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On weak solutions, stability and uniqueness in dynamics
of dissipative bodies

W. KOSINSKI (WARSZAWA)

IN ORDER to include shocks in dynamic initial boundary-value problems weak solu-
tions in the class of functions of bounded variation are investigated. The admissibil-
ity criterion for the weak solution is formulated. Stability and uniqueness results
are obtained in this class of functions.

WE SHALL deal with a deformable dissipative body # for which constitutive relations
of the theory with an internal state variable will be employed. The internal energy &, the
first Piola-Kirchhoff stress T, the temperature & are determined by the deformation
gradient F, the specific entropy 1 and the set of internal state variables q = (q,), i = 1,
2, ..., k by the constitutive equations

)] e=¢*F,n,9, T=T*F¥,n,q9, ©=90%F,79.

These relations are accompanied with the so-called evolution equation for the internal
state variable q, namely

2 q=a*F,n,9,

where the superposed dot denotes the material time derivative. The internal variables
9w, i = 1,2, ..., k may be tensors, scalars or vectors; their geometrical character depends
on the physical interpretation given for them. Moreover, they should have some invariance
properties or satisfy transformation formulae whenever the spatial or material systems
rotate (cf. VALAN!S [4]). For the purpose of the present paper we assume that q behaves
as a scalar in the spatial system [3].

The motion % (X, #) determines the velocity field v = % and the deformation field
F = Grady.

In what follows we assume that the material is a non-conductor of heat and g is the
reference positive mass density.

By a thermodynamic process with supply terms (b, r)(X, ) we mean fields (x5, q) x
x (X, t), where X € 4@, t € [0, t,] such that (v, F, 7, @) (X, ¢) are functions of locally bound-
ed variation [5], in the sense of Tonelli-Cesari, satisfying the balance laws of momentum
and energy in the sense of measures (or distributions)

ov = DivT+ob,

4 ;
@ g(s-&- %v-v) = Div(¥T)+ob - v+pr.
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The thermodynamic process is proper if it satisfies the Clausius-Duhem inequality in the
sense of measures:

0 1}—% >0.

A theromodynamic process (%, 7, g) (X, t) with supply terms (b, 7)(X, ) will be called

smooth ([1]) if the functions (v, F, 7, q) (X, #) are Lipschitz uniformly continuous on
bounded subsets of their domain. For smooth processes one may write the balance laws
in reduced form (locally almost everywhere)
g\;r = DivT+gb,
) £ g
poe =T -F+or.
It is a standard result that every smooth process is proper if and only if

de* de*

* _ * *. 3
where
(7N A*(F, 1, » 1, Q).

Note that in a smooth process with the supply terms (E r) the energy balance law
(5) reduces, under Eq. (6), to

® —7+ LA d

where
= A*(F, 7,9
Now the main definition arises:
A proper thermodynamic process (X, 7, q) wlth supply terms is called admissible if

9 it el as.
€)) N+ g <5 A*a

Noti(*) that every proper and smooth process is admissible.
Adopting D1 PErNA’s idea from [2] and generalizing the definition of DAFErmoS [1]
for any two processes: an admissible process (%, #, q) with the supply terms (b, r) and

a smooth one (¥, 7, q) with (b, 7), we introduce two functions H and G by the following
formulae:

H(X, 1) = %(v—?)- (v—V)+0e* —pe* —T - (F—F)—od* - (n—7)

(10) -
—eA*-(q—0q),

G(x’ t) = _('_?)(T_T)»

(*) In the present note the concepts of proper and admissible processes differ from that ziven by
DArerMoOs in [1].
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We shall calculate the four-dimensional divergence of the field (H, G) in order to find

the evolution of the “distance” between two solutions. We calculate H+DivG bearing
in mind that the usual product differentiation rule applies (in the sense of measures)
to the product of a Lipschitz continuous function with a function of bounded variation.
Here we find

(11) H+DivG = Q(s+ %—v- v)—gi- V+ov-v—pe—T - (F-F)

—T+ F—00(n—7) —e0(n—7) ~Div(¥I) + (T—T) - F+T- F—ov- ¥
+T-F+v-DivI+¥ DivI—v- DivT—gA- (q—§) —0A- (§—§)-

Observing that Gradv = F, Gradv = F and a*(F, 7, Q)= g,a=2a*F, 7 @ =q and
using the balance laws, we may rewrite Eq. (11) in the form

(12)  H+DivG = p(v—¥)" (b—"ﬁ)

sfr-7- T p- F}~7,,—,‘—(n—ﬁ)——;3‘5[q—a1}-i‘f+e{0-—3
0* - o+ a0*
—W'(F—B—a—n(n—n—— (q- ﬁ)} n+e
aZ
(n n)——[q q]} a+ {e(r—7) —e(®—9)n — 0B —7)

—o(A—A)-a—pA(a—2)},
where the following identities have been used:
o oTr  oT* = e A . =\ -
0 = o 7 - (F-F)®q) = Q(ﬁ“ [F—F])‘ q

From the equality (8) and the inequality (9) we get for the last term in Eq. (12), denoted
by #, the following estimation:

13 &< (v?—??)(r—?)—% ®-9)+o(A-R)- (a—

a [ 1 1 - _
—9(6—0) (‘5A' a-— 3 A- l).
Hence Eq. (12) yields

(14) H+DivG < o(v—v) - (b—b)+ %(&—5}(;-—?)—%(%5)2
+o (A=) (a—3)—o(F— 19)( A n—-l—K-ﬁ)

= oT* . - OT* aT* B
+:T“T—W[F—F}—W(ﬂ—ﬁ)——g‘i—[‘l"a}‘r
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09* —  0* o9* =
'[F—F]"a—n(ﬂ—_)‘ q '('I—CI)}"?

JdF

+o {19 -0
— 0A —.  OA* oA -
+e {A"‘A— F [F—F]— o (n-7n) - oq [q—t_l]} 'q.
This inequality plays the same role in our analysis as the inequality (3.10) in the Da-

FERMOS paper [1] on the hyperelastic nonconductor. Assuming that the function a* is
Lipschitz continuous and £* is of the C3-class, the right-hand side of Eq. (14) is of
quadratic order in (v—v, F—F, -7, q—g, b—b, r—7).

Parallel to Theorem 4.1 in [1] we may formulate
THeOREM 1. Assume that # is bounded and has a finite perimeter ([5]). Let (%, 7, q) be
a smooth process defined on 4 x [0, #,] residing in the convexity region of internal
energy &*, with the supply terms (b, r)(-, ‘) €£2(® x [0, #,]). Then there exist positive
constants 8, o, M, N with the following property:

If (3, 7, Q) is any admissible process defined on & x [0, #,] with the supply terms (b(-,?),
r(-, t) € LY([0, t,], £*(®)) and such that

IF(X, 1) -F(X, )]+ In(X, 1) -7(X, Dl+|g(X, ) -4(X, )| < 9,
(X,t)e@x[0, 0],
(v—¥): (T-T)N< 0 on d#, N normal to 04,
then we have for any s € [0, #,]

lI(v=¥, F=F, n—7, =", )|l 2xa < Me*||(v—¥, F-F, -7, q
~D(-, 0)llzxam+Ne [ [|(0=b,r=7)(:, 1)l exadt.
[1]

COROLLARY. Let &, (3, 7, ©)(*, *) and (%, %, 9)(*, ') be as in Theorem 1. Assume that the
corresponding supply terms (b, 7)( -, *) and (b, 7)(-, *) coincide on & x [0, #,] and that both
processes originate from the same state, i.e.

i(x,O) = i(Xs 0)’ ‘(x»o) = ?(X,O), 'l(x. 0) = ‘T}(X, O)v
qX,0) = 9(X,0), Xe&
then (X, 7, @)(-, ) and (x, 7, 9)(-, *) coincide on & x [0, #].
It seems not to be difficult to give the appropriate theorems under the assumption of

strong ellipticity for the internal energy. It can be done in the way of that given by Da-
FERMOS in Sect. 5 of his paper [1].

The author expresses thanks to Professor C. M. DAFERMOS for his suggestions.
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