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Nonlinear micropolar continuum model of a composite reinforced
by elements of finite rigidity
Part II. Stability at compression

A. BLINOWSKI (WARSZAWA)

THE MODEL of elastic composite proposed in the first part of the paper is appied to the analysis
of internal stability of a layer cut out from the body in the direction transversal to the fibers
and compressed normally to the middle surface. The stability is investigated using the method
of superposition of small periodic strains on finite uniform deformation. In the limiting case
of inextensible reinforcement elements relations are obtained, which enable the prediction of
the instability point on the basis of the formulae expressing the phase and group velocities of
transversal waves in terms of the applied load.

Zaproponowany w pierwszej czesci pracy model momentowy kompozytu sprezystego wyko-
rzystuje si¢ do badania statecznoici wewnetrznej warstwy materialu wycietego poprzecznie do
kierunku zbrojenia i $ciskanej prostopadle do plaszczyzny $rodkowej. Stateczno$¢ bada sie
metodg nalozenia malych periodycznych odksztalcei na duze jednorodne. Dla granicznego
przypadku niewydluzalnych elementoéw zbrojenia otrzymuje si¢ zaleznosci pozwalajace prze-
widzie¢ punkt utraty statecznofci na podstawie zaleznosci predkosci fazowej i grupowej fal
poprzecznych od przylozonego obcigzenia.

IlpequioykeHHaA B NEPBOM YACTH paGOTHI MOMEHTHAA MOMENTh KOMIIOSHTHOIO MABTEDHANA HMC-
NOJI3YETCA LISl HCCIIE[IOBAHMA BHYTPeHHElH YCTOHYMBOCTH CIIOA C MONMEPEYHBLIM HANPABJICHACM
8pMHPOBKH, CHMMAaEMOT0 NEPNEHIHKY/IAPHO CEPEJHHHOM IUIOCKOTH. Y CTOHNYHBOCTE HCCIIe-
IIyeTcs MOCPE/CTBOM HAJIOMEHHA MAJIBIX MEPHONHYECKHX Medopmanmii Ha Ka KOHEUHBIE OJ[HO-
poaHsle nedopmamuu. Jna npeeskHOro CIydas HEPACTAMHMON ADMHPOBKH MOMY4eHBI 33BH-
CHMOCTH, NO3BOJIAIOLIHME NPEABHACT: 3HAUCHHE KPHTHUECKON HArpYSKHM IO XapaKTepy 3aBH-
CcHAMOCTH (pa30BOH ¥ rpynmoBol cKopocTelf NONEpeYHBIX BOJIH OT MPHJIOHKEHHOTO CHHAMAIONIEro
YCHIIHA.

1. Introduction

IN PArT I of this paper [1] we have derived the equations of motion and equilibrium
of a composite material reinforced by a single family of elements characterized by finite
stiffness; the equations have the form

(L.1) T +of* =

the stress tensor 7 being, in general, not symmetric. The tensor is determined from the
constitutive relation

(1.2) T = "M — {20 28 ot — o% (x,aﬁB“ﬁa"-x,B"“) a'a?’} ,
aJs aJ, 3

in which B = FFT; in the reference frame of convective material coordinates the contra-

variant components of tensor B are equal to the components of the metric tensor in the
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undeformed state. x* denote the components of the vector of curvature of the reinforce-

ment elements, " are components of the unit vector tangent to the fibers. a—""smd

aJs
ow

A denote the respective derivatives of the elastic energy density function w with respect
7

to » - x and xBx, and the symmetric tensor pz¢* is reduced, in the case of reinforcement
of vanishing stiffness, to the classical stress tensor. The complete expression for 7°# will
be derived in this paper; other notations have been explained in [1].

The relations derived in [1] will now be applied to the analysis of stability of the
material reinforced (in the undeformed state) by rectilinear and parallel elements. To
this end we shall consider the field of infinitesimal strains superposed on uniform finite
deformations.

Let us first reduce the expressions for »* to a more convenient form than that derived
in [1]. From the definition we have

(1.3) x"-—a"a?—( 4 )? =
’ v Ve A A" Vg, A°A°
where A* are components of the vector tangent to the fibersi n the actual base and remain

independent of the deformation. Equation (1.3) is transformed by differentiation to
yield

AT AV A%, A £y 2

(o A% B

In the case of a material which is (in the undeformed state) reinforced by a family
of rectilinear fibers, the components x* = 0 vanish, the index o referring to the initial
state; on remembering that A* = A%, we obtain

AL A i
(l's) (E:’A’A’)z gm- - 0)

(1.4) o =

the semicolon denoting the covariant differentiation in the base g,. The vector with the
components A” A}, A€, is orthogonal to the vector A since

(1.6) A7A2 A%, A° = 0,

and thus the vanishing of their vector product (1.5) implies

a7n A A A% = 0.

The values &4, and ;, are related to each other,

detgys
detg.s’

(1.8) Eipp = é:v,w

and thus by writing down the expression for the covariant derivative, Eq. (1.7) may be
put in the form

]
(1.9 %A”A"s@, = — AT A A%
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Consequently, after writing the necessary expression for the covariant derivative in Eq. (1.4)
and using the relation (1.9) in order to eliminate the term containing the partial derivative
we obtain

(1.10) W = a"a’a%a’ €5y, £%g, K3,
where
(Ill) K:y = I.':y_f:y' (l)

2. Equations for infinitesimal strains imposed of finite homogeneous deformation

Without reducing the generality of our approach, let us confine our considerations
to homogeneous deformations along the principal axes of tensor B, and assume the initial
system of material coordinates to be an orthonormal Cartesian frame of reference. The
position vector of the material particle R(x*) is transformed to the form

@.1) R(u®) = R+ R'(°),

where the primed symbols are referred to the small deformations (¢ <€ 1); moreover,

A g S
g% =B* =% g, = By = s,
2.2) Eu = 33’ ézz = 3%; Eaa = 1%.
élz e ?u M Eza = 0:
whence it follows that
A T I
B = B, B, = B,
fgr =0, I3, = 0.

In the following considerations the nonlinear terms in & will be disregarded in the
expressions for the metric and stress tensors. From the assumptions (2.2) and (2.1) it
follows that

(2.3)

R R R

Pl vkl el L

This immediately yields the following relations for the primed magnitudes, i.e. those
referring to the superposed small deformations:

2.5 8ap = B Bt 8 B
(') Expression (1.11) is valid in convective coordinates only; the fact that the magnitudes Kgy form
inthe base g« the components of a certain tensor of rank 3 follows immediately from the transformation

(2.4) g =

1 -1
properties of the Christoffel symbols. It can be easily verified that in an arbitrary base Kg? = E(Bw. o—

-1 -1 o
— Bya,y— Byy, ) B¥ and, moreover, in convective material coordinates the interesting relation Idy =
= V:;, holds true.
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The relation

(2.6) =4

yields

@7 g = —(g

and

@38 g™ = —gukEh.

Due to Egs. (2.3), the Christoffel symbols are written in the form
; og? .

(2.9 Ig, = eIy = ewg"‘.

From Egs. (1.10) and (1.11) we obtain

’, A AL A A
* = ex'® = £0°3"0%0° gyt gy ey,

and hence we obtain for the divergence of the second right-hand term in Eq. (1.2) denoted
in [I] by the symbol S%¥ the following expression:

0%°
g=2 Ou’ou’

x*  ow

s N ~| ow
(210) SY' =555 = 289[ vy

ou” ou’ A

X (Bou B35 — Zoq B"“)] ava’.

The convariant derivative appearing in Eq. (2.10) is reduced to the partial derivative
owing to the fact that both the $** and the Christoffel symbols are of the order of ¢; in the
case of the covariant derivative [p7%"], the situation is different:

@1 [or), = o,

(@7*)+ ep(¥* T3 + 7T )

i (E, 5% 7 4 3“_9 W) 4 pruery a{.(mrmg) ,

use being made of the proprety% @t = 0.
In order to determine p’, let us use the formula

2 det
o) -2
It can be easily proved that, with an accuracy up to the higher order terms,
(2.13) detg,y = detgos(1+ 62e™),
and hence

. 1.,
@14) ¢ = — 5 dglust-
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Let us now calculate v'*”, according to [1],

5
. ow QA B8") W s oy
@15 -2[23—‘& % + o (%" —2x"a"a")

2 ;T“’ (% %3 B**a*a" +a, %y B 50" — x,B'ﬂxF)] = 4 eT®,
7
where

5
ay aw aJ,
(2.16) ™ = 2,0, o

.
A
E=g

The first and second derivatives with respect to the invariants are assumed to be
bounded; it is then found that the coefficients of :—: and 3: are of the order of &2
6 7

(the invariants Jg, J; are of the same order) what implies

5
) g ow [ dJg\
(2.17 ex™ = 28 [Z(a.!,) 08,y Ks:ﬁx(m) ]r-t

aJ, ) (a.a)' (a.rz)' E ,
—_ = |— == 0’ — = J B”’—.B”GB'g y
( 08y O8ur 08uy ! Bas

]

aJ ! ’ » py a" ’ » &
() = s, () - 2w
In the case of( ud ) (k; =1, ..., 5), we obtain
aw\’ : 7}
2.18 _“’) N .l "
(218) (3-’: — 0Jg0Jy |g-3 5
where
J:‘ = aJI(gﬁﬂAgs x'! Eﬁ) gruﬁ
08ap 5=
and finally
@.19) ¥, = a3 2 wom +ienrs].
It is easily observed (cf. Egs. (2.15)-(1.28)) that
Pw ow
2.20 ) =~ — tyy T =2
( ) ‘ agmagap I-?g” ’ Ear l2=%

Introducing the notations
221 Regi=r Regp=R-§p=1
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and taking into account Egs. (2.9) and (2.10) we obtain the final form of equations of
motion (in the absence of body forces):

azré azw aw A a‘re Aghy Ay Ay
@D Fras (“ crwy e W el BN )'auwau"au' sl
x2 oy (g*f a’a“)+-—— (8- a’a’)B"(g“'—a“a“)]
0 |g=3 0J7 et

3. Uniform deformation with the principal axis of the strain tensor directed parallel to the
fibers; plane transversal wave

The problem is obtained by assuming

G.1) A=g
that is

aS = ; § 52 = 0, &1 = 0,
(3.2) 3

&3=2,, az=0, a, =0.

Equation (2.22) is then simplified to the form

ar *w aw A
(3.3) el ( +2 = )
ou®du 6g,..3g,; g=g agclv l-igﬂe
2 6‘1’; aw aw AgE  AgA A Aprg ]
T e 33 O G| Bt | =
. . or® or* .
Following the assumptions r! = 0 and R 0, representing a plane wave
propagating in the direction of g,, we obtain
=0,
i o*r *w ow 1 *r 9w
3.4 2 = 2 e 3
S iauaaua (4 08230823 b 0833 1;) i Ouou®  0g30833
B P f1 B 1 Bl
3 (u)*\ 43 FIPRETIYE | | e
s 9%r, ( O?w ow _l_) dr, o%w }
0u*0u® \ * 0gs3 0833 0gas A3]  Oudou® 0g3308:3)le-2

Differentiation with respect to the natural space coordinate z equal to the distance measur-
ed along fibers in the direction of g5 (denoted by primes) yields

ow 2w
3.5 {W"( $+2— 13) V"a 134.—-—-——}
:3) 38'33 5833 0833 3|+ v 08330823

a?
E=E
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5 w ow 0w
3. V=4{V\4 ————A323+2— l’)-!- W'l 234 ———
[E,o...? : ( 08230823 0833 2 08330823
1 ow 1 ow
o 1v) Seacor vl
2V (lz als ETP A3 3-’7)]:-? '

Here V, W are the physical components of displacements in the respective directions g5
and 8,: W = r®[Ay; V = r?[4,. It is easily verified that if g,5 = 0, if the vectors g and
B are coaxial and the vector A is parallel to one of the principal directions of B (and hence
of g), then, for each K and L the following equalities are satisfied:

oy | Jg
; =0, —— = 0.
(36) 0823 |g=% 08230833 |g=%
Equations (3.5) are then decoupled to yield
2
G7) 330833 33 g=%
. *w ow ow 1 ow 1
V=V"\4————A323+2 —— 23) —2rav ——+—-“) .
( 08230823 B3y Me<t s A  0J; 23)|e=%

The solutions may now be sought for in the form of a transversal wave:
V = Vye'®=o) L const,
W= 0.

Substituting the expressions (3.8) into Eq. (3.7), performing the differentiation and divid-
ing by V,, we are led to the following characteristic equation:

(3.8)

(39) o = 13 (Az-%ﬁ,,) RIS,
az ~ ~ A~ .
Here 42> =4 .———— 13 23|¢=4, P3s = —Ts3 (T3 is the physical component of
38'233 £23

L, v 1)
Ay kg A

Confine our considerations to the solutions periodic in z; this means that k € Re.
It follows directly from Eq. (3.9) that @ may assume either purely imaginary or real
values, and if w is a root of Eq. (3.9), then (—w) is also a root of that equation;
in the case of real-valued w Eq. (3.8) describes a dispersive wave, and for w = 0 the
material is statically “wrinkled”. In contrast, imaginary values of @ always lead to ex-
ponential instability in time. It is noted that 42 may be interpreted as the shear modulus
measured in the direction perpendicular to the fibers and so, in accordance with Eq. (3.9),
the problem of stability loss is physically sensible only in the case of reinforcement char-
acterized by the sufficiently high Young’s modulus and sufficiently low shear modulus
of the matrix.

stress in the direction of fibers), and R = 2( Y
6
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Let us now consider the limiting case: compression of the material along inextensible
fibers; it follows that 4, = 4, = 4; = 1 and @ = g,
2
Az . cz —— li _ai_. ;
(3.10) 2 k_r..; 5.0

This means that c,, is the limiting phase velocity of the wave at P33 = 0, k - 0.
For the group velocity ¢, = %} , we obtain

1«
k(A’———P33)+2Rk’ e
G ¢ = Qo = 10*+RE® o

- A - ‘_k-
]/ k? (A’--@L P,,) + Rk* @ k
1]

where ¢ = c(k, ﬁ”)-—-phase velocity. Consequently,

2
+Rk’£ =c+ RE A
® c

_ cleg—e) _ c(eg—0)
(3.12) R=S028 SHen9,

Expression (3.12) may serve for the effective determination of R and as an important
criterion of correctness of the theory; if all the preceding cousiderations were true, the
right-hand side of Eq. (3.12) should not depend on P;; and k (or w). Denoting by k.,
and P, the respective values of k and p,; corresponding to the point @ = 0 of the stab-
ility loss, we obtain

(3.13) Pysee = 0o(c3o+Rkey).

It means that in an infinite domain f’”“ is independent of R since, once the value g, c3,
is exceeded, one can always find such value of k at which the stability will be lost.

If now the compression of a layer between two rough plates is considered, it is seen
that, depending on the assumption whether rotations at the points of contact with the
plates are allowed or not (what corresponds to the manner of fixing the ends of fibers in

the plates), two cases of minimal Ps,,, are possible:

xh

o -

Fic. 1. Fia. 2.

& 2
@ V=VesinTZ, k=3 e Pm,=eo(caa+%n) (Fig. 1),

2

® V=V, (cos—z’;—" —1); k= ie. Py = eo(c%o+i;%—R) (Fig. 2).
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Final remarks

The fragmentary and incomplete study in the second part of this paper, illustrated
by only two examples, is a mere presentation of certain possibilities of utilization of the
model introduced in the first part. In order to establish whether the model might be used
in solving certain practical engineering problems, one should be able to evaluate the
necessary material functions. Due to the rather complex character of interaction between
the reinforcement and the matrix, this is not necessarily a trivial task. A study of the
wave propagation and stability problems under slightly more general assumptions as to
deformation geometry and material properties would also be of interest. These problems
will be dealt with in the author’s next paper.

References

1. A. BLiNnowskl, Nonlinear micropolar continuum model of a composite re-infarced by elements of finite
rigidity, Arch. Mech. 33, 753-761, 1981,

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received January 29, 1981.





