b). 

It results easily from Eqs. (2.4) and (3.11) that 

d dt [nap(x, y, t)dxdy] = 0 (a, p =_a, b), 
(3.12) 

a a a 
~nap+ -~-(napv'(x, t))+ -~- (napv'(y, t)) = 0, 
ut ux11 . uy, 

where d/dt denotes the material time derivative following x and/or y and v(x, t) is the mac­
roscopic velocity of the resultant continuum measured at the instant t at the point x. The 
classical velocity ficz_ld is giyen by the equation 

(3.13) v(x, t) = i(x, t) = dx~, t) -=· ~ x+v1 -:- x, 
t ut uXt 

where we adopted both dyadic and Cartesian tensor notations . . The solutions of Eqs. 
(3.12) have the form 

(3.14) nap(x,y, t):;:; n~p(X, Y)J(x, t)J(y, t), 

where J(x, t) = I ~~ I is the Jacobian determinant of the unique inverse of the mapping 

(3.3). The quantity J(x, t) is strictly positive for all x and t, in accordance with the inequality 
(3.8). We shall introduce the following set of generalized densities, which is more con­
venient to describe the behaviour of the body in terms of the motion of the center of mass: 

(3.15) 

nap(X, y, t) :: nap(Xa.(X, t),yp(y, t), t), 

ea';(x, y, t):: mcxmpnap(X, y, t), 

CTap(x, y, t) = qa.qpnap(x, y, t), 

CT_2 (x, y, t) :: 2 CTap(X, y, t), 
(ex, {J) 

na.(x, t) = J dyncxp(x, y, t)/ J dynp(y. t), 
00 00 

l?a(X, t) :: mcxncx(X, t), 

CTa.(x, t) = qa.na.(x, t), 
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(3.15) 
(cont.] 

e(x, t) = 2 ecx(x,t), 
(ex) 

a(x, t) = ,l, O'cx(X, t), 
(ex) 

where we used the useful abbreviation 
b b 

(3.16) 2=22. 
(ot, P> cx=a P=a 

. It is very easy to see that the following equation is satisfied: 

( 3 .17) a( x, t) = 0 

as a result of the assumption (2.7), the assumption (3.10), the deterministic divergence 
equation for one-point densities, and also 3$ a result of Eqs. (3.15). 

When the two volume elements are sufficiently far apart to make it impossible for con­
ditions in the neighbourhood of one of them to influence the region in which the other is 
situated, the occupational probabilities will satisfy the condition of independence, and 

. na.fJ will reduce to the product ncx np. In this case the following equation is also satisfied 

(3.18) a2(x,y, t) = 0. 
\ 

We are now in a position to introduce the concept of polarization. Following TIER-
STEN [11] and TIERSTEN and TsAI [14], we propose the following definition: 

(3.19) e(x, t)fi(x, t) = P(x, t) = 2 a;(x, t)w;(x, t), 
(ex) 

where nand Pare the ionic polarizations per unit mass and per unit volume, respectively. 
We can write 

(3.20) Wcx(X, t) = Xct(X, t)-X = X1x(X, t)-X = W1x(X, t) (IX= a, b) 

consistently with our simplifying convention. 
It follows directly from Eq. (3.19) that the ionic polarization is a consequence of 

displacements of the two continua with respect to each other. There exists a relation 
between the ionic polarization per unit mass or per unit volume on one hand, and infin­
itesimal displacements Wa and wb of the a-subcontinuum and the b-subcontinuum with 
respect to the resultant continuum associated with the center of mass on the other hand. 
Tiersten's formulae have the form 

(3.21) 1 
wcx(x, t) = [1 C ( ) P(x, t) (IX= a, b), + (cx~ 8)] O'ot X, t 

where 

C - ecx(X, t) = (!~ = const (IX ..J.. e). 
(l#e) - e,(x, t) e~ r 

We refer the reader to TIERSTEN's paper [11] and to that of TIERSTEN and TsAI [14] for 
more details on the subject. 
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4. Interactions 

For two infinitesimal volumes dxa. and dyp, we take the potential energies to be 

(4.1) iia.p(Xa,Yp, t)<1>Vap(lxa.-Ypl)dxa.dYp = n2p(X, Y)<1>Vap(lxa.(X, t)-yp(Y, t)l)dXdY, 

pq 

(4.3) Wa.p(Xa.,Yp, t)<1>Ca.p(Xa.-Yp)P,ap{Xa, t)P,a.q(Xa., t) 
pq 

+epa(Yp, Xa., t)<1>Cpa(Yp-Xa)P,p11(Yp, t)p,pq{yp, t)]dxadYp 
pq 

= [e2p(X, Y)(1>Cap(xa.(X, t)-yp(Y, t))f-lap(X, t)p,aq{X, t) 
pq 

+e3a.(Y,X)<1)Cpa(y11(Y, t)-xa.(X, t))p,p,(Y, t)p,pq(Y, t)]dXdY, 

where the potential functions (1>Vap representing the mutual potential interactions of two 
molecules depend only on the distance between the particle of the a-species and the par­
ticle of the p-species. This is connected with the requirement that the potential energies 
( 4.1) do not change after the rigid spatial translation and rotation of the particle systems 

pq 

under consideration. At the same time, the functions Ja.p describing the so-called isotro-
pic exchange and superexchange integrals for interactions within the same subcontinuum 
and the cross-interactions between the different species and the one-ionic anisotropy func-

pq 

tions U>Cap [22-24] including the anisotropic interactions between the magnetic particle 
of the a-species and the ionic particle of the p-species depend only on the difference be­
tween the two position vectors Xa. and Yp on account of the homogeneity of space. In addi­
tion, we must write 

(4.4) 

(a,P=a,b) 

sq 

{ 
<1> kr ~ <1> rk a(l>Cap(z) 1-

Ctzk ~sl~qr Ca.p(~)+~sr~ql Cap(z)+z, ozk - 0, (4.5) 

where eiik denotes the permutation· symbol and ~ii is the Kronecker symbol. The con­
ditions (4.4) and (4.5) are sufficient to ensure the independence of the potential energies 
(4.2) and (4.3) on the rigid spatial rotation of the particle system. If we assume that the 
potential energies (4.2) and (4.3) are symmetric with respect to the transposition of the. 
magnetic moments per unit mass, the solutions of Eqs. (4.4) and (4.5) will have the form 

(4.6) 

(4.7) 
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where 

(4.8) Jcxp(lzl) = Jpa{!zl), Jcxp(lzl) = Jpcx(lzl) (a, {3 =a, b), 

(4.9) z = x-y, 

but generally 

(4.10) Ccxp(lzl) i= Cpcx(lzl), Cap(lzl) i= Cpa(lzl) · (a, {3 = a, b). 

The so-called anisotropic integrals frxp and Crxp arise from the anisotropic exchange and 
superexchange interactions, and from the one-ionic anisotropic interactions, respectively. 
The nonlocal character of the anisotropic exchange and superexchange interactions as­
sociated with the spatial nonhomogeneity of magnetization has no importance in the 
purely phenomenological approaches. The form of the energy (4.3), although similar, 
differs in many respects from that of NEEL [25]. In contrast to the previous approaches, 
we introduce no deformation measure in order to localize our theory. Since Wa and wb 

are all infinitesimal displacement fields, we expand <0 Vcxp(lxa- y13 1) in a Taylor series 
about x-y and retain the first and the second terms only. Substituting Eq. (3.21) into 
these transformed expressions, we obtain directly 

(4.11) ncxp(Xa, Yp, t)<1>Vap(lxcx-Ypl)dxadYp 
p 

= ncxp(X, y, t)< 1>V cxp(lx-yl)dxdy+ (Qap(X, y, t)<1>Rap(x-y)Ilp(X, t) 
p 

+epa(y, x, t)<1>Rpcx(y-x)Ilp(y, t)]dxdy 
pq 

+eap(x, y, t)Iap(x-y)llp(x, t)Ilq(y, t)dxdy 

pq 

+epa(Y, x, t)<1>Rpcx(y-x)Iliy, t)Ilq(y, t)]dxdy (a.,)J =a, b), 

where we introduced the notations 

(4.12) o2<t> ~p(lx- yl) 
OXpOXq 

o2<1>Vap(lx- yl) 
OXpOXq . . 

It must be remarked that the second-order terms with respect to the ionic polarization 
field in the expression (4.11) have the same form as the magnetic terms in Eqs. (4.2) and 
(4.3). These similarities become less surprising if we take into account simple symmetry 
considerations. There is no doubt that the analogous procedure may be adopted in the 

H M . 
functions Ja.p and <1>Ca.p in order to obtain the couplings between the different matenal 
fields. On the other hand, the goal of this paper is to establish the general idea only and 
couplings between the magnetization and polarization fields will not be introduced here. 
From the mathematical point of view, we confine ourselves to terms of the first and the 
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second order _with respect to the ionic polarization field and the magnetic moment field 
respectively, and neglect all terms of higher than the sec·ond degree in the n and fL· In 
addition, the effect of time reversal [26] allows one to exclude from our study terms which 
are proportional to fL and llfL. The question regarding types of interactions which should 
be described by the functions <l>V cxp, la.tJt <neap is very difficult to be answered. Our sug­
gestion is that, even if the arbitrary electromagnetic fields are under consideration, we 
have to add to Eq. (4.11) in the way described below the interactions of Coulomb's type, 
too. Indeed, in the usual macroscopic electrodynamics the concept of correlation between 
two particles is unknown [27]; it means that the following condition of independence 
is desired in order to obtain the classical electrodyaamics 

(4.13) na.p(x, y, t) = na.(x, t)np(y, t) {IX, fJ = a, b). 

If the quasi-static electric approximation is sufficient, we are in a position to write the elec­
tric part of interactions in the following form [28]: 

(4.14) -}; J J "iicxp(Xrr., Yp, t) lx ~ I dxrr.dYp 
(«,P> oo rr. Yp 

where 

=_I_ f <w>E2 (x, t)dx 
8n 

00 

The term 1/Sn J <w>E2 (x, t) dx is very general and exists in the case of arbitrary electro-
oo 

magnetic fields, too. The second term in the expression ( 4.14) will be adequate if we as-
sume that th~ radius of correlation between two particles is small enough. It is evident that 
if this assumption is accepted, the effect of time retardation has no importance. In order 
to accomplish a transition from th~ concept of motions of two continua to the concepts 
of motion of the center of mass of the ionic continua and the ionic polarization field, 
respectively, we expand the functions 1/lxrr.-Ypl; (IX, {J = a, b) in a Taylor series about 
x-J and retain the first terms only. Using Eq. (3.21), we find 

(4.15) 2 J f [<icxp(Xa, Yp, t)-"iirr.(Xcx, t)"iip(yp, t)] lx ~ I dxcxdYp 
(a.,P> oo . - a Yp 
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(4.15) 
(cont.] 

=I I u,(x, y, t) lx~yl dxdy +I I {[.,Z u.(y, t)P.(y,x, t) 
(X) (X) (Cl) 

+ 2 J J [e~ZP(x, y, t)< 2>.l,(x-y)JI,(x, t)+ 
(Cl,,) (X) 

, 
e{kl.(y' X. t)<l> R,cz(y- x)JIJ)(y. t)]dxdy. 

where 

<l>v ~XP(Ix-yl) = qczqfJ lx~yl , _ 

(2>-l,(x- y) = f/ 0 o<l>v IIP(Ix-yl) 
[1 + C(qc~a)lmczmfJ l1cz oxll 

(4.16) 

Pcz(Y, x, t) denotes the ionic polarization per unit volume measured at the point x at the 
instant t when it is known that a molecule of the a-species is situated at the same instant t 
at the point y. Of course, if the condition of independence is taken into account, the cor­
relation energy (4.15) vanishes. Our hypothesis is that the term 

(4.17) 

must be included in the mechanical part of interactions. 

5. Lagrangian function 

This section is devoted to the discussion of the structure of the Lagrangian function 
describing the two dynamical systems, the body and the electromagnetic field, respective­
ly. It is very well known that if two arbitrary systems are isolated, the resultant action 
functional is the sum of the action functionals corresponding to each system. In order to 
describe the interactions between two systems, it is necessary to introduce some addition­
al terms in the action functional, each of the terms containing dynamical variables cor­
responding to both systems [29]. In our special case the ionic polarization per unit mass 
or per unit volume and the magnetic moment per unit mass or per unit volume allow the 
body to respond to actions of electromagnetic fields. From the theoretical point of view 
the coupling between the body and the electromagnetic field as well as the principles gov­
erning the behaviour of the· electromagnetic field can be treated nonlocally. In our ap-

- -
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proach, however, such a general case is not introduced; it means that the usual laws for 
the electromagnetic field are obeyed. 

Let us assume that our complex system (the body+the electromagnetic field) is de­
scribed by the following nonlocal actipn functional: 

(5.1) 

where (t1, t2 ) denotes the arbitrary time interval, !J is the arbitrary spatial region in which 
the homogeneity assumption with respect to the gene~alized densities at the initial instant 
t = 0 is accepted, and L is the nonlocal Lagrangian function described below, 

L(x, t) = e(x, t)!l'8 (x, t)+LEM(x, t), 

!l'8 (x, t) = !e<1>8(x, t)+ J dye(y, t)fe<2>8 (x, y, t), 
00 

ro(:Z)B = ~ ro(:Z)B 
.z, - .L.J .z, a.{J ' 

a.,{J) 

fe<l>B(v, n, n, fLcu fLb, cp,," A, A,t) 
1 

= -v:z+ 
2 

!e~>8(X, Y, x(X, t),y(Y, t), U(X, t), U(Y, t), fLa.(X, t), fLp(Y, t)) 

'I P = - 2eo(~)eo(Y) {n2p(X, Y)Va.p(lx-yl)+ [e2p(X, Y)< 3>Rap(x-y)l1,(X, t) 

(5.2) 

H · H 
+[e2p(X, Y)< 1>Rap(x-y)l1,(X, t)llq(X, t)+e~a.(Y,X)<1>Rpa.(y-x)l1,(Y, t)114(Y, t)] 

pq 

+e2p(X, Y)Ja.p(x-y)P,a.p(X, t)p,pq(Y, t) 

pq 

+e3a.(Y,X)<l)cpa.(y-x)p,p,(Y, t)p,11q(Y, t)l}, 

LBM ._ S~ {(9'.t+ + O,A•)(9'.t+ + O,A.)}, 
where a superimposed dot indicates the usual material time derivative, a, denotes the par-' 
tial time derivative, c is the velocity of light in vacuum, (cp, A) are the so-called electro­
magnetic potentials. In accordance with our previous remarks, we introduced the new 

p 

potential functions V~ and <3> Ra,11 given by the following formulae: 

v a.p = <l>v a.JJ +< 2>v a.p, 
(5.3) p p p 

<l>Ra.p = <l>Ra.p+'-2>Ra.p· 
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The first thing we do is to state the principle of construction of the local Lagrangian func­
tion !£<1>8 connected with the interactions between two systems. The local Lagrangian 
function L~1 >8 for the cx-subcontinuum has the following generally accepted form: 

(5.4) L~1 >8(Xa, t) = ~ eixa, t)[va(Xa, t)]2 -<Ya(Xa, t)p(xa, t) + +j:(xa, t)At(Xa" t), 

where 
ia(Xa, t) = <Ya(Xa, t)va(Xcz, t)+cVx{ecx(Xa, t)fLa(Xa, t)). 

icx denotes the total volume current density of the cx-subcontinuum consisting of either the 
volume current density connected with charges belonging to the cx-subcontinuum or the 
volume current density associated with the magnetic moment per unit volume in the a­
subcontinuum. Following the same line of arguments as given in the paper of TIERSTEN 

and TSAI [14] and also in GROT's lecture [3], we add L~1 >8(x11 , t) and L~1 >8(x6, t), ex­
pand the electromagnetic potentials p and A in a Taylor series about x and neglect the 
higher order products of the magnitudes of the infinitesimal diplacement fields W11 and wb 
with the magnitudes of the gradients of the electromagnetic potentials p and A; it means 
that we confine ourselves to the case of sufficiently smooth electromagnetic potentials 
pandA. 

We obtain directly 

(5.5) L~1 >8 (Xa, t)+L~l)B(xb, t) ~ e(x, t)!l'(l>B(x, t). 

We shall compute now, in accordance with the important work of RoouLA [30], the va­
n 

riation of the action functional W resulting from virtual variations of the time, the 
(lto12) 

coordinates, the material fields and the electromagnetic fields, respectively 

t* = t+ eSt, X* =X+ cSX, x*(X*, t*) = x(X, t)+ bx, 

(5:6) D*(X*, t*) = fi(X, t)+ cSD, ~J.!(X*, t*) = ILa(X, t)+ cSfLa; (ex= a, b), 

p*(x*, t*) = p(x, t)+ bp, A*(x*, t*) = A(x, t)+ cSA. 

The above variations of fields should be understood as arbitrary functions of the unde­
formed coordinates X and/ or the deformed coordinates x. It is possible to change the 
independent variables of variations from the X to the x and inversely. The total variations 
(5.6) consist of course of the infinitesimal changes in the functional form pfthe fields under 
consideration and of the infinitesimal transformations generated by the change in inde­
pendent variables of variations. On the basis of these remarks, it is convenient to introduce 
the following variations:-

(5.7) c50 q = q*(X, t)-q(X, t), c51 q = q*(x, t)-q(x, t), 

where q is an arbitrary function of their arguments. After very long and laborious calcu­
lations we obtain 

D D D 

(5.8) cS W = do W + d1 W , 
(l~o 12) (t~o t2) (ts, l2) 

where 

(5.9) 
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(5.9) 
(cont.) 

a~· a: d a~· 1 ( av., 
+ oA" A,,,-Tt---;}f)- e(x t) 2 fdy nr4(x,y,t)-o-

·' 1 ' (cs,fJ) oo x, 
P IHI 

oRap oir4 
+{er4ll,)_.(x, y, t)-~- +(er4ll,I11)(x, y, t)-~-

ux, ux, 

H H · 

+(er4I1,11Js(x,y, t) 
0~ +(ecsP/Ja.p/lpt)(x,y, t) a;r4 
ux, ux, 

pf 

+ (e.,p.,p...)s(x, y, t) iJ~~ )] ( ~0 x1)(x, t) 

[ 
lJfl'Cl)B d lJ!£Cl)B 1 ~ f ( 1 I 

+e(x, t) ell, - dt ob, · - e(x, t) L.J dy 2 f!~SP(x, y, t)R~(x-y) 
(«,/J) 00 

- e(;, t) 2 J dy(e.,(x,y, t)1.,(x-y)p,,(y, t) 
({J)oo 

+e.,(x, y : t)~.p(x-y)p.,(x, t)) ]<"0 p..1)(x, t) 

[ 
oL a oL a oL ] 

+ ocp - ot o(otcp) - ox" ocp," (dl cp}(x, t) 

[ 
oL a ._ oL a oL ] } 

+ oA, - at o(otA,) - ox" oA~" (d1 A,){x, t) ; 

(5.10) 

p . 1 

+ ~ 2 J dzz' ~: J dE(ecspllp)_.(x+Ez, x+Ez-z, t)_(<50 x1)(x+Ez, t) 
(a.,/1) 00 0 

pq 1 

+ ~ 2 J dzz' ~;P J dE(ecsP!fPIIfl)(x+Ez, x+Ez-z, t)(~0x1)(x+Ez, t) 
(a., fJ) 00 " 0 
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pq 1 

(5.10) 
(cont.) 

+ ~ 2 f dzz' 
0~:11 f dE(erz8ll11llJs(x+Ez, x+Ez-z, t)(d0 x1)(x+Ez, t) 

(11, {J) CO 0 

1 

+ ! 2 J dzz'R«11(z) J dEerJP(x+Ez, x+ Ez-z, t)(~0111)(x+Ez, t) 
~~CO 0 ' 

1 . 

+ ~ 2 J dzz'j~(z) J dEe«P(x+Ez, x+Ez-z, t)llix+Ez-z, t)(~o~~;)(x+Ez, t) 
(«,fJ) CO 0 

1 

+ ~ 2 J dzz't(z) J dEe«11(x+Ez, x+Ez-z, t)ll,(x+ Ez, t)(~0ll~;)(x+Ez, t) 
(«,/1) 00 0 

1 

+ ~ 2 J dzz'f«P(z) J dEee~11(x+Ez, x+Ez-z, t)p11,(x+Ez-z, t)(~ol'«t)(x+Ez, t) 
(Cl, fl) 00 0 -

1 

+ ~ 2 J dzz'C«P(z) J dEe«P(x+Ez, x+Ez 
(Cl, /1) 00 0 

- z, l)fJ,q,(X + Ez, t)( .50 1'o.t)(x+ Ez, I)) 
EM jl oL_ jl oL ~ A"]} +L ux,+ -a- UtfJ?+ oA" 1 • 

9',r ,r 

We introduced the following useful notations and abbreviations: 

(5.11) 

p p pq pq 

~(x-y) = 2<3>Rcz11(x-y), Rczp(x-y) = 2<1>R«P(x-y), 

pq pq dV. I 
Ce~p(x-y) = 2<1>C«11(x-y), V~(lx-yl) = dl «lP ' 

Z lzl = lx-11 

1 
(e«Pll,)_.(x, y, t) = 2 [e«P(x, y, t)II,(x ; t)-e«P(y, x, t)ll11(y, t)], 

(e«11flpllq}(x, y, t) = I!CI{J(x, y, t)II,(x, t)llq(y,J), 

(I!«PI-'«PI-'Pfl)(x, y, t) = l!rJP(x, y, t)p«,(x, t)p111(y, t), 
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(5.11) 
(cont.] 

1 
(ea.pll;Ilq)s(x, y, t) = T [f!cxp(x, y, t)Il,(x, t)Ilq{x, t)+f!cxp(y, x, t)Il,(y, t)Ilq(y, t)], 

1 
(f!cxpftcxpftcxq)s(X,y, t) = T [f!ccp(x,y, t)p,cxp{X, t)p,cxq{X, t)+f!cxp(y, X, t)P,cx,(Y, t)P,cxq{y, t)). 

pq pq 

It must be remarked that the structure of the potential functions Rcxfl and Ia.n is the same 
pq pq 

as the potential functions Ccxp and lcxp· Indeed, it follows directly from Eq. (4.12) that 

(5.12) 

where we do not give the expressions for Rap, Rap, lath l;p, respectively. The decomposition 
D 

of the total variation of the action functional W into two structurally different parts 
(tit t2) 

is due entirely to the requirement that only the integrals including the variations <5 0 x,<50 D, 
<5ofLa., <51(/J, <5 1 A measured at x (see Eq. (5.9)) and not their spatial distributions around x 
(see Eq. (5.10)) allow one to find the equations of motion and fields by equating to zero all 
coefficients of the above variations. The integrals with the parameter~ in Eq. (5.10) must 
be explained. Let us assume that h(x, y) is the continuous antisymmetric function with 
respect to the transposition of the coordinates x and y. We obtain directly 

(5.13) Jayh(x,y)=- ~ Jay[h(y,x)-h(x,y)]=- ~ Jaz[h(x+z,x)-h(x,x-z)] 
00 00 00 

I I 

= - ~ fa: f ae :e [h(x+;z, x+ez-z)] = - ~ a~, {f dzz' f aeh(x 
00 0 00 0 

+ez, x+ez-z)}. 

For the first tiMe the integrals of this type were intr()(i~d to continuum mechanics by 
ZoRSKI . [12-13]. On the other hand, the suspicion that such expressions are important 
has already been noted in the literature on statistical mechanics [31]. It is worth noting 
that 

I 

(5.14) J dzz' J dEh(x+Ez, x+ez-z) = J dzz'h(x, x-z) 
00 0 00 

+ __!__ ~ Jdzz'zsh(x, x-z)+ ... +. 
2 axs 

oo . 

It will be possible to . obtain the higher order surface couplings if we consider the terms of 
higher than the first degree in the z. 
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