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Theory of nonlocal electromagnetic fluids
B. M. McCAY and M. N. L. NARASIMHAN (OREGON)

A coNTINUUM theory of nonlocal electromagnetic viscous fluids is proposed. Nonlocal and
local balance laws and jump conditions are obtained. Using a Clausius-Duhem thermodynamic
inequality which encompasses nonlocal effects specific forms of the constitutive equations
including the electromagnetic stress and energy are derived for dynamic nonrelativistic systems.
A complete linear constitutive theory with thermodynamic restrictions on the material coeffi-
cients is developed along with the associated field equations and boundary conditions with
a view to facilitate practical applications of the theory.

Zaproponowano kontynualng teori¢ nielokalnej, elektromagnetycznej cieczy lepkiej. Otrzymano
nielokalne i lokalne warunki rownowagi i warunki nieciaglosci. Wykorzystujac termodynamiczng
nierowno$¢ Clausiusa-Duhema uzgledniajaca efekty nielokalne, wyprowadzono szczegblne
postacie rownan konstytutywnych zawierajace napre¢zenia elektromagnetyczne i energie w przy-
padku nierelatywistycznych ukladéw dynamicznych. Rozwinigto pelng teorie konstytutywna
wraz z ograniczeniami termodynamicznymi dotyczgcymi wspoOlczynnikéw materialowych,
a takze rownania pola stowarzyszonego i warunki brzegowe z my$la o ulatwieniu zastosowan
praktycznych przedstawionej teorii.

Ilpenno)keHa KOHTHHY&JIbHAA TEOPHA HEJIOKAJBLHOH, 3JIEKTPOMarHMTHOH BA3SKOH YKHMIKOCTH.
[TonyueHs! HeNOKABHEIE H JIOKAJIBHBIE YCNIOBHA PABHOBECHA M YCIOBHA pasphiBa. Mcnonsaya
TepMoaHHamMudeckoe HepaBencTBo Kinaysuyca-Jljorema, yunThiBaroliee HenoKansible addex-
KTbI, BbIBE/ICHB] YACTHBIC BHIbI ONPEACNAIOIIHX YPaBHCHHH, COACPYKABIINE 3JICKTPOMAIHMT-
HEBIE HANPAYKCHHA H SHEPrHIO B CiIy4ae, HEPEJIATHBHCTHYECKHX [HHAMHUYECKHX cHcTem. Pas-
BHTA TIOJHAA ONPENE/ONIas TEOPHA COBMECTHO C TEPMOJHHAMMYECKHMM OTDAHHUYCHHAMH,
KACAIOUIMMHCA MaTepHanbHbIX Koa(hGbHUHEHTOB, a TAKKe YNPaBHEHHA ACCOLHHPOBAHHOIO
MONA W TPAHHYHBIE YCIIOBHA C LENbI0 06/1eryeHuA MPAKTHUYECKUX IPHMEHHH NPEACTaBIeHHOMN
TEOPHH.

1. Introduction

IN RECENT years nonlocal continuum mechanics has been rapidly emerging as a most
powerful field aimed at bridging the gap between the microscopic and macroscopic theories.
of matter. Early developments in the field of nonlocal theories of mechanics include those
due to ERINGIN [1, 2], KRONER [3], KUN N [4, 5], EDELEN [6], and EDELEN and Laws [7].

It is well known that classical continuum mechanics does not have the necessary mech--
anism to explain physical phenomena involving materials whose response to certain
applied stimuli are dominated by their internal structures. For example, the dispersive
character of plane waves such as Rayleigh surface waves in materials, the phenomena of"
surface tension, surface energy, optical branches of the dispersion curve, the state of stress
at a crack tip in a material, secondary flows and turbulence fail to find rotational expla-
nations through classical continuum mechanics. ERINGEN [1, 2] has shown that in order
to explain such phenomena, it is not necessary to address the atomic nature of materials
for such discrepancies. Instead one can fruitfully pursue the nonlocal continuum mechanicak
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approach which is capable of meeting the challenges at the atomic scale while still remaining
within the basic continuum framework.

The present status of nonlocal continuum mechanics has been enriched by the con-
struction of a nonlocal thermodynamics and rational constitutive theory on an axiomatic
foundation by ERINGEN [8]. A variational approach for nondissipative cases (elasticity)-
was provided by EDELEN and Laws [7], and ERINGEN and EDELEN [9]. Theories of polar
nonlocal continua, nonlocal elasticity, nonlocal fluid dynamics, nonlocal microfluid dy-
namics, nonlocal continuum thermodynamics, nonlocal memory dependent materials,
nonlocal electromagnetic elastic solids, nonlocal theory of fracture mechanics, especially
the important problem of state of stress at the crack tip in a material, and nonlocal elasticity
and waves were developed by ERINGEN in a series of papers [2, 9- 16] These works, apart
from containing the theoretical developments, also demonstrate the applications to practi-
cal problems of interest. Furthermore, they provide for methods of determining the non-
iocal material coefficients by comparing the theoretically predicted results such as those
involving wave dispersion, with lattice dynamical or experimental results.

The importance of nonlocal effects in electromagnetic interactions with deformable
materials has been explored for elastic solids (cf. ERINGEN [14]) as mentioned above. This
work, to the present, develops a general constitutive theory for solids based on nonlocal
continuum mechanics, with no corresponding work existing for fluids.

The aim. of the present paper is to establish a nonlocal continuum theory for electro-
magnetic fluids. In Sects. 3 and 4 the balance laws for the nonlocal theory and the entropy
inequality are presented. Upon developing the general constitutive theory and subsequent
«constitutive relations arising from the Clausius-Duhem inequality in Sect. 5, we then
derive a linear constitutive theory and in Sect. 6, the field equations are obtained for pur-’
poses of practical applications.

A special feature of our present work is, besides developing the constitutive theory
for nonlocal electromagnetic fluids, the derivation in Sect. 5, of a complete set of thermo-
dynamic restrictions on the material coefficients characterizing the electromechanical
constitution of fluids. These restrictions on the material coefficients are expected to serve
as useful informations in seeking meaningful experimental verifications of theoretically
predicted results. A practical application of the theory developed here to the problem
of dispersion of Reyleigh surface waves in dielectric fluids is scheduled for a forthcoming
publication.

2. Balance laws

In formulating the mechanical and thermodynamic balance laws for a nonlocal con-
tinuum capable on interacting the electromagnetic fields, we shall incorporate the electro-
magnetic interactions through the linear momentum density, the body force density, energy
flux vector, and internal energy density (all of which, ip general, include both mechanical
and electromagnetic effects). The total energy density is incorporated in such a way that
the rate of production of entropy is equal to the total energy flux of the material minus
the Poynting vector (Grot [17]); as viewed in a frame moving with the material divided
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by the temperature. To these laws it is necessary to add the balance laws of Gauss, Faraday,
and Ampere, the conservation of magnetic flux, and the conservation of charge. Although
these laws are extremely general, it must, however, be noted that they are not adequate
for a complete description of such phenomena as magnetic spin interactions, In the present
work we exclude such phenomena and restrict ourselves to a nonrelativistic case valid
for small material velocities, v, as compared to the speed of light in a vacuum, (v?/c? < 1).
Following ERINGEN [14], the balance laws for a nonlocal electromagnetic material are
written down in the following localized form:

Conservation of mass

7] A .
—5—+(gﬂ")_, =9, Iinv—o,

le(®* —u*)—ol*n, =0, on o.

@1

Balance of linear momentum
t+of-v—g) = @(v+g)—gf, inv—o,

2.2 A
@2) [t*—o(v+g) (v —u*) +f*In, =0, ono.

Balance of moment of momentum
paxti—pvxg = gpxf—ol, inv-o,

2.5 A
23) lop x {t* —(v+g) (** —u*)} +¥]n, =0, ono.

Conservation of energy

0i—g v+t v —q* —gh = gh—ov- f—é(” %"‘ i s)' =

24) i
[t" . v+q"—g(s+ 702') (¢ ~—u")+h*] n=0, ono.
Faraday's law
1 1 » ;
Vx&+ —B*=-——-b, inv—o,

= ¢

(2.5) :
[E+?uxB+f§]xn =0, onoao,

Ampere’s law

1 1 | .

Vth"—?D‘- c~£ = --c-gf_, in v—o,

(2.6)

[H—%—uxD+ A]xn =0, ono.
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Gauss's law

V-D-—g=¢g, inv-—o,

2.7 "
[D+D]n=0, onoe.

Conservation of magnetic flux

V-B=m, inv—o,

(2'8) A
[B+B]:n=0, ono.

Conservation of charge

dq % .
V-#+—+V-(gv) =0, inv—o,
2.9) CANFT &

g*—ﬁ]-n =0, on o,

where ¢ — mass density, q— electromagnetic momentum density, t*— stress vector,
g* — total energy flux vector, & — energy density supply, ¢ — free charge density, p —
position vector, v — velocity vector, f — total body force density (per unit mass), ¢ — total
energy density, and

(2.10) €5E+—£-"XB, ._.?EEH-—--;—TXD, S =¥ —qv,

where E — electric field, H — magnetic field, D — electric displacement vector, B — mag-
netic induction vector, J/ — free current density vector, ¢ — speed of light in a vacuum.
A vector carrying an asterisk as a superscript is given by the following expression for its
convected derivative, for example,

B .
* = —_
B* = = +B,
where
Q.11) B = (V-B)v+Vx(Bxv).

We introduce the following relationships for further reference:

D=E+P, B=H+M, @ED+—:TY><H.

2.12) QEB——:-vxE, 2 -p- l.va,

where P — polarization vector, M — magnetization vector.

In the above balance laws (2.1) to (2.9), v is the configuration of the body and o a sur-
face of discontinuity sweeping across the body with velocity u and whose normal is n. The
electromagnetic laws are expressed in Heaviside-Lorentz units.
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The material points of the body in the undeformed state are determined by a set of
rectangular coordinates Xg, K = 1,2, 3. At time  the motion carries Xk to the spatial
points x,, k = 1, 2, 3 under the continuous mapping
(2.13) xe = XX, 1)

which possesses continuous first-order partial derivatives with respect to X and ¢. Futher-
more, we require that

(2.14) det(x;, x) > 0

so that Eq. (2.13) possesses a unique inverse given by

(2.15) Xx = Xg(x,1)

for all points of the body, except possibly a countable set of singular surfaces, lines and
points.

The summation convention over repeated indices is employed and a subscript comma
shall denote partial differentiation. A superposed dot denotes material time-rate, for exam-

ple,

dv(x, t) . _ De e x
(216) "‘t—‘"--a—x;"-—, S_E_TD_!-F&'*” 3

The nonlocal residuals o, o*, f, £ 1, f*,};, A, b,E,H, B,D, , g,m, and & are
introduced to account for the effects of fields at all other points of the body on the point
for which the localized balance laws are written. We require that the integrals of these
residuals, defined over their manifolds of definition, vanish, that is

A A oA

[ @, of, ol 0h, 4,7, 5)dv = 0,
V-o

-

@17 [ @, 1, k¥, DY, B, 29n,da =0,

[ @, da=0, [(E& ) kds=o0.
S-y 3
The integral in Eq. (2.17), is taken over an open material surface S (enclosed within a clos-
ed curve %) which is being swept by a discontinuity curve y having the velocity u, and
k is the unit tangent vector on y; da and ds are, respectively, the elements of area and
length. "
The (nonlocal) current density residual # is given by

(2.18) F =¥+,

The physical significance of the localization residuals can be interpreted from the
equations in which they appear. For example, ¢ is the mass residual which represents the
rate at which mass is created or destroyed at the point x due to the effects of all other
material points occupying »-o. Such phenomena could occur either through chemical
reactions, through the existence of quasi-particles (e.q. electrons, excitons, phonons) or
through dissociation, ionization, and fracture of the subelements of the body [18]. We
may interpret f as the nonlocal body force at the point x due to the long-range intermo-
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lecular forces produced by all other points of the body (e.g. gravitational, electromagnetic
attractions). The surface residual g* is associated with the production or destruction of
mass in crossing the surface ¢. The electromagnetic residuals introduced by ERINGEN [14]
have similar interpretations. Here 7 is the induced nonlocal charge at the point x due to
the charges throughout the body at all other points. Similarly, m (if it exists) is the magnetic
pole strength induced at x by the rest of the body, while b represents the nonlocal magnetic
induction.

3. Second law of thermodynamics

The fundamental thermodynamic law can be stated in the form of a generalized Clau-
sius-Duhem inequality. Following GROT and ERING®N [19], we assume physically that the
entropy production rate in the body with electromagnetic constitution is equal to the total
energy flux minus the “Poynting vector”, ¢& x 3 divided by the absolute temperature
6. The vector ¢ x# has the interpretation that it reduces to the “Poynting vector”
when the body is at rest. Thus the global form of the Clausius-Duhem inequality takes the
form

3.1 —_— fm}dﬂ-i- (q & xH)- da— f‘g(@h"‘fo &dv >

Here 7 is the entropy density per unit mass and #, is the external current source. It must,
however, be noted that although the above form of the second law is extremely general,
it does not encompass such phenomena as magnetic spin interactions and polarization
gradient effects. The surface integral in Eq. (3.1) is taken over the surface & bounding the
body.

Now localizing Eq. (3.1) we obtain

5 1 A ~ -
M+V'[%(q—q€><3_?1)]—g(eh+.{o'§)+9n—%es?0, in v—a,
(3.2)

[gq(ﬂ" —u¥) - % (q—c& x g)*—Q*] n,=0, ono,
where 5 and s* are entropy localization residuals subjsct to

(3.3) f—;-gﬁdﬂ >0, f.?"dak =0.

Using Egs. (2.5), and (2.6),, in order to simplify the second term in Eq. (3.2);, and
introducing

= g—fn, p=¥-v-g,

v
(34) -
F=F-Foi Q=q-cbx¥,
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where ¥ is the Helmholtz free-energy density, Eq. (3.2), may be written as

T 1

= g—(w+\f'g+6f;)+?t" -V..+Q-V(i)+—(;¥-n*+3f-3*)
0 ¢ 0( 1 ) 1.
e bl e Rl

which becomes the generalized Clausius-Duhem inequality.

(3.5)

I*‘AI

( L)+ 5 (15> 0

nv—o

4. Constitutive equations

In this section we develop the constitutive theory for a general class of nonlocal electro-
magnetic fluids in which the mass production and heat conduction are not appreciable,
that is,

.1 0=0, Q=0.
In order to formulate a constitutive theory for a general class of nonlocal electromagnetic -
fluids, an appropriate pair of independent electromagnetic quantities must be chosen
as constitutive variables. In view of certain invariance (Galilean) requirements that the
nonlocal electromechanical constitutive functionals are required to satisfy (which will
be discussed later in our work), and under the nonrelativistic “v?/c? approximation”
(that is, v?/¢? < 1), it is convenient to choose (£, 2) as our independent electromagnetic
quantities (cf. ERINGEN [14]). For a nonlocal electromagnetic solid, the constitutive func-
tionals depend on the following strain measures, at al/ points X', of the body:

X' (X) = x(X', )—-x(X, 1) = x'—x,

xx(X') = X'x —X ¢ = 0x'/OX*—dx[oX*,

Ax(X) = xx %,  Cxu(X') = Xg" X1,

Cxe(X) = X, k" X1,

Ty(X) = B(x', ) -B(x, 1) = &' -2,

Ay(X) = 9, )-9(x, 1) = 2’ -,
where x’ is the image point of X’ in the deformed body, as also x is the image of X in the
deformed body.

Since Stokesian fluids are defined (ERINGEN [10]) as materials which accept every
frame of reference leaving density unchanged as the material frame, we need to obtain
the material time-rates of the strain measures in Eq. (4.2) by applying the limit X’ — x’,
X — x with p fixed. We obtain

X =ox—-x, Y-ov-v, yx-0,

4.2)

Xk = i—V,i, Ag—xp—x,
Ag~ Bux') = B = Vit (X' —X)+0; v,
(4.3) €xL— 0, (é;n. = Pu(X) = Y = V1~V
Cxe = 0us  Cre = 2du(X) = v+,
Io-I'=%-23, ) S [ Q -A,
bi-A=9-9, A-A=9-9,
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where 9, is the Kronecker delta, and the primes on the Eulerian field quantities indicate
that they are evaluated at x’, while those without primes denote that they are evaluated
at x. For example,
v=v(x,1), v=vx,) X=42x1, X=2BX,1),

B = Bu(x', 1), etc.
‘We will follow similar notations throughout the rest of the paper, for the sake of brevity.
In the above measures the point x is any local point of interest chosen in the body, while

X' is any surrounding point in the same body. Thus we are motivated to define the nonlocal
electromagnetic fluids by the constitutive equation of the form

(45) 'lTO(X, t)= 'P(S’ 3’)’
where v is a scalar-valued function (Helmholtz free-energy density) of the variables in

S and a functional of the nonlocal variables in 3’ defined below. J and J' are, respectively
the ordered sets:

44

I=1{4,2,4,9,9,0-,0},

(4-6) 3: o {rt—l, p:’ Y’! I\:’ I.“,ﬁ',ﬁ'},

where

@47 ret=tli(x)—e i (x) = ' et

The other response functionals t, g, €, 7, £, # and the conduction current

F=¥-g,.

are assumed to be of the form given by Eq. (4.5) by the axiom of determinism and equi-
presence. Although the mechanical variables defined in J and ' are objective under
arbitrary time-dependent transformations of frames of reference, the electromagnetic
quantities are not. However, under the group of Galilean transformations defined by

(4.8) x* = Rx+'o!+bo, t' = f—a,
for some constant a, where R is a time-independent orthogonal transformation, that is,

RRT = RTR = I, det R = +1, and v, is a constant velocity vector and b, is some ar-
bitrary constant vector, it can be readily verified that # and 2 transform under Eq. (4.8) as

4.9) #*=R3B, 2*=R2

and are therefore form invariant under Eq. (4.8). In like manner, all variables in J and J’
can be shown to be Galilean-invariant. In view of Eq. (4.1) the entropy inequality (3.5)
becomes

@10) ~LGri gront Lt vt @ Doy B

rgeF-Lt g @ T2 D+ LE-H>0 ino—o.

Now assuming that ¥ possesses continuous first order partial derivatives with respect
to du, B, B, Dx, Dx, 07" and 0 and the Fréchet partial derivatives with respect to
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r'=1, Bi, ¥, i, I's, 4] and 4;, continuous of order zero, and using Egs. (4.5 —(4.7),
we calculate y which yields

. _aw oy oy oy B(p_ o
(4.[ l) Y= 6d' d“ ag Qﬁ'i‘ ag‘ gt"' a@k g. a@l @k
D R f‘,, F 33507 e )

' f [—‘,‘% QI VAM+ g, WRE 1}?;:(1_)] do' (M)

+ f [ 5T [REREY VY NI +3—l(3 R z)atm]dﬂ o),

where d/0f denotes Fréchet differentation and the functional gradients appearing in the
integrals are also functions of a vector A. Using the equation of continuity (2.1),, with
0=0, we have

(4.12) 0T = —g% = g~'vh
while we may also write

oy
i =5 2+

Using Eq. (4.13) along with Egs. (4.12), (2.10)3, and (2.17) in Eq. (4.11), and then substi-
tuting the result into the entropy inequality (4.10), we have

4.13)

”“

@i - &(r 2)is [—f* ARG A LT
+E,H,)]o._%(g,- [ ?&,—)éﬁ—lr“—D“J’—B‘x'-—é” -‘}%—a_o_
~%nBn fé' ')] [ (3d" ad,,,) fdyu s % %
g:*”:{”*)""* 7] (aa;. %_% ) "_(aa. ) %
_“(a@k :} 9,-2 L piy ?Jk(J{—}o.H—o;—{ﬂJ{—x'.!;.)

+ % (h—5)+0(@*/c?) >0, inv-o,
where

(4.15) D" f[d 0 o/ t+EF"{Ul (X1 xt)"r‘ﬂl xU:+f-’k}

e R T .
6"&! f"k a+ Jf" gt 1,‘ @;+ FY A D+ ﬁA. 9&]

4 Arch. Mech. Stos. nr 3/81
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and for brevity we have written, for example,
(4.16) f = g (3 J; Ndv'(p).

) Muhiplying Eq. (4.14) by 6 and integrating over the volume v— o eliminates the terms
h and 5 by applying Egs. (2.16) and (3.3). Because of the form invariant nature of the consti-
tutive functionals and residuals they cannot depend on the quantities 0, v,, 9y, v. i
&, @,, 9, and 9,, which are not form invariant under Eq. (4.8). Neglecting the terms
of 0(v*/c?) the volume integral of inequality (4.14) multiplied by 6 is linear in these quan-
tities, and therefore cannot be maintained for all possible variations of these quantities
unless

1
N = ——g%, k= 55, Uk v’ ——d’.(q+q)———eu..(E;H +El H,),

- _dﬁ_dv' 1 ) f dv’
& f YA 2 adﬂ ady P

4.17) 5y oy b
ol g, - f?r”“) = ol - p 'M—;"")
_i'e___ . JPCT . ;

o, ar, ¥ 09, J o4
and

1 d 1 1 A A A A A "
(4.18) ?D’u"t.ﬁ' ?Jku{—furi' 5 (‘kJ{—.*’gbg)—“—g“p}l“‘ —%—(h—s) =0, inv-—o,

where
ol =“u‘u’u"6u( f 6?; dv’ — )
@19 uihi = 6D+ K, By— (& D+ 2 - By,

“h=—;—({-D+£-B).

The above permissible shortcut leads to the analogous results as obtained by utilizing
the technique employed by EpeLEN and Laws [7], (cf. ERINGEN [8], p. 254). We have thus
proved:

THEOREM. The constitutive equations of nonlocal electromagnetic fluids are thermody-
namically admissible if and only if Egs. (4.17), (4.18) and (4.19) are satisfied.

From Eq. (4.17), it is clear that for nonlocal electromagnetic fluids the nonlocal force
f does not vanish.

Using Eqgs. (4.17) and (4.19) the energy equation (2.4) may be written as

(420)  —(otan+umtan—sxhd)du+o(B—g- V)+H -B+& - D+ov- f+ (Dﬁ —h _ﬁ) =0,
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where parentheses enclosing subscript-indices indicate symmetrization, for example,

1
plan = 7 (ptur+ ptur)-

We now require the energy equation (4.20) to be invariant under all rigid motions (4.8).
Since y, and hence n and # are invariant as can be seen from Eq. (4.17),, and pty, mfu
and d, are invariant, so are pfundy and yfu,dy as well as the scalar products in Eq.
(4.20). Moreover, since the energy source h is considered invariant, we must have

4.21) h = ho+ph+v-f,

where I;o is a scalar-valued constitutive functional of the same type as y, satisfying the same
invariance requirements under Eq. (4.8). Thus we may write the energy equation as

(422) 007 — (otany + mtouy — hOu)du+ 2 - B+& - D —p(v- g+h—ho) = 0.

The nonlocal residues fi and  are thus determined by Egs. (4.17), and (4.21) to within
a class of scalar-valued functions A, obeying the constitutive axioms of the theory. These
and other residuals are further restricted by the vanishing of their integrals over the body
(Egs. (2.16)). We do not pursue the discussion of these restrictions any further.

For a linear constitutive theory the dissipative stress may be written as

4.23) M = ai™d,, +a" B, +a "B, + "D+ "D,
[ (A BEB DR BT 4 Y A, Y ),

v—-a
where the term involving r~*(x’) has been dropped since it may be absorbed in the expres-
sion for the total stress tensor which follows later in Eq. (4.26). The tensors a;, i =
=1,2,3,4,5 are functions of p~! and 6 while all b;,j=1,2,3,4,5,6 depend on
o'~ 0, and ||x"—x]||.

The invariance of Eq. (4.23) under the full orthogonal group of transformations {R}
and translations (4.8) dictates that a, and b are isotropic.

Now we will examine the axiom of attenuating neighborhoods in relation to materials
with electromechanical constitution. It has been shown by ERINGEN [18] that the axiom
of attenuating neighborhoods is one of the basic axioms of nonlocality governing thermo-
mechanical materials. This axiom is based on the fact that for a material with thermome-
chanical constitution the nonlocal interactions at a material point x due to all surrounding
points x” of the material die out rapidly as the distance ||x’— x|| increases. In our case we
have a fluid with electromechanical constitution. At first sight it might seem that the axiom
of attenyating neighborhoods for materials with electromechanical constitution may be
violated in view of possible distant electromagnetic influences that may occur. But if
one recalls that there are no external electromagnetic fields acting on the fluid in our
case, then one finds that there is no physical reason to suppose that the mechanical and
electromagnetic constituents of the medium would individually exhibit uncoupled respon-
ses. Thus it seems logical to expect that the overall behavior of the material is dictated
only by the resultant coupled electromechanical constitution and not by mechanical re-
sponses separated from the electromagnetic responses. Now if one invokes the axiom of
attenuating neighborhoods to” such materials, the interpretation of this axiom would

4+
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lie in the fact that it is not the electromagnetic effects that are confined to small neighbor-
hoods but it is the resultant electromechanical interactions that are confined to small
neighborhoods of the local point x. This will permit one to ignore all of the higher order
small terms O(||x’—x||?) to obtain a linear constitutive theory, both in the nonlocal ma-
terial coefficients and the constitutive equations. As a consequence in the linear theory the
nonlocal material coefficient tensors a; and b; reduce to:

a*=0=b" 2<ig5 2<j<6,
(4.249) atim = 2, 6M8™ 4 py (85" 8" + 64 o'),
bt"” - 1; 686mn+p;(6halu+ 6“5"‘),
and hence the electomagnetic quantities drop out from the stress constitutive equation

in the linear theory.
Letting

(4.25) Aowd— [daw, pwomp - [pido

v—=a v—-o

and using Eq. (4.19),, it follows from Eq. (4.23) that

(4.26) 1y = (-~ —ph+2d,,) O+ 24,00+ ptu+ _’. (0" + Asd,y) u+ 2pdig]do’,

v—0

where

dy , Oy

T T =

To obtain the linear constitutive expressions for #° and & we assume that the free-energy
v to have a constitutive make-up involving linear functionals. To this end we take

(4.27) n=—

(4.28) v =vo+ | T+ piTi+vidit vk di+piBi+ v yi)de,

Ll

where

Yo = wO(S) - 'Po(gs Q_! Qv Q’ d, e-lr 8),
(4.29) V=v(@ 9,940, xK-xl), i=12.,5,

v =@, &,9,9,4,0,0,|Ix~x]).
or a completely linear theory ¢} and y%' are taken in the form

Yo = m}@.+a§§*+d§9;+ ﬁgt+a¥dkl 3 )

+ (Lﬁgl+ﬁfé:+ﬁ§lgt+ﬁ:l .l+ﬂ¥udlh) dg»

(4'30) 'P‘ ?*lgl"‘?u +7:591+? Ql*'ﬁ”dinv i= l's 2!'3: 4’ 5$

i = AN+ A, + YD, 4 YD, + Y,

where in y, only the pertinent-quadratic terms have been included. Using Eq. (4.30) in
Eq. (4.28) and letting

(4.31) X't = A" —paf,
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while dropping the prime in 5" for convenience and setting -

o = p- [OM+ydr, i=1,2,3,4,

(4.32)
Am = pin— [ Yo,

the linear constitutive equation for 3 is given by Eq. (4.17)s:
@33) = o[ oA+ A+ AD 4 D+ Ay
+ [ GBI A AP A+ A i+ i din)do |,

Assuming J to be isotropic under Eq. (4.8) and again applying the axiom of attenuating
neighborhoods, the coefficients in Eq. (4.33) take the form

al=b0, i=1,23,4,
(4.34) M=bd i=1,234,5,

o;l. =0= ygl.’
where b; depend on ¢~! and B, and b} depend on ¢’~!, 6, and ||x’—x||. Using Eq. (4.34)
in Eq. (4.33) yields the linear constitutive equation for 2,

435)  o#* = o[ B+ b, Bt by D+ 5,9,
+ [ (6, B+ b3 Hi+bi D} + bi Dy + b1 f)dv |
e
Similarly, using Eq. (4.17)s we obtain the cﬁnslitutive equation for.&':
436) & = o[s B+ st BtsiGut [ (iM+siBi+ 51D+, 9, +5ipdo],

where 5, depend on o~! and 6, and s; depend on ¢'~*, ¢, and ||x"—x]|.

The linear constitutive expression for the conduction current J¢ = J/ —Fo cannot be
derived from Eq. (4.17). As dictated by the axiom of equipresence J¢ is assumed to be
a vector-valued functional given by

(4.37) i = 63, J)-
Following a procedure analogous to the one for the dissipative stress yields
@38) J§ = e Bt ot Dt et [ (o Bt o Bt 4D+ D+ ol f)de,
v=o
where
a = ae~', 0),

4.39) o = (o’ 0', |1 ~xll),

for all 1<i<5, 1<j<6.
This completes the linear constitutive theory for nonlocal electromagnetic fluids.
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5. Thermedynamic restrictions

All of the material coefficients appearing in Eqgs. (4.26), (4.35), (4.36), and (4.38) are
subject to the restrictions arising from the entropy inequality (4.18). Integrating Eq. (4.18)
over v —a yields the classical dissipation inequality for the entire body:

(5.1) f %-Dr“d.,dw f% Eido + f —;-[J*f.—.;e’*i;.+ o(h — ph—$)ldv > 0.

The above inequality is postulated to be valid for all independent mechanical as well as
electromagnetic processes, and as a consequence the last integral in Eq. (5.1) may be set
equal to zero without loss of generality, Through Eqgs. (4.26), (4.36) and (4.38), the remai-
ning two integrals in Eq. (5.1) vary independently of each other.

Considering the case where we require (point-wise satisfaction)

(5.2) f % oftdydv > 0,

where we assume 6 > 0, yields analogous results as obtained by ERINGEN [14], namely, the
“mechanical” material moduli must satisfy

(5.3) Bo20, p, >0, 32,422,+24,2>0, 34,+24,20.
We now take the first integral in Eq. (5.1) to be zero and require

(5.4) f % &+J5do > 0.

Demanding point-wise satisfaction of Eq. (4.5) a sufficient condition is

(5.5) &> 0.

Using Egs. (4.36) and (4.38), Eq. (5.5) is satisfied if and only if

66 Am®yO+ [ Puyyi®do'+ ( [ suyioao) ( [ duyihio’) > 0,

where the summation convention is applied over the repeated indices m and n, form, n =
= 1,2, 3, 4, 5 and the index k which is not to be summed is placed inside the parenthesis

for example, (k) which appears in Eq. (5.6) as a superscript in each term. The various
terms in Eq. (5.6) have the following expressions:

yik) = ‘ak! y;h = ék; y%ﬂ = 9., yii) = Qtt’ y?) = Os
KO =&, yP =@, YP=2, ¥P=9, y®=4

Appy = Ay = -;—(s,,a:,,+s,,¢_), for m,n=1,2,3,4,5,

(57) Ams = 0 = Asp, m=1;2,3,4,5,
Py = SuOy+dnss # Pim, m,n=1,2,3,4,5,
Pia=0, m=1,2,3,4,5.
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The inequality (5.6) must be satisfied for all independent processes; which implies -that
each of the following terms must separately be nonnegative:

(5:8) Amyn’ Vi 2 0,
(5.9) J Pry®y®do > o0,
(5:10) [ swyide)( [ duyioin’) > 0.

First, we consider the thermodynamic restrictions arising from the inequality (5.8)
which is free from the nonlocal terms. Equation (5.8) can be satisfied for all independent
electromagnetic processes if the coefficients 4, of the quadratic form satisfy the following
restrictions:

(5.11) Apm=20, m=1,2,3,4 (no sum on m);
(5.12) A1 €0, A3,<0;
(5.13) A3 =0=A4, A;,=0=4,,,

where the underscored subscripts in Eq. (5.11) suspend the summation convention. The
inequality (5.11) readily follows from the well-known fact that if-a quadratic form with
a symmetric matrix (4,,) is positive definite, then its diagonal elements A,,,, must be non-
negative. Equation (5.12) can be established as follows. It is readily seen that 4,, and

A, are, pespectively, the coefficients of the material time-rates of -é— Z and %9} inthe

quadratic form in Eq. (5.8), which represent the magnetic and electric energies stored
in the medium. Under appropriate external electromagnetic sources, consistent with
given physical situations, the electromagnetic energy stored within the medium must be
dissipating so that

2
Hence the quadratic form i Eq. (5.8) cannot be maintained positive definite for all
independent variations of the electromagnetic variables present unless the coefficients
of the terms in Eq. (5.14), namely A, , and A5, are negative or zero which yields Eq. (5.12).
The remaining coefficients 4,3, 4,3, A4, A;4 must clearly vanish for otherwise one can,
by choosing #, and 2, and their material timerates arbitrarily, show that the nonnégative
character of the quadratic form in Eq. (5.8) is violated. Hence Eq. (5.13) is established.
“In view of Eq. (5.11), Eq. (5.13) is satisfied if either
(5.15) il T ey

a2=0=3;, S4=0=d‘.

(5.14) (’ @) <o, (-%-.@g)s 0.

Utilizing Ohm’s law and the fact that £ and 2 are related to each other in a linear fashion
in the classical constitutive theory, we take

(5.16) o =0=s5, a=0=s,
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and hence o, 55, o, and s, cannot be zero in Eq. (5.15), thus dropping the local dependen-
cy of J*and &€ on & and 4.

Next, in order to analyze the integral terms in Eq. (5.9) and obtain the consequent
thermodynamic restrictions arising from nonlocality, we need only appeal to the continuity
of the electromagnetic field quantities and the axiom of attenuating neighborhoods. First
we note that each of the terms in the quadratic form in Eq. (5.9) consists of a product
of two fields, one a function purely of a given local point x and the other a function of an
arbitrary surrounding point x’, in the body. Thus the total fields can vary independently
of each other. Hence the inequality (5.9) cannot be maintained for all independent varia-
tions of these “local” and “nonlocal” field quantities and their material time-rates unless
each term in the quadratic form is separately non-negative. Thus, for example, the term

(5.17) f PiyPyPde’ = f (s3a3+20383)D, Dy dv’,
v=a v—-a

draws its main contribution from a small neighborhood about x since a3 and 53 both satisfy
the axiom of attenuating neighborhoods. Also within a small neighborhood the continuity.
of @ requires that 2 -9 * > 0 so that Eq. (5.17) will be nonnegative if

(5.18) Pis - Ssay+assy = 0.
For such a terms as
(5-19) f P;4yg"y’4"’dv’ = .r (33 a;+ u;s;)ggéidﬂt,

we expand 95_' into a Taylor series abent x,

(5.20) 9' = 9+(x' —x): V9 +0(|Ix’ —x||?)
and ignore terms of 0(||x’—x||?) or higher. Hence
(5.21) 9 9~9 D+((x'-x)- VI 9.

It is physically reasonable to assume under nonrelativistic conditions that for 2 wide class
of materials, the spatial gradients of material rates of fields such as & within a small neigh-
oorhood of x, are small enough to permit the neglect of their products with |[x"—x]||
in comparison with 9. Thus using this assumption we have, for example,

.

(5.22) Q"Qﬁ[(!'I)‘VQ]‘Q‘Q'Q;=(—;—~QZ)QO,

which implies that Eq. (5.19) will be nonnegative if
TPy = s34+ 035, <0,
Applying similar analysis to all of the integfal terms in Eq. (5.9), we obtain
Py 20, Pyu>0, Pyu<0, P,;<0,
Py =0=P3;, P{i=0=P,,, Pis=0=Pg.
Since 53, a3, 5, and o, cannot be zero as established earlier, we have

(5.23) s5i=0=a;, s;=0=a;, s;5=0=as.
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Thus in view of Egs. (5.16) and (5.23), we have the necessary thermodynamic restrictions
on P,,:
(5.29) P3320, Pie>20, Py, <0, Pi3<0
and all other P, are zero. Equation (5.24) implies the dropping of the dependency on the
magnetic field as well as the dependency on the nonlocal mechanical measure §’.

Now to study the implications of Eq. (5.10), the product of the two integralscan be
reduced to an iterated double integral and again applying the axiom of attenuating neighbor-

hoods as well as the continuity of the electromagnetic variables, we find after somewhat
lengthy, but simple calculations, that

(5.25) ssa3 =0, sial20, siei+asss<O.

Thus, finally the electromagnetic constitutive equations in the linear theory can be
written as

(5.26) 8 = oDt st [ G3Di+sidar],
(5.27) Ui = .9+ 0Dt [ (D +0iDdv’

subject to the thermodynamic restrictions (5.11)—(5.13). (5.16), (5.23) and (5.24), which
finally reduce to
(5.28) sy =0, sye3>0, s,,=0, siaq20.

Thus Egs. (5.3) and (5.28) give the complete set of thermodynamic restrictions on the
material coefficients of the nonlocal Stokesian fluids with electromechanical constitution.

6. Field equations

In order to obtain the field equations of the nonlocal fluid mechanics governing the
flow of electromagnetic fluids, we must compute the stress divergence #,; ; using Eq. (4.26)
and substitute the result into the balance of linear momentum (2.2),. For this purpose,
from Eq. (4.26) we have

6.1)  tyx = =71 —ah, + Adis, 1+ 2080,k Mt x + J‘(“:H‘ Ao, 1+ 245y dyy)dv’,

where, using Egs. (4.35) and (4.36) in Eq. (4.19), gives
(6.2)  tuix = 0|53(2: D) ,x+ 34(919:).14' (re @) x+ T+ D i f (»ﬁ%-!-ﬂéi)do'

o—a

+92, f(s;',..gi+si,.9§;)dv’+m,,, fr1d0’+§, fr;.,do'],
o=a v—g v-g

where
= POOXE) -8,

(6-3) = b;gg'{‘bzg,g"'b;ggj‘i‘b‘g;g, )
e = by @ +b; B+ b3 Dy + by D+ bs .
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Siace o', A, py, 's4, s+, and b} are functions of ||x’—x||, we may write
. _ 0d do’

(6.4) U_l——a?—‘—?z

Using Egs. (6.2) and (6.4) in Eq. (6.1) we have

(6.5) tux= =7 =uh i+ Adix, 1+ 2,001, +0[53(D2 D), 1+ 54(Di D)) 4

+ B+ T+ [ (B, i+ 2, i+ 01D (53 D+ 54 D)

v—-a

+ D153 Di+ 54 D)+ Beril}dv' — [ [0°6u+ Ad, 8+ 24 dy

v—-p
+ 9(91 3‘39; +@;S‘ Q; + Q;ri)]_kdv'.

Applying the generalized Green-Gauss theorem to the last integral in Eq. (6.5), we may
write this term as

6.6) ~ f suday+ [ Isldat,
F—-a a
where & is the bounding surface of the body and
(6.7)  su=suX,x) = 'du+ A0, S+ (0, r+01,0) + (2153 Di+ Dy 5. Di+ By -
Recalling that ¢ = 0 in Eq. (2.1), and substituting Eq. (6.5) into Eq. (2.2) yields the equa-
tions of motion for nonlocal electromagnetic fluids:
d ;

©8) A Hem)a =0,
6.9) —(m+uh), i +{Ao+ po)0% xit+ o1+ 0[53(Di D),k +54(Di 2)), 1 + (e B)), i+ T i

* j {(% ‘l“F;)”t'.t*;' + 10w +0[Di(53 De e+ 54 Di ) + D1 (53 Di+ 54 B

v—-g

’
N j‘v.l = ""j'ul" etc.

+B,4ri]}do’ — f Suday+ f [s¥1da; +o(fi — 9%~ —fy = 0.
F —a o

It is worth noting that the surface effects, including surface tension, surface-viscosities,
and surface energies, are included in the expression (6.7) and hence in Eq. (6.9).

In order to derive the electromagnetic field equations, the constitutive equations rela-
ting (#, @) and (£, 2) must be used. From Egs. (4.35) and (5.26) we have

£ = 9[b1§+£+ f I"d!-"],
(6.10) e
¢ = 9[3324'5421‘ f _d.,‘d”']’
v—a
where r’ is given by Eq. (6.3); and
(6.11) o =byB+b;9+b,9, A =59 +5.9.
Now with the use of the notation (2.11), applying the “o?/c? approximation” to each of

the equations (2.5),, (2.6),, and (2.7) wherein Eq. (2.12); is used to substitute for D in
terms of 2, we obtain

| oz 1 A 1 .
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(6.13) Vg =—b-—|—>~+4

(6.14) V-@=q+a-——l—v'(vx£).

Taking the curl of Eq. (6.13), substituting for & from Eq. (6.10),, and using Eq. (6.14),
we obtain

1» 1[|o® ]

(6.15) gs,V(q+q)-—~—V[V (vx #)]— 983V29+934V><Vx.@

. i _ a . 1 v

+Q IVxngdv = ?be—'?ﬁ (V+g)—?v>(£.
The expression for the second term on the right side of Eq. (6.15) can be obtained by first
substituting for # from Eq. (6.10), into Eq. (6.12) and taking 8/0¢ of the result. Then

upon substituting the resulting expression for ~§}- (V x @) into Eq. (6.15), we obtain

829 1 1
10 D St
(616) V:@-o? S D+ L =

L vivx j+d’dv'—c¢eilv:<.¢xw fr'd —_9——;-—;]
053 = al T A

v-a o=g
This is the governing equation for the field 2 where
(6.17) a? = 1/p%c?b, s3.
By following an analogous procedure one can show that the governing equation for
the field 2 is

i 1
2408 __ 2 ——— e o
(6.18) V2@—o? 2 = Vin+ lewwd ecbIng ecblvx!
A 1 .
——Vx f+——VxVx. fr'do'
och, 4 ob, o
+ca’—‘—3~ 05V XD +V x fd'dﬂ-}‘l.é—lil
airt = = e~ ¢ |

Thus along with Egs. (6.8) and (6.9), Egs. (6.16) and (6.18) yield the complete set of field
equations governing the flow of nonlocal electromagnetic fluids.

The boundary conditions are obtained by setting ¢ = 0 in Eq. (2.1), and using Egs.
(2.5), through (2,9);. Thus, on the moving surface of discontinuity ¢ we require the
following jump conditions:

le(v=u)]-n =0, [E+%an+i‘,]xn =0,

(6.19) [H—-lc—uxDi»ﬁ]xn:ﬂ, [D+D]-n=0

B+Bl'n=0, [F+Z]'n=0
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We note that if all the electromagnetic terms and nonlocal terms are set to zero, Eq.
(6.9) is nothing more than the classical Navier-Stokes equations. Furthermore, we obtain
the classical Maxwell’s equations for free space, in the rest frame, from Eqgs. (6.16) and
(6.18) by setting all of the nonlocal terms to zero and using the classical constitutive equa-
tions for (H, B) and (E,D).
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