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Existence and uniqueness of solutions
of a two-dimensional BGK equation

M. GRUDNICKI (WARSZAWA)

THE THEOREM of existence and uniqueness of solutions of a linear two-dimesional BGK equation
written in integral form is proved; linearization is performed in the neighbourhood of the solu-
tion of a nonlinear Couette flow. The proof is based on the theorem of contraction mappings
in a certain Hibert space. Boundary conditions are prescribed along the lines y =0and y = y,,
and the nonlinear Coutte flow is assumed to have a solution.

W pracy udowodniono twierdzenie o istnieniu i jednoznacznosci dla catkowej postaci liniowego
dwuwymiarowego rownania BGK, przy czym linearyzacje przeprowadzono wokdl rozwigzania
nieliniowego przeplywu Couette’a, Dla dowodu stosowano zasade odwzorowafi zwezajacych
w pewnej przestrzeni Hilberta. Przyjeto, ze warunki brzegowe s3 dane na liniach y = 0iy = y,
oraz ze dla nieliniowego przeplywu Couete’a rozwigzanie istnieje.

B paboTte moxasaHa Teopema CYIECTBOBAHMA H eJHHCTBCHHOCTH PeIUCHHS [UIA HHTEr PAIBHOIO
BMAA JHHelHOro aAByMepHoro ynpasnsenns BI'K, npuuem jmueapusalus npoBefieHa BOKPYr
pemenus HenmmuHenHoro Teuenusa Kyarra. lns [oKa3aTe/bCTBa MpHMEHEH MPHHLMI CY)XKHBa-
oumx oTobpaxkenmii B HexoTopoM mpocTpaHcTBe I'mmbGepra. IlpHHATO, 4TO rpaHHuHbIE
YCIIOBHA 3a[aHbl HA THHUAX ¥ = 0 My = Yo, & TAKOKeE, YTO JUIA HeHHeHHOro Teuenua Kyarra

CYILLIECTBYET pElIEHHE.

Introduction

THE PRESENT state of development of the theory of existence and uniqueness of solutions
of kinetic equations is not satisfactory. Research in this field deals mainly with the linear
Boltzmann equation and the linear BGK equation. In this paper the problem of existence
and uniqueness is discussed in the case of a linearized, two-dimensional and stationary
BGK equation under simple geometric conditions. Linearization is performed not in the
neighbourhood of an absolutely Maxwellian function but at a Couette flow between
parallel planes. Boundary conditions for the Couette flow are disturbed at one of the walls.
Such problems arise, for example, in the case of flow past a wavy wall.

1. Linearization of the BGK equation and the integral form

Let us consider the two dimensional BGK equation written in dimensionless variables:

: of o
(1.1) &1 e = —An(f—fo)
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with the boundary conditions prescribed along the lines y = 0 and y = y,. Let
3

3 2 _To_un
(1.2) fo -_—NR_E(—;"—) e T

1

be a locally Maxwellian function with parameters n, u, T corresponding to the distribution
function f(c, x, y). Let us write fin the form

(1.3) f=F+op.
Here F satisfies the one-dimensional BGK equation

oF
(1.4) c; ¥ = —AN(F—F,)

with diffusion conditions at the walls which describe the Couette flow betwecn parallel
walls; F(c, y) is the distribution function corresponding to that flow.

The function
3

3 2 _IE _int
(1.5) Fo =Nn_5(;'1) e TV

is a locally Maxwellian function with parameters N, U, J corresponding to F,
n(x,y) = N(1+»),

(1.6) u(x, y) = U+v,
T(x,y) =T (1+7),

@(c, x, y) is the perturbation function.

" Let us assume that |@| < 1. Then Eq. (1.1) may be linearized in the neighbourhood
of the solution F, and the following equation is obtained for the function ¢:

d a
(.7 ¢ ai +c,_~a£ = Lp = —ANp+Hop,

where
(1.8) Lg= —AN{ —F [v+21°—v(c—U)+ l°~(c—U)’——:i)r +(F~F }v}
N ‘P ‘P U] g— 9- 2 0 ‘ .

The quantities », v, 7 are expressed in terms of ¢ in the following manner:

1
=Wf‘*’d°’

(1.9) v = —l-f(c—U)tpdc,

g fl (c "U)z“_]"’dc

The boundary conditions for Eq. (1.7) have the form

@(e,x,y0) =0, for ¢,<0,
(1.10) 3
p(c,x,0) = Y(c,x)n 2e~*, for ¢;>0,
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Y(c, x) being the function known from the solution of Eq. (1.4) and the boundary con-
ditions for Eq. (1.1).
Equation (1.7) with the conditions (1.10) may be reduced to the integral form

(1.11) ¢ = go+BHg,

where @, is the solution of the equation

0po 990 -
(112) Cl—a;‘i'f-'z'?y—'}‘ANQo =0

under the boundary conditions (1.10), B is an operator inverse to the operator ¢,d/dx +
+¢,8/dy+ AN under homogeneous boundary conditions, i.e.

y A7
1 ¢ —-;jN(ﬂd’s
A—fg ¢, x——(y—z),z]e " * dz for ¢;>0,
Cs a Ca
(1.13) Bg =

¥ A ¥y
! c, -2 [ v
gle, x——(y-2),z]e " * dz for ¢, <0.
c, c;
Yo

2. Existence and uniqueness theorems

Let us assume Eq. (1.4) to have a unique solution F(c, y) positive and bounded to-
gether with the hydrodynamic moments N(y), U(y), 7 (»). Let us now pass to the problem of
existence and uniqueness of the solution of Eq. (1.11). Principal concepts of the proof
are similar to those used in the proof of existence and uniqueness of the solution of the
linearized Boltzmann equation [2].

Lemma 1. Let ¢ belong to the space of real variables, ¢, x, y be square-integrable
over all variables, and assume zero values on the set y = 0, y = y,; let it also be a periodic
function. The integration with respect to x is performed along the segment equal to the
period, and with respect to y—in the interval (0, y,). Assume that all the integrals and
derivatives written below exist. Then the inequality

2
Q.0 f(c, g—g— +c, :;%) a(e, y)dedxdy = yy;’fci a(e, y)dedxdy
holds true, a(c, y) satisfying the condition

(2.2) 0 < ya(e, y) < a(c) < a(e, p).

Here y > 0 is a certain constant, and a(c) depends solely on the velocity c.
Consider the equation

dp op
2.3 bk £ 9, W SO
( ) €y ax C2 ay g(c!x7y)

with the homogeneous boundary conditions. If a periodic solution exists, then g must also be
a periodic function with the same period. The solution may be represented by the formula
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¥
f%g(ﬁ,z)dz for ¢, >0,
0 2
@4) ? =

Yo
1
~—f -c—g(ﬁ,z}dz for ¢, <0,
2
¥y

where f = x—(¢,/¢;) (y—2). Consequently, applying the Cauchy-Buniakovski inequality,
we obtain

% 2
(2.5) f ciap?dedxdy = f c§&(c)(f Fl—g(ﬂ, z)dz) dedxdy
H 2

;>0

F." # i 2 1 2
+n fo &(c)ci( ;; g(ﬁ,.z)dz) dedxdy < J c%a(c)( uf !Eg(ﬁ', z)i!dz) dedxdy
Yo

< fci&(c)yof %,g’(ﬁ, z)dzdedxdy.
H 2
From the periodicity of g it follows that
2.6) [ 8B, 2)dx = [ g(x,z)dx

for the integration interval equal to the period.
Changing the order of integration at the right-hand side of Eq. (2.5) and using Eq.
(2.6), we obtain the inequality

Yo
2.1 fc% a(c)p?dedxdy < f&(c)yof g%(x, z)dxdzdyde = f&(c)y&g’(x,y)dcdxdy
0

which, combined with Eq. (2.2), yields the inequality (2.1).
Let us introduce the space X", of square-integrable functions with respect to ¢, x, y, with
the weight F;! and the scalar product

(2.8) (8, b)) = [ F3'ghdedxdy.

Lemma 2. If the function Bg satisfies the requirements of Lemma 1 and the functions
used below belong to X", then there exists a positive constant % such that the equality

2.9) 0 = F5' Y (AN +n’clys*

implies

(2.10) ((eF3Bg, Bg)) < ((¢7'2. ®))-
Proof. By assuming

the inequality (2.10) may be written in the form

f op dp dp dg ])
2 1|, 99 g9 o9 op
(2.12) ((eF3p, @) < ((Q [cl e +c; 3y +AN:;:], [c, i +c, 3 +ANg
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where ¢ satisfies homogeneous boundary conditions. The right-hand side of the inequality
(2.12) may be rewritten as

d d
(2.13) ((g" lca—‘: + AMp]. [c—a‘zm +AN¢]))

o\’ op
= -1p=1 xcatos - o 2
_fg F; [(c 3!) +2¢ ax ? AN+ (AN @) ]dcdx.

For the sake of brevity we denote x = (x, y)

(2.14) f(gFo) IAch’i - pdedx _f ax - pdedx

+ f (AN —oFo)o~'F; ’c% pdedx.

Since (AN—pFy)* < [(AN)*—0*F3| = n*c3y5?, the Cauchy-Buniakovski inequality
may be used to verify that

(2.15) 7f(AN —oFo)o-'F; 'c—gf tpdcdxl

< -;?—(fc;o—‘Fo'ep’dcdx) (f& 'Fg! ( g a'cdx)

1
0 o \\?
= n ~(e~'cio. 9)’ (( -lc_a_ﬁ., c_ai:i))
1

2
% - f f %9
(2.16) fc o pdedx = J c x dedxdyd:.

Let us observe that

Function @ assumes zero values on the planes y = 0 and y = y,. Since it is a periodic
function in x and does not depend on z, the Ostrogradski formula yields

-~

o
2.17) J ¢ 57 gdedx =0

The following estimate is now made in Eq. (2.13):

(2.18) ((e"[c%:i+AN¢].[c%+AN¢]))
[(f9~11-"~ ( ) dcdx)l —2i(fc=9—'r- =dcdx) I
.(fg-lpai(c%)zdcdx)}i+fg"F;‘(AN)2¢2dcdx.

Let us substitute a(c, y) = o~ 'F5' = [(AN)*+n?c2y52]~ 12
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This function satisfies the inequality (2.2) provided &(c) = [(ANmao)?+7%c3y52] /2
and the constant y is chosen properly. Applying the inequality (2.1) to the right-hand
side of (2.18), we obtain

(2.19) ((9-’ [c%{i +AN¢},[c%%+AN?’]))

1
15 : : :
> [ll(fcﬁe"Fa‘w‘dchJ —2—1(_‘ C§e"Fa‘¢>‘dch) ]
Yo Yo

1

Y 2
Vy (f cﬁg"F;'tpzdcdx) + f 0~ 'F3 (AN)*p*dcdx

Yo

[(AN)Z y’”’ ]e-‘Fo pidedx > ((oF3g, 9))-

The last inequality in Eq. (2.19) holds true if # > 0 is selected so as to satisfy the condition
y—=2ny'2 > 52, what is always possible.

Let b denote the Hilbert space of real functions of ¢, square-integrable and having
the scalar product

(220 (8. %) = [ Fa'gpde.
The functions
¥, =2F,~F,
= Fo(c, =U,),
(2.21) o( 1 1)

Ep:a = Fo(c,—U,),
3

Y, = Fo[(c-U)z——*— 2

are orthogonal in b. The following equalities hold true for the functions ¥;:

(2.22) LY, =0, i=1,2,3,4,

(2.23) (¥, Lp) =0

Operator L may then be written in the form

(2.249) Lp = (—ANI+H)p = —AN(I-P)¢p,

I being the identity operator, and P — the projection operator onto the subspace spanned
on the functions y;. From the general properties of the pojection operators [3] it follows
that L and H are self-adjoint operators in [), L being a nonpositive and H — a nonnegative
operator.

Lemma 3. If the functions ¢ and p'/?¢ belong to b, then there exists such a positive
constant ¢ < 1 that the equation

(2.25) (o~'Ho, Hp) < ¢*(oF39, ¢)
is satisfied.
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Proof. Since H is a self-adjoint operator in T, the operator B o~ Y2Hp-1I2
is also a self-adjoint operator in b,

(g, Hh) = (Hg, h) = (g, Hh) = (g, e'%He'éh)

B X . S| "
= (0 ?g, He *h) = (He %, ¢ *h) = (o 2Hg g, h) = (Hg, h).

Hence, from the general properties of the norm of self-adjoint operators in } it follows [3]
1

-1 2ml|2 2 2 2

F2 = 1 2P @.09) (7, 0F2 9
- (eFép,0) |[92Fo?’“2 oy DI IGTFagl? by PP @0

The Cauchy-Buniakovski inequality yields

@21) (9. 09) (9. oFip) = (f -P%'-w’dc) ( f eFo'P’dc) ?(f 9??’“))2 = (9, oFop)’

and so from Egs. (2.26) and (2.2'?) it follows that

(¢~'Ho, Hp) _ (¢, Hp)*
2.28 o7 & (g, He)®
= (eF39, @) : (@, oF op)*
9

The inequality (2.28) indicates thuit in order to prove Lemma 3 it is sufficient to show that

(2.29) (p, Hp) < q(@, 0Fo9).

Owing to the fact that (@, Hp) = (¢pF3/*0'2, GpFy/?0'?) and (¢, 0 Fog) = (pFal*0'%,
@ F}/? p'/?) the problem is reduced to the demonstration that the spectrum of G is bounded
by a constant less than unity, [4].

The following notation is introduced here:

1 1 1 1 1 1 1 1

(2.30) G = F 29 2HF, %9 2 = ANF, %g 2PF %p 2;

G is a compact operator [4] since P is the operator of projection onto the four-dimensional
space, and hence G has a discrete spectrum only.,
The eigenfunctions @; of the operator G satisfy the equation

(2.31) A = G,
and so, due to the fact that the projection operator I-P is positive, we obtain
1 1 1 1
(232)  Algi, 9) = (91, Go)) = (i, Fy 20 2ANPF %0 2¢)
. A A W S . |
= (91, —Fo2%0 2AN(I-P)F %0 2p,+ ANF %0 2IF,% 2¢,) < (p,, ANF5'0~'9),
whence

(2.33) 1 @oANCFole) o,
((Pl! ‘pi)

since ANp™'F5' < 1 for ¢, # 0, i.e. on the set of nonzero measure.
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Let X denote the space of square-integrable functions of variables ¢, x with the weight
= J/(AN)*+n*cly;?, and the scalar product and norm are expressed by

(2.34) e = [ 0. hgdedx,
[kl = (h, h)x.

THrOR:=M. In the space X there exists a unique solution of Eq. (1.11) provided @, € X
and @, €.
Proof. From the Lemmas 2 and 3 it follows that

(2.35) ||BHgll% = (BHp, BHp)x = ((eF§BHg, BHy))
< ((e~'He, Hp)) < ¢*((0F39, 9))x = q*|l9llx-

“This means that operator BH is in the space )" a contraction operator and the necessary
proof follows immediately from the contraction mapping principle, [4].

3. Final remarks

The assumption of the particular form (1.10) of the boundary conditions is immaterial.
The proof is not changed if the boundary conditions are expressed by arbitrary functions
of a corresponding class and given explicitly on the lines y = 0 and y = y,.

Let us remark that the operator B defined in L? is defined explicitly by Eq. (1.13), From
its form it follows that the corresponding derivatives appearing in the proofs of Lemmas 1
and 2 exist almost everywhere. However, the solution ¢ which was proved to exist in
space X" does not have to be differentiable, i.e. it is not known whether it fulfills the
-original Eq. (1.7) in addition to its integral form. It may be stated that for the obtained
solution the directional derivative exists almost everywhere, what means that the original
.equation is fulfilled in the generalized sense.

In the proof of existence and uniqueness it was assumed that @, € . This implies that
the solution @ cannot be an arbitrary element of the space X" but only an element of the
subspace of X" which is defined by the product of sets of functions belonging to X and
to h. It is very essential since only in such a subspace operator H may be treated as
self-adjoint. Simultaneously, the solution belonging to that subspace represents the con-
ditions of existence of hydrodynamic moments since then |@p| < AF;1/?, A being a certain
-constant. This conclusion allows for a clear physical interpretation of the function ¢.

The procedure used here in proving the theorem confirms the possibility of applying
the method of consecutive approximations, what is of importance for practical purposes.
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