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On the behaviour of elastic materials with scattered extending cracks 

CZ. EIMER (WARSZAWA) 

BuLK. constitutive relations (in local approximation) are derived for an elastic material with 
numerous random cracks which may extend at stress increase. Scattered non-interacting cracks 
are assumed and a simplified crack extension criterion restricted to forces normal to plane 
cracks is applied. To stationary cracks which may open or clOse depending on the sense of 
internal forces there corresponds a pseudo-linear elastic domain and the constitutive relations 
given in [1] and [2]. The shape of this domain and of the bounding surface depending on the 
stress path is analysed and its representations in the 3-dimensional space and in the stress space 
are given. The damage function is defined, yielding the crack intensity distribution after spatial 
orientation. Incremental stress/strain relations are derived in the interior and at the border 
of the elastic domain, that is for stationary and for extending cracks. 

Wyprowadza si~ makroskopowe zwi~ki konstytutywne w przyblii:eniu lokalnym dla ma­
terialu sp~iystego z licznymi losowymi rysami, kt6re mogll narastac przy w1..ro8cie napr~­
ien. Zaklada si~ rysy rozproszone bez interakcji oraz uproszczone kryterium propagacji rys 
ograniczone do sil normalnych do rysy plaskiej. Rysom stacjonamym mo~cym si~ otwierac 
lub zamykac w zaleino8ci od wzrostu sil wewn~trznych odpowiada obszar sp~iysto5ci pseudo­
liniowej w przestrzeni nap~ien i zwi~i konstytutywne podane w [1 i 2]. Analizuje si~ postac 
tego obszaru i powierzchni ograniczajilcej w zaleinosci od drogi (historii) napr~i:enia i podaje 
si~ sposoby jego przedstawienia w przestrzeni tr6jwymiarowej i w przestrzeni napr~ien. Defi­
niuje si~ funkcj~ uszkodzenia podajiltil rozklad zag~zczenia rys wedlug orientacji przestrzennej. 
Wyprowadza si~ zwi~zki przyrostowe napr~ien i odksztalcen wewn~trz i na granicy obszaru 
spr~iystego, tj. d~a rys stacjonarnych i rys propaguj~cych si~. 

BbiBoMTCH Mai<pocKOnHl.lecKHe onpe.o;eJIHIOI.J.Uie coomoweHHH, B JIOK&.1IbHOM npH6JIH»<eHHH, 
··AJIH ynpyroro MaTepHaJia C MHOI'HMH CJIY1.18iblbiMH Tpe~HHBMH, KOTOpbie MOryT H3p8CT8Th llpH 
poCTe H&npiDKemW. IlpeAUOJIBraiOTCH pacceHHHbie Tpei.UHHbl 6e3 B38HMOJJ;eHCTBHH H ynpo~eH­
HbiH KpHTepHH pacnpoCTp8HeHHH Tpe~HH, orpaHHl.leHHbiH HOpMaJibHbiMH CHJI8MH K llJIOCKOH 
TpelllHHe. CT&ImOHapHbiM TpeiilHHaM, MO!'YmHM oTKpbiBaThcH HJIH 3ai<pbiB8ThCH B 38BHCHMO­
CTH OT HanpaBJieHHH BHYTpeHHHX CHJI, OTBeqaeT 06JiaCTb nceBJJ;OJIHHeHHOH ynpyroCTH B npo­
CTp8HCTBe HanpiDKemtii H onpe.o;eJIHIOI.J.Uie COOTHOWeHHH npHBeJJ;eHbi B (1 H 2). AlfaJIH3H­
pyeTCH BH.o; 3TOH o6JiaCTH H OI'p3HH1.1HBaiOI.I.leH llOBepXHOCTH B 33BHCHMOCTH OT llYTH (HCTOPHH) 
HailpiDKeHHH H npHBOWfTCH CllOC06bi ero npeJJ;CTBBJieHHH B TpeXMepHOM npOCTpaHCTBe 
H B npocrpaHCTBe Hanp.H>KeHHit. Onpe.o;eJI.HeTCH <I>YHKimH noape>K.o;eHHH, npHBOM~aH 
pacnpe.o;eJieHHe llJIOTHOCTH Tpe~HH no npoCTpaHCTBeHHOH OpHeHTHpoBKe. BbmOMTCH COOT­
HOIDeHHH B npHpoCT8X Hanp.H>KeHHH H .o;e<l>opMamdi BHYTpH H Ha I'paHH~e ynpyrOH 06JI8CTH, 
T.e. AJ1.H CT8IUIOH8pHbiX H pacnpoCTpBHHIOI.J.UIXC.H TpeWHH. 

1. Preliminaries 

THE BEHAVIOUR of elastic cracked materials features certain similarity to elastic-plastic 
materials with strain hardening. There exists an interior domain in the stress space (anal­
ogous to the elastic domain in the theory of plasticity) where the cracks are stationary, 
that is do not extend, and a bounding hypersurface (analogous to the plastic yield surface) 
where these can extend [I, 3]._ Observe that crack extension may be looked upon as the 
counterpart of plastic slip. Many available theories recognize more or less this behaviour 
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22 Cz. EIMBR. 

and assume as a rule, irrespectively of introduced generalizations, that. the interior domain 
is linear (in the simplest case linear elastic, may be anisotropic because of cracks), and that 
the incremental relations at the bounding surface for active stress increments are provid­
ed by a linear transformation, like in plasticity. In order to specialize these relations 
and to establish simple rules of "expansion" of the hypersurface (analogously to strain 
hardening in plasticity) one readily makes use of the concept of internal state parameters. 

The present author has shown [1] that such assumptions cannot be correct since nei­
ther the interior domain nor the incremental relations (under crack extension) can be 
linear. This follows from unilateral internal constraints _yielded by the cracks which may 
open or close depending on local internal forces and leads to nonlinearity of a special 
kind (called pseudo-linearity). The general form of the relevant constitutive relations 
for elastic materials with stationary frictionless cracks is given in [1] while in [3] the in­
cremental relations for extending cracks are derived and a detailed discussion of the the­
ory as compared with classical plasticity is carried out. 

Now the question arises how these general purely phenomenological relations (which 
hold for any crack geometry, amount and distribution) can be specialized for different 
crack patterns. A comparatively simple solution can be found for non-interacting cracks 
and in [2] the respective relations have been derived for stationary cracks. The present 
paper spreads the argument over extending cracks (bounding hypersurface) and complet­
es the theory for non-interacting cracks. Even in this simple case a scalar or tensor dam­
age parameter has proved insufficient for crack pattern description in the context of 
deriving pseudo-linear elastic tensor functions (generalization of the elastic tensor) and 
had to be replaced by crack intensity distribution functions after direction [2]. Thus the 
generalization depends on using the said nonlinear relations accompanied by a more 
comprehensive crack pattern description. The essential point is that an increase of dam­
age bears not only on the behaviour at the bounding hypersurface but it also affects 
pseudo-linear properties in the interior domain (stationary cracks) which must be account­
ed for by the theory. Since we want to derive bulk propertie:s from micro-phenomena, 
the quantities describing the latter should appear explicitly in the constitutive macro­
relations (say local conditions of crack extension), unlike phenomenological theories 
using hypothetical macro-quantities (e.g. internal state parameters). 

The theory provides an analysis of the successive following interdepencies: the -shape 
of the bounding hypersurface as depending on the loading path (cf. the fundamental 
proposition in Sect. 4); the crack pattern (described by the crack intensity distribution 
function) as depending on the shape of the bounding surface; the elastic functions as de­
pending on the crack intensity distribution functions; the stress increment-strain incre­
ment relations the transformation depending on the elastic functions, etc. According 
to the above, the layuot of paper is the following. In Sect. 2 the phenomenological back­
ground is-briefly recalled (without proofs and detailed discussion which can be found 
in [1, 3])(1). In Sect. 3 the bounding conditions for the interior domain are discussed and 
a representation in the three-dimensional space is given. In Sect. 4 this problem is analysed 

(1) The reader is recommended to get acquainted with the papers [1, 2] beforehand since we make 
extensive use of them. 
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in the stress space which allows us to show explicitly how the bounding hypersutface 
depends on stress history. In Sect, 5 we pass to incremental relations and define the crack 
intensity distribution function. In Sect. 6 the dependence of the elastic tensor function 
on the said function is given, again under recourse to [2] where these relations have been 
derived. Section 7 provides constitutive incremental relations. In Sect. 8 practical appli­
cations to brittle materials are briefly discussed. 

Before we proceed let us discuss the simplifying assumption about non-interacting 
cracks which (i) are small scattered flat (approximately plane) cracks and (ii) extend only 
under normal-to-crack tension (the generalization of the latter assumption is discussed 
in Sect. 5). Observe that only such far-reaching restrictions make the theory simple enough 
to bring to light explicitly essential interdependencies and, at the same time, numeri­
cally manageable. The assumption (i) holds approximately for scattered cracks at dis­
tances equal about (374)- fold average · crack diameter (observe that in multiphase 
materials neighbour grains prevent immediate joining of cracks). This ~nables one to 
use solutions for a single crack in the infinite medium, disregarding the interaction terms. 
The assumption (ii) will be seen to simplify the theory greatly (avoiding criteria of crack 
extension under complicated stresses). It is motivated by shear resistance exceeding as 
a rule many times the tensile one (say in concrete 3 7 4 times). According to this the cracks 
are assumed to be perpendicular to the principal tensile stress trajectories. The said assu~p­
tion allows to disregard the in-plane shapes of cracks produced by directional shear 
so that the "averaged" crack may be supposed circular. This holds evidently for initial 
(say shrinkage) cracks in a macro-isotropic medium while the load cracks tend to grow 
into circular shapes since the latter yield the largest critical extension stress [4]. 

2. Phenomenological background 

The phenomenological (macro) relations in local approximation are derived in [1 and 3], 
and here we only summarize the most essential results. Like in plasticity (with strain 
hardening) we have, in the stress space representation, an elastic domain bounded by 
a limit (yield) hyper-surface which may "expand" in the cqurse of loading (Fig. 1). The 

Elastic pseudo­
linear domain (A 

FIG. 1. 

passive} increment 
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Bounding surFace ( c)A) 
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elastic domain corresponds to a stationary (not extending) crack system whereas in the 
bounding surface, for the outward ("active") stress increment directions, there is an ex­
tension of cracks accompanied by energy dissipation. 

The stationary random cracks may open or close, following local forces, hence the 
material provides unilateral internal constraints and its behaviour is nonlinear of 
a special type called pseudolinear [1]. The medium has been shown to obey the follow­
ing constitutive law [1]: 

(2.1) 

CJ = C( e) E , E = S( s )o, 

E 

e =lET' 
CJ 

s =-, 
' CJ 

lol = V CJ • CJ, 

where E, o, C, S are consequtively strain and stress tensors, elastic stiffness and elastic 
compliance fourth order tensors; e, s are ·the respective reduced (divided by the norm) 
tensors represented by unit vectors in the stress (strain) space. The C and S tensors are 
seen to depend on the direction in the relevant 6-space; in a fixed direction (that is under 
proportional l~ading, all stress components increasing proportionally) they preserve 
constant values. Thus the elastic domain features a distinct zero point and a "stellate" 
structure; upon assigning to each direction the corresponding value C11~cr or SiJkl we can 
plot the respective elastic tensor diagrams (Fig. 1 ). In the particular case of constant 
elastic tensors the diagrams would be spherical. 

The incremental relation inside . the elastic domain or for passive (inward) directions 
on the limit surface reads [3] 

(2.2) dE = €/J(s)do or £ = €/J(s)a 

and, similarly for Eq. (2.1), the dot denoting rate terms, where €/J(s) is a fourth order ten­
sor-valued function of s, the only argument. This means that for a given CJ the momen­
tary elastic tensor is constant (that is independent of the increment direction, consequently 
the transformation is linear); however, it depends on the point o, more precisely on the 
relevant direction s. In particular, for different s the material may show different aniso­
tropy following the system of the open and the closed cracks. 

The simple relationship• (2.2) holds no more for the active increment directions on 
the bounding surface, assodated with crack increase and the following nonlinear trans-
formation law is valid [3]: -

£ = [€/J(s)+'l'(q, s)]a, 

(2.3) a 
q = W' lal = ya·a, 

where "Pis again a fourth order tensor depending this time {)n the increment direction q 
(cf. Fig. 1 ). In the. particular case when the expression in the brackets does not depend 
on q the relation would become analogous with the respective one in strain-hardening 
plasticity. 

The active stress increments give rise to changes in the bounding surface of the elastic 
domain and in the C, S-diagrams because then the crack system is changed. Under the 
assumption of irreversibility of the crack damage (we do not admit, say, a crack healing) 
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the active incerenients may only cause an "increase'' of damage, i.e. of the (single and 
total) crack surface. Irrespectively of what mathemati~l definition of "damage" will 
be introduced, we should be able, according to the above observation, to set an order re­
lation in the abstract space of "damages". As long as the increase of damage gives rise 
to "expansion" of the elastic domain in the stress space, the crack extension is called 
stable; then in (2.3) a·£ ~ 0 and the transformation is positive definite. Both the 
bounding surface in the er-space and the corresponding one in the £-space extend, by 
which we understand that the new elastic domain includes the former one, in the set­
theoretical meaning. Upon attaining a certain critical value of damage we arrive at a bound­
ing surface a part of which (at least one point) reaches the limit of stability. The active 
er-increments are no more possible in these points while the active £-increments make the 
er-surface "shrink" (at least partially). This corresponds to t~e declining P.art in the one­
dimensional £-controlled er(£) curve. The "increase" in £ is associated with a "de.crease" 
of er (the transformation (2.3) is no more positive definite) and the volume element prog­
ressively gets over carrying forces. 

The functions S(s) (together with l/J(s) obtained by derivation) 1p (q; s) and the bound­
ing surface of the elastic domain (and similarly for Eq. (2.1)1) are implicitly interconnec­
ted by the primary quantity of crack damage which depends, in turn, on the loading 
path. There arises the question whether they could be determined theoretically on cer­
tain "structural" premises. This turns out to be possible in a fairly simple way only under 
the assumptions discussed in Sect. 1, that is for the scattered cracks and stable crack ex­
tension. We discuss first the bounding surface of the elastic domain and its dependence 
on the loading path since_ this will be seen not to require the notion of damage (Sects. 
3 and 4) . . Then we introduce the latter concept and examine how the crack system will be 
changed under an active stress increase (Sect. 5). Finally we analyse how this bears upon 
the pseudo-linear elastic properties of the cracked material (Sect. 6) and what are the 
stress increment-strain increment relations under increase of damage (Sect. 7). All the 
mentioned factors concur to bring about what we call bulk behaviour of the cracked 
material. 

3. Elastic domain 

Consider an elementary plane crack with spatial orientation provided by the unit 
vector n normal to crack surface. The arrows of these vectors point a unit hemisphere 
since we assimilate opposite crack surfaces. Consequently, if a is an arbitrary fixed vector, 
we take into account only the n satisfying n · a ~ 0. Consider a random system of such 
cracks and separate the subsystem of all cracks with the orientation n (more precisely, 
in the infinitesimal cone about n). This system will be called the partial system or in 
brief the n-system (for a more detailed discussion of this concept cf. [2]). If the cracks are 
non-interacting, so are the partial systems. 

Let cr<o> = cm denote the macro-stress vector in the cross-section n, with er the macro­
stress tensor. Let, in turn, er~0> and er~D> denote consecutively the normal and the tangen-
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tial stress vector component of a<•>, with the respective intensities a1•>, a~•>; obviously 

<f.•> = n · on = 0' • (n®n) = a11n,nb 

0~a> = cf.:t>n = (n®n)o<•>, 

a~•> = cm- (n · cm)n = (I -n®n)cr<•>, 
(3.1) 

where (u(•>)2 = a<•> • a<•>. In the 3-space o is looked upon as a transformation over the 
vector n whereas n®n, 1-n®n (with I the identity operator) are projective operators 
over the stress vector a<•>. In the 9-space the diadic symmetric tensors n®n provide unit 
vectors in the symmetric stress 6-subspace. No dot products are interpreted as matrix­
on-matrix (in patricular vector) operations while dot (scalar) products implicate over­
lapping over all indices. 

Suppose the crack n-system is stationary in the elastic domain d., that is none of the 
n-cracks extends at any increment do provided 0' e d a; ·in other words, d a is the partial 
stationarity domain. The (overall) elastic domain d is defined as the set of all a where 

the crack system (as a whole) is stationary, consequently d = nd .. Let d denote the 
D 

closure of d and oJJI = .ri\d the bounding hyper-surface (the env~lope of all the partial 
ones). For a e od the cracks may or may not extend depending on the direction of da. 

According to the assumptions discussed in Sect. l the n-cracks do not extend if 

(3.2) 
for 

for 

&~·> > 0, 

&~·> ~ o, 
where &~•> = max a~•>( t') denotes the maximum normal-to-crack stress in the loading 

path (history), T denoting the time- parameter (up to the present moment) and a~a> taken 
algebraically (positive for tension). Should the material possess certain inherent (initial) 
crack resistance, we would replace (3.2) by 

(3.3) { &~•> for 
a<•> < 

D e(n) for 

&~•> > e(n), 

&~·> ~ e(n), 

where e(n) denotes the initial crack resistance for the n-system; for strength isotropy 
e(n) = e = const. Consequently, the elastic domain for (3.2) and (3.3), respectively, 
is given by 

d = n {er: a~o> < max(O, a~•>]}, 

(3.4) 
D 

D 

where ~·> is provided by (2.1 ). Observe that the dependence on the stress path is 
restricted to 'the values of 0' yielding max u~•> and no functional strength criterion (in­
terconnecting, say, the quantities a~•>· s and u~•>) is involved. This holds obviously for scat­
tered self-similar (say circular) cracks. Instead, taking account of a~•> and the trans­
versal shapes of cracks would require keeping track of the stress path for each n-system 
with no simple superposition of effects. 
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The most direct representation of the elastic domain d can be given in a three-dimen­
sional space if we assign to each direction n a guiding radius with the length a~•>. To 
each o( -r) in the stress path there corresponds a domain of the "admissible" a~•>, 

(3.5) 

The union of these domains for all T provides the domain of admissible o1.a>, bounded 
by the surface cfua> = &~a>(n) = max [ai1(-r)nin1]. The surfaces in (3.5) (obtained 
with the equality sign) form a one-parametric family with T the parameter. For differen­
tiable functions aii( -r) the necessary extremum condition reads 

(3.6) a( T)' (0(8)0) = aiJ( T)n,nJ = 0 

and the family possesses an envelope surface, found by eliminating T between Eq. (3.5) 
(with the equality sign) and Eq. (3.6). 

e 

b 

c 

F 

FIG. 2. 

For the practical plotting at the bounding surface it is convenient to express Eq. (3.5) 
in principal stresses 

(3.7) u~a> =a· (n®n) = (2; u1 n1®n1) • (n®n) = 2; u1(-r)nf(-r). 
I I 

I= 1, 2, 3, where a1 are the principal stresses and n1 the principal directions of o; nr = 
= n1 • n are components of n in the orthogonal frame of n1• Figure 2 shows the diagrams 
of a~a> vs. n in the two-dimensional case where, in polar coordinates, n = [cosD, sinDY. 
According to Eq. (3.7) with I= 1, 2 we get 

<f..a>(D) = a1 cos2(D-D1)+a2 sin2 (D-D1), 
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where D1 corresponds to n1 • In Figs. 2a+d curves for different pairs {t~h t~2) are plotted, 
one of the principal directions coinciding with the x-axis (one should keep in mind that 
t~~•> > 0 otherwise the bounding value is 0). Figure 2e shows a composition of the domain 
for two competent loa(is in the stress path and Fig. 2f illustrates the formation of the 
envelope curve. For e(n) :1: 0 the respective diagram should be plotted (yielding, say, 
a circle for strength isotropy) and it would interfere like in Fig. 2e. 

4. Representation in the stress space 

Let us examine now a more customary (at least, per analogy to plasticity) represen­
tation of the elastic domain d (cf. (3.4)), in the stress space. Consider, first, a stress 
path where each ti( l') is a pure compression, that is for any n, ~·> = er· (n®n) ~ 0 (it 
is convenient to include <f.•> = 0). This is equivalent, according to Eq. (3. 7), to a er with 
non-positive principal stresses, t11 ~ 0 and we call · such a path purely compressive. Then the 
elastic domain (cf. (3.4)) 

(4.1) SIJ = n {er: er. (n®n) ~ 0} 
D 

is a convex cone in the stress space, with 0 the apex point called the compressive cone. 
Indeed, er e d implies cer e d-for any real c > 0 and d is convex since it is an inter­
section of the half-spaces er · (n®n) ~ 0. The cone apex angle . is right. In fact, for any 

erh er2 e d, 

ert · er2 = (~ aunu®nu) · (~ 0'2KD2K®D2x) 
I K 

= ~ a11 a2K(n11 • n21,)
2 ~ 0, I, K = 1, 2, 3 

I,K 

in view of du, d 2K ~ 0, consequently the angle is not obtuse. On the other hand purely 
compressive er~., cr2 may be orthogonal (take for instance uniaxial compressions in per­
pendicular directions), so the angle cannot be acute. Observe that each of the vectors 
n®n spans a one-dimensional subspace of uniaxial loading in the direction n. The scal­
ar product er· (n®n) in (4.1) yields the perpendicular projection of er into this sub­
space resulting in the vector a~>(n®n) of uniaxial stress (this vector may be looked 
upon as a 9-vector or a 6-vector in the symmetric 6-subspace, n®n being symmetric). 
The operation is . isomorphic to forming the 3-vector cr:>n in the Euclidean space. 

The form of the elastic domain yielded by (3.4h for the stress path (trajectory) 
er(l') is defined in the following proposition: dis the convex hull generated by the trajec­
tory er( t) and the compressive cone. 

Here we assume that the virgin point er = 0 (which yields the compressive cone as 
the admissible region) belongs to er( -r); therefore points in infinity determined by the gen­
eratrices of the compressive cone surface are admissible and may be looked upon as 
points of the trajectory. 1.et G<•>(-r) denote the point (points) of er(-r) yielding a~·>~ i.e. 
G<•>( -r) • (n®n) = tr,.•>; then, according to (3.4)11 

(4.2) d = n .rar-: = n {er: er. (n®n) ~ G<•>(t). (n®n)}. 
• D 
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Since .511-is the intersection of the closed half-spaces it is convex, and since each point 
of a( -r) belongs to d-it includes the path o( T). Each of the points in iJJJI belongs to a 
hyperplane passing through a point (points) of the trajectory and perpendicular to 
a vector n®n; consequently, dis the least convex set including o('r) (any point outside 
it would belong to a plane not passing through a( t') and would yield for a n®n, 
a· (n®n) > max C1~8>). 

Obviously the argument can be extended to the case (3.3) and .(3.4)2 • The compressive 
cone would be replaced by an "initial" domain bounded by the envelope _surface of the 
planes perpendicular to the n®n, at the respective distances e(n) from the origin point. 
The domain .511-would be the convex hull generated by the path G(t') and the said initial 
domain. In any case the bounding hyper-surface od is formed by a hyper-plane oscu­
lating on the stress path, only the "extremum" parts of the latter being competent. 

Consider, in particular, in the context of (3.4)1 a path where for each ' and each n 

o(t') · (n®n) ~ o('l'0 )(n®n). 
Then 

JJI = n {a: CJ' (D®D) ~ Go' (D®D)} = n {o:(CJ-CJo)' (D®D) ~ 0} 1 

D D 

where o0 = a( To) is the stress that has been attained in the (previous or present) moment T0• 

The right hand expression shows that d arises by a parallel shifting of the compressive 
cone up to the apex position a0 • Since ( o-a0 ), the vector belonging to a convex cone 
generates an order relation a ~ a0 in the stress space (a relation which is reflective and 
transitive; however, in general not total), we obtain the following proposition: the domain 
d is ·a cone (namely a shifted compressive cone) with the apex point a0 if for each T, 

I CJ( T) ~ CJ0. 
Analytically we obtain points of iJJJI, again, by solving the system of equations (3.5) 

(with the equality sign) and Eq. (3.6) the former of which is now expressed more explic­
itly 

(4.3) (n®n) ·a = (n®n) ·a( T) 

or in components 
l1lin 1n1 = l11iT)n1n1, 

where a( 'l') denotes a point in the stress path while a is (without explicitly writing up the 
argument) the current point of the respective hyper-plane. The interpretation of the equa­
tions is now different as compared with Sect. 3. A tensor a was represented there by a sur­
face in the 3-space and now it is a 9- or 6-vector. Equation (3.6) now yields the n®n·vec­
tors orthogonal to the element da = o( T) dT of the stress trajectory. With Eq. (4.3) it 
provides hyper-planes passing through da. 

From the solutions of Eq. (3.6) with respect to ' (and for a fixed n) we select the one 
(ones) making l1~•> maximum, ct~•> = &~•>. Suppose T' and,, are two such solutions (Fig. 3); 
then in the "regular" case, according to Eqs. (3.6) and (4.3)', the system of equations 

(4.4) Cttj(l'')n,nJ = 0, Cto(T")n,nl = 0, l11J(l'')n,nJ = C11J(l'")n,nl 

supplemented by the condition n;n; = 1 makes possible to expres~ the quantities involved 
as functions of a parameter, say T', i.e. n1 = n1( T'), T" = ,, ( T'), and yields a right- linear 
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sector of od passing through the points.o('r'), o(T"), while Eq. (4.3) yields the osculating 
hyper-plane. The latter planes form a one-parametric family (with the parameter -r'). 
The envelope surface of this family is determined by the system of equations 

(4.5) n,(T')n~(-r')O'fJ = a::a>(T'), o!' (n,(T')nj(T'))O'u = 0~, o-<:>(T') 

the first of which is the mentioned Eq. (4.3) with the abbreviated notation of the right 
· hand part and the second one is the usual envelope condition. Both equations yield the 

Bounding surrace 
cM 

FIG. 3. 

Right linear sectar 
or oA 

a- initial point 
F- rinal point 

intersection of the neighbour hyper-planes, that is the right-linear generating sector as 
a function of the parameter -r'. Upon eliminating T' between them we would obtain the 
equation of the respective part of oJJI (cf. Fig. 3). Observe that Eq. (3.6) may not have 
solutions. Using a substitution analogous to (3. 7), that is expressing n in the frame 
of local principal axes of the tensor a, we may obtain all proper values positive imply­
ing no solution. This is the case of all principal stresses increasing, i.e. for des in the ten­
sile cone (the counterpart of the compressive cone). If this holds for each point of cs('r) 
(a simple path with increasing cs with respect to the previously introduced order relation), 
the elastic domain will be the shifted cone with the final (present) -r determining the apex 
point. 

The condition (3.6) does not hold, obviously, for nondifferentiable loci of cs( T) and 
must be replaced by the general one a~o> = (r~o>. If a point a('r) yields O.~o> for many n, 
it is a vertex point or an edge point (for a differentiable locus) of od. If, vice versa, for 
a given n there are many T where cs( T) provides (r~o>, then the hyper-surface od includes 
respectively: a right-linear sector for two solutions, a two-dimensional "triangle" (cf. 
Fig. 3) for three linearly independent solutions etc. up to a hyper-plane in the stress space. 

5. lacrease of damage 

Let the internal state of a cracked material be described by the crack intensity function 
p. = Pa(D). The intensity may be defined as the total area of the elementary cracks (in 
the unit volume) with the orientation n (that is with the unit · normal-to-crack vector n 
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within the elementary cone about n) per the elementary body angle dw. Then the total 
area of all cracks amounts to P = f p8 (n) dw where we integrate over a hemisphere (i.e. 

D 

the solid angle of !J is 2n) since the opposite crack edges are assimilated to a surface ele­
ment and n points into a fixed (but arbitrary) hemisphere. Consequently, we may also 
write p.(n) = P.n(n) where n(n) = PaiP is a normalized intensity distribution after orien-

tation. Since f n(n) dw = 1 it may be looked upon as a probability distribution of cracks 
!J 

after orientation. 
The crack intensity Pa js seen to correspond with the 0.~•>-criterion (disregarding the 

in-plane crack shapes). We assume tliat there exists a functional dependence p. = l(fl~•>), 
more explicitly, 

(5.1) p.(n) = I[O:.•>(n)]. 

That is to say, the damage Pa depends on the maximum cf.•> in the stress history and 
not on the way it has been attained. The crack increase is supposed not to be a sponta­
neous process (like, say, in the Griffith theory) so that we remain within the stability do­
main. This is justified by plastic screening at crack border extension and crossing grains 
with variable strength (first of all the reinforcement). Consequently, the function I in Eq. 
(5.1) is an increasing function and the function p.(n) may be plotted, by means of Eq. (5.1), 
on graphs like in Fig. 2. Should the material exhibit crack resistance anisotropy, then 
Eq. (5.1) will assume the more general form 

(5.2) p.(n) = I[D-~•>(n), n]. 

In case of the extended criterion (3.3) we have Pa = 0 for 0.~•> ~ (!(D). Observe that 
the function p.(n) plays the role of an internal state parameter, a scalar or tensor parameter 
being generalized to a function. 

In case of non-interacting plane cracks the function p8 (n) will be seen to suffice for 
deriving constitutive relations for stationary and for extending cracks. The function I 
in Eqs. (5.1) and (5.2) is to be found from the theory of a single plane crack in the infi­
nite medium providing the dependence o( crack size on external (perpendicular to crack) 
tension. This problem (of crack extension) has an extensive literature and many well­
known approaches are available; however, it does not belong to the present theory. Our 
objective is to show how the bulk relations depend on micro-phenomena described by the 
function I (presupposed to be known) which, therefore, should enter explicity constitutive 
relations. 

6. Elastic functions 

Having expressed by (5.1) or (5.2) the state of damage, we have to find the elastic 
functions C(e), S(s) in (2.1) (cf. the respective diagrams in Fig.l) . . This problem has been 
solved in [2] where the reader is referred to and we only summarize certain basic. results. 
The tensor function S(s), say, (analogus results hold for C(c)) is provided. by (cf. [2], 
Eq. (2.3)) . 

(6.1) S(s) = S+S.(s), 
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where S is a constant term (independent of s) and S, the additional -term depending on 
the state of stress. S is the elastic compliance tensor for a medium with open cracks (imag­
ine narrow slits yet wide enough not to be made closed) while S,{s) is brought about 
by response forces at closed cracks. · 

For non-interacting cracks the terms in qu~stion are expressed by the damage func­
tion in the following way ([2], Eqs. (2.3), (2.5) and (3.5)): 

S = S0 + J Pa(n)S~a>(n)dw, 
D 

(6.2) 
s.(s) = f pu(n)'l(a>(n)®n®ndw. 

D 

S0 is the elastic compliance tensor for plain (non-cracked) material and the domain of 
integration, Q is the whole hemisphere. S-.(n) denotes the damage compliance tensor 
called "basic" for the partial n-oriented crack system; it accounts . for the open n-cracks 
per unit damage. 'l<a>(n) is the "additional" strain due to response forces at closed cracks 
in the partial n-system. The domain of integration !J, is provided, for a given a, by the· 
condition a · (n®n) < 0 or equivalently s · (n®n) < 0. The functions s~a>(n), YJ<•>(n) 
are material constants (independent of the state of damage). In case strength istotropy 
they do not depend on n (to orthogonal transformation); then sr> involves 5 constants 
and 'l<a> 2 constants ([2], (2.4) and (3.4)). They are defined for unit crack concentration 
(resolved crack systems, [2]) i.e. for n(n) (Sect. 5), consequently, the integral terms in 
(6.2) are proportional to P. That is to say, we consider a medium with n-oriented 
cracs having a unit total area in the unit volume and employ approximately the solution 
for a typical single crack in the unbounded medium. For example, for YJ<•> to be calcula­
ted theoretically we use the solution for a medium loaded with a = n®n, i.e.~> = 1. 
Then the mutual displacement of the opposite crack edges, integrated over the area of 
the crack and multiplied by the number of cracks per unit area yields the n-directed prin­
cipal strain of YJC•> This follows from the principle of virtual work as applied to the effec­
tive displacement and virtual forces at crack edges, to be equated with the work over aver­
age strain. 

7. Coastitutive relatioas 

In order to find the incremental constitutive relations (cf. (2.2) and (2.3)) and the 
functions q,, '1', let us form the differential of Eq. (2.lh: 

(7.1) 

The first term corresponds to the increment da under a fixed function S(s); the sec..; 
ond one follows from the variation of this function. The first term is the only one for 
points inside the elastic domain .PI or for points in od for passive directions of da. By 
usual differentiation and suitable changing of the denotation of indices we bring it to 
the form -
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(7.2) 

The expression in the parentheses in seen to be the function 4> in (2.2) of the ar­
gument s which readily may be checked by differentiation under substitution of the func­
tion s(a) from (2.1). Accordip.g to (6.1) and (6.2) only the part Sa(s) depends on s and 
undergoes differentiation, where for strength isotropy the integrated function 'lCn>(n) 
has been shown to take the form ([2], Eq. (3.4)) 

(7.3) 'l(n)(n) = al+bn®n, 

a, b being material constants and I the unit second order tensor. Consequently, 

(7.4) SatJid(s,q) = J Pn(n,)(at}lln"n' +bn,n1n"n1)dw; 
Ds 

where !Js is the elliptical cone s,qn,nq < 0 (it comes out explicitly on the basis of princi-
3 

pal directions of s; then }; s"nl < 0 with sg the principal stresses and ng the principal 
k=1 

directions). In simpler cases explicit formulae can be obtained upon integrating in spher­
ical coordinates; however, in general elliptic-type integrals are involved (for detailed 
discussion cf. [2]). 

The second term in (7.1), upon substitution of (6.1) and (6.2), assumes the form 

(7.5) t}Slltr(spq)a"' = rJ t}pb(n,)S~?)t,dw+ f t}pa(n,)1Jfj>n1n,dw] a"" 

where in case of strength isotropy s~n> and 11<n> do not depend on n to an orthogomil 
transformation (in particular 'l(D) is provided by Eq. (7.3) and sbijkl = n,,njqnk,ntsS~,qr• 
where S~ is referred to a fixed coordinate system conveniently connected with the axes 
of symmetry). By (5.1) 

where p~ denotes the derivative function of the arguments n, and do is an active stress in­
crement (in a point of the bounding $Urface 8.91 in 'the stress space). Consequently, un­
der suitable denotation of indices 

(7.6) t}SIJmnO'mn = {[J p~(n,)S~'}mnnkn,dw 
+ J p~(n,)1]~j>nmn,n1n 1dw] 0'11111) dO'a;a = 'I'tJkldO'"" 

where 'I' is the tensor function given in (2.3) corresponding to the expression in the 
brackets { }. The domain of integration in (7.5) and (7.6) follows from three con .. 
ditions: 

3 Arch. Mccll. Stos. or 1/81 
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(i) The point is in the bounding surface, i.e. (cf. (3.2) and (3.3)) 

a· (n®n) = { &~n) for &~n) > 0 (or e(n))' 

0 (or e(n)) for Q-~n) < 0 (or e(n)); 

(ii) da is active, that is 

{
&<n) for a<n> > 0 (or e(n)), 

(a+da). (n®n) > ~ (or e(n)) n for &~n) ~ 0 (or e(n)), 

which, in connection with (i), leads to the condition 

da · (n®n) > 0 or q · (n®n) > 0 

with q defined in (2.3). Only the active da give rise to an increase of pn(n) (which is 
an increasing function of &~n>) while the passive ones cause tJpn = 0. 

(iii) Additional quantities would appear only at closed cracks, consequently 

s · (n®n) < 0 

as explained in Sect. 6. One mu~t keep in mind that a, da belong to the stress path whiles 
does not (it is not connected with a) because it is only the variable argument of the con­
stitutive function Sa(s) searched for. 

Let us denote the sets of n defined by the above three conditions consecutively by Qa, 

!Jq, fls. Then the domain of integration in the first integral in (7.5) and (7.6) is !Jon!Jq 
and in the second integral !J0 n!Jqn!J8 • If we consider a fixed point in od (i.e. satisfying 
(i)) lJI is a function of the arguments q, s (cf. (2.3) and Fig. 1). 

Tens;te cone 

FIG. 4. 

In the 3-space representation ( c.f. Sect. 3), in general, the region Qo is cut out from 
the "terminal" a~n> -surface by the intersection curves with the envelope surfaces and by the 
generatrix curve for the final r provided by the conical smface (3.6). The regions Qq, !J 
are bounded, in turn, by conical surfaces in (ii) and (iii), the inequality signs being replac­
ed by equalities. In the stress space representation (cf. Sect. 4 and Fig. 3), a being a ver· 
tex point, Qa includes all the n for which the hyper-planes passing through a and ortho· 
gonal to vectors n®n do not intersect the stress path, Qq, Ds include the n®n·s in the half 
spaces yielded by the inequalities in (ii) and (iii), respectively. 
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The crack extension criterion (3.2) or (3.3) leads to some simplifications in the func­
tions S(s), f/>(s), 'P(s) (Fig. 4, cf. also Fig. 1 where instead of S we plotted C). The stress 
space is divided into the characteristic subregions: the compressive cone (according to 
(4.1)), the tensile cone the counterpart of the former, with reversed inequality in (4.1) 
and the remaining (complementary) part. For e in the tensile cone (all a1 > 0, cf. 
(3.7)) the set Ds is empty. It follows that s.(s) disappears (cf. (6.1) and (6.2)) and 
only the constant term is retained, consequently the S(s)-diagram is a hyper-sphere 
segment. For s in the compressive cone !J, includes all the n and the s. terms are con­
stant, so we obtain again a hyper-sphere with a different radius. Next, in (7.2) only 
the first term remains, therefore the tensor 4> is the same for any point in the tensile cone 
and the sall;le (however, different from the former) for points in the coml?ressive cone. 
Finally, the second integral in (7.6) is independent of s; consequently so is the expres­
sion in the brackets ( ] while the function 'tJf depends linearly on fJ E o.r;/, 

The admissible region d includes the compressive cone; consequently in case of our 
simplified critetion (3.2) it is unbounded (for directions in the compressive cone). Consid­
er now a point in 8.91 and suppose that the 6-vector q is in the tensile cone, that is all 
principal stresses increase (cf. (3.7)). The !Jq includes all the n and the integrals in 
(7.6) do not depend on q; consequently the 9'-diagram is · a hyper-sphere segment and 
the transformation in (2.3) (in the brackets [ ]) is constant (like in the theory of plas­
ticity). However, this does not hold any more for the increments outside the tensile cone 
and, more to it, the (constant) transformation depends on the point in od. 

8. Applicability of the theory 

The field of application of any theory assuming non-interacting cracks is, of course, 
limited and covers, first of all, such phenomena as temperature or shrinkage cracks con­
trolJed by initial strains (and not by active loads). However, also for strength analysis 
the role of such cracks can be essential insomuch as this incipient stage affects the pos­
terior mode of failure. 

In brittle materials- where by "brittleness" we mean, first of all, a strength many 
times lower in tension than in compression, say, in concrete about 10 times- we have 
to distinguish roughly speaking between cracks at compression (say in the compressive 
zone of a girder) and those at tension (in the tensile zone). The former are brought about 
mainly by shear at closed cracks whereas the latter by perpendicular tension while the 
cracks are open what results in compressive strength many times exceeding the tensile 
one. The "tensile" crack system arises at relatively small loads and often the crack pattern 
undergoes no essential changes under subsequent loading (e.g. in standard reinforced struc­
tures). Thus the material keeps in memory the incipient loading which affects posterior 
properties of the structure. 

At this initial stage there arrives a rapid increase in ·crack sizes and stress concentra­
tion factors at crack borders. There appears structural instability in the brittle material 
giving rise to an overall instability of the structure unless a reinforcement prevents it. 
In consequence of a release in stiffness of a damaged volume element, neighbour elements 

3• 
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take over the forces and, first of all, so does the reinforcement. The quickness of the pro­
cess preceding the onset of the tensile instability makes it difficult to keep track of the 
structural susceptibility to small changes in loads. On the other hand the loading path 
in this short interval is, as a rule, relatively simple and we often do with the tacit assump­
tion that the cracks depend only on the direction of the loading path at the outset point 
(in the stress space). Thus the theory is applicable for an approximate analysis of the failure 
in tension. In structural concrete engineering\..the latter is called crack resistance and it 
predominantly bears on the distribution of the reinforcement. It should be clearly dis­
tinguished from the structural (ultimate) strength connected in most cases with crack re­
sistance at compression and plastic yield of the reinforcement. 

In numerical calculations the main difficulty. depends on finding the integrals in Sects. 
6 and 7; this problem has been extensively discussed in [2] (Appendix). 
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