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Asymmetric supercritical flow past a double wedge
with embedded shocks

K.S. CHANG and M. HOLT (BERKELEY)

SUPERCRITICAL transonic flow past a double wedge at a small angle of attack is analyzed in
the hodograph plane. The flow is treated as steady, two-dimensional and inviscid, and is assumed
to be isentropic and irrotational. Along the wedge surface the stagnation points are assumed
to be attached at the forward and rear vertices and sonic speed is, a priori, attained at the upper
and lower shoulders of the double wedge. The flow is mapped onto a hodograph plane contain-
ing two folds of a Riemann surface which are subsequently separated by a cut inserted along
a branch line. In each of the two Riemann folds a numerical technique based on Telenin's
method and a double sweep method is used to solve the two-boundary value problems, one
for the stream function and the other for the velocity potential. The solutions exhibit many-
sheeted flows in the physical plane, due to the presence of limit lines on which the Jacobian of
the transformation from the hodograph to the physical plane vanishes. .

Ponadkrytyczny, okolodzwickowy oplyw klina dwustronnego pod malym katem natarcia roz-
waza sie¢ w plaszczyZnie hodografu. Przeplyw traktuje sie jako ustalony, dwuwymiarowy i nie-
lepki i zaklada si¢ rowniez, Ze jest on izentropowy i bezwirowy. Zaklada si¢, Ze punkty spig-
trzenia przytwierdzone sq do powierzchni klina na krawedziach natarcia i splywu, a predkos¢
diwicku osiggana jest a priori na gérnej i dolnej powierzchni dwustronnego klina. Przeplyw
odwzorowuje si¢ na plaszczyinie hodografu zawierajacej dwa platy powierzchni Riemanna,
ktére nastepnie oddziela sig za pomoca rozciecia wzdhuz linii rozgalezienia. Na kazdym placie
powierzchni Riemanna stosuje si¢ technik¢ numeryczng oparta na metodzie Telenina oraz
metodzie podwojnego przejécia, rozwiazujac dwa zagadnienia brzegowe: jedno dla funkcji
pradu, a drugie dla potencjalu predkosci. Rozwiazania wykazuja przeplywy wielopowlokowe
w plaszczyZnie fizycznej, co wywolane jest obecnoscig linii granicznych, na ktérych znika jako-
bian przeksztalcenia z plaszczyzny hodografu na plaszczyzne fizyczna. Odwzorowanie odwrotne
na plaszczyzne fizyczna prowadzi do pola przeplywu fizycznego zawierajacego pare skosnych
fal uderzeniowych.

CBepXKpHTHUYECKOE, OKOJIO3BYKOBOE OOTEKaHHEe NBYXCTOPOHHErO HKJIMHA TOJ MABIM YIJIOM
aTaK¥ PacCMaTPHBAaeTCA B ILUIOCKOCTH rofgorpacda. TeueHne TpaKTyeTCA KaK yCTAHOBHBIUMECH,
IBYXMEPHOE H HEC)KHMAEMOE M IIpe[IOJIAraeTCA TOXKE, YTO ABJAETCA OHO HM33HTPOIMYECKHM
u GespuxpeBbiM. Ilpemmonaraercs, 4To KPUTHYECKHE TOUKH 3aKPeIUICHBI K IOBEPXHOCTH
KJIMHA Ha MepefHeil M safHell rpaHsx, a CKOPOCTh 3BYKAa [OCTHTAETCA aNpHOPH HA BepXHEH
M HIKHeH TOBEPXHOCTAX [BYXCTODOHHero KimHa. TedeHHWe OTOGpa)KaeTcA Ha IUIOCKOCTH
rogorpacda, cofeprxaBiled qBa JHCTA PHMAHOBOH [MOBEPXHOCTH, KOTOPBIE 3aT€M pas/esAeTcs
NIpH TOMOIM CeYeHHs BOJb JIMHUA BeTBJieHHA. Ha KaXKIOM JIHCTe PHMAaHOBON NOBEPXHOCTH
MPHMEHAETCA YHCJICHHAs TEXHMKA OMMpaloliasAcad Ha MeTo TesleHMHAa M METOJ HBOMHHOrO
mepexo/ia, peilias [ABe TPaHHUHLIE 3a1aUH : OfHY UIA QYHKIMHE TOKA, 8 BTOPYIO JJIA NOTeHIHAaNa
cKopocTH. Pemenns yxaseIBaioT Ha MHorooGosoueuHble TeueHHs B ¢hHauyecKoil IIOCKOCTH,
YUTO BBISBAHO NPHCYTCTBHEM IPAHHYHBLIX JMHHUI, HA KOTOPHIX McuesaeT aKoOHaH mpeobpaso-
BaHHA M3 IUIOCKOCTH roforpada B ¢usHueckyio miockocTs. ObpartHoe orobparkerne Ha u-
3HYECKYIO IUTOCKOCTE IIPHBOJNT K MOMO (U3MUECKOro TEUSHHS, COMEPHKABIIEr0 Mapy KOChIX
YIAApHBIX BOJIH.
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1. Introduction
1.1. Transonic phenomena

THE TERM transonic is used both when a subsonic pocket of flow in a supersonic region
is generated downstream of a shock wave and when a local zone of supersonic flow is
embedded in a subsonic region. The boundary of the localized zone is, in general, made
up of a sonic line, a nozzle or an airfoil surface, and a shock wave. Over the past fifteen
years the topic of transonic flow has received renewed attention. Most of the present day
civil aircraft fly within the transonic Mach number range. Transition through the sonic
range is of critical importance in the design of supersonic aircraft and missiles.

Mathematically, the differential equations governing the transonic flows are of mixed
type, changing from elliptic in subsonic regions to hyperbolic in supersonic regions.
A theory of linear mixed equations has been developed in the literature; however, for
the nonlinear equations which govern the present problem additional difficulties arise.
Moreover, discontinuities are, in general, expected in the transonic flow as part of the
solution.

1.2. Brief review of the literature

The usual assumption made in attacking problems of steady two-dimensional transonic
flows past airfoils with embedded shock waves is that the upstream Mach number is
moderate (M, < 1.3) so that entropy changes are not significant and a velocity potential
can be introduced. The literature in transonic flow either deals with governing equations
written directly in physical coordinates, or, if the flow is steady and two-dimensional,
with the hodograph equations. In addition, simplified nonlinear transonic equations may
be considered basing on the small perturbation theory. The relevant partial differential
equations are integrated in the artifical time dependent process, with the iterations as
time steps (JAMESON [22]). Extensive work based on relaxation schemes has been complet-
ed in France. This is surveyed in the general paper by CHATTOT [3].

By contrast, the quasi-analytic methods make it possible to dispense with finite dif-
ferences at least in one coordinate direction. The three methods of this type are the Method
of Integral Relations, Telenin’s Method, and the Method of Lines. These techniques
were chiefly developed in the Soviet Union. The theory on which these methods are based
as well as abundant applications and further references, is found in the monograph by
HoLt [19]. The Method of Integral Relations was originally formulated by DORODNITSYN
[7], and has subsequently been applied to a variety of fluid dynamics problems. An ex-
cellent account of the method for inviscid flow problems is given by Belotserkovskii and
Chushkin in HoLt [18]. Telenin’s Method was developed by GILINsK1I, TELENIN and
TINYAKOV [13] and others in order to solve the inviscid equations in the transonic region
of supersonic flows past blunt bodies. HoLT and Npero [21], FLETCHER [11], and HoLT
and CHAN [19] have used Telenin’s Method to determine all or part of the solutions of
steady supersonic flows past cones with successively more difficult constraints on the
flow, namely moderate angles of attack, high angles of attack, and viscosity effects.
The method consists of approximating the dependent variables in polynomials of one of
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the independent variables as in the Method of Integral Relations. As a consequence, for
a two-dimensional problem, a system of ordinary differential equations is again obtained.
CHATTOT [3], has applied Telenin’s Method to the symmetric flow past a double wedge
in a high subsonic free stream. In general, Telenin’s Method and the Method of Integral
Relations are appropriate for numerical solutions using techniques of the following two
general types:

1) finite difference methods, and

2) quasi-analytic methods.

In the first category, both Time Dependent Method and Relaxation Methods are
used. The Time Dependent Method attempts to solve the direct equations by reformulat-
ing the boundary value problem as an initial-boundary value problem, following the
introduction of time-dependent terms. As a consequence, the governing partial differential
equations become purely hyperbolic. Several finite difference schemes have been success-
fully used to integrate the equations forward in time. Convergence of the transient solu-
tion to the steady state solution of the original problem is achieved provided the boundary
conditions become or remain time-independent at large times. RICHTMYER and MORTON
[35] give a general discussion of the method. Application of the method to transonic
flow has been made by MAGNUS and YOSHIHARA [26] and GrossMAN and MORETTI [15].
The Relaxation Method was first applied to external transonic flow with embedded shock
waves by EMMONS [8, 9]. The transonic small perturbation equations have been integrated
by MURMAN and CoLE [29] and MUurMAN and KRrupP [30] by reformulating the Relaxa-
tion Method used initially by Emmons. In their papers the mixed finite difference scheme
is used to take into account the local behavior and domain of dependence of the differential
equations. The full inviscid equations have been solved using technique by STEGER and
LoMAX [36]. Attempts are currently being made to extend the calculations to three-
dimensional inviscid flow as well as to two-dimensional viscous flow. It is worthwhile
to note here that, for a slowly converging Relaxation Method, a good estimate of the
over-relaxation factor can be made by regarding the relaxation scheme as a discrete ap-
proximation to problems governed by partial differential equations of elliptic, mixed
elliptic-hyperbolic, and parabolic types. Finally, the Method of Lines differs from
Telenin’s Method only in one significant respect: the former adopts local interpolation
over 3 to 5 points, while in the latter interpolation extends over a whole range in a coordinate
direction. Gross [14] has investigated symmetric, shock free, supercritical flows past
ellipses using Telenin’s Method and, alternatively, the Method of Lines. He solved the
resultant ordinary differential equations as an initial value or Cauchy-type problem.
To have sufficient Cauchy data, missing conditions at a boundary are guessed iteratively
until the conditions at the outer boundary are satisfied as a result of the integration. Con-
vergence of the iteration is technically speeded up by POweLL’s [33, 34] method.

1.3. Outline of the present work

This paper is a reformulation and extension of an earlier transonic calculation by
CHATTOT [3]. The steady supercriticel transonic flow of an inviscid gas past a two-dimens-
ional symmetric double wedge at a small angle of attack is analyzed in the hodograph
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plane, assuming the flow to be isentropic and irrotational. Then the flow is transformed
back to the physical plane. Along the wedge surface the stagnation points are assumed
to be attached at the sharp leading and trailing vertices, and the sonic speed is, a priori,
attained at the shoulders of the double wedge. The above assumption concerning the
stagnation points is necessary for an inviscid fluid model since otherwise the flow would
be indeterminate in the separated flow region following a sharp turn in the flow direction
at the leading vertex. The mathematical boundaries and the corresponding flow domain
are constructed in the hodograph plane and are seen to be contained within two sheets
of a Riemann surface, which are subsequently separated by a cut introduced along a branch
line. Two boundary value problems, one for the stream function and the other for the
velocity potential, are formulated in each of the two Riemann sheets. The first problem
consists of Chaplygin’s equation and boundary conditions specified along the dividing
streamlines, wedge surface, and in the far field. Along the dividing streamlines and wedge
surfaces the condition of constant stream function applies and for the far field condition
GERMAIN’S [12] term is used. On the other hand, the second problem consists of another
partial differential equation of mixed type, which is similar to Chaplygin’s equation,
with inhomogeneous Dirichlet type conditions on the boundary. The two boundary value
problems are solved numerically in the mixed elliptic-hyperbolic hodograph domain using
Telenin’s method and a double sweep method. A closed body requirement, which is needed
to recover the original physical configuration of the double wedge when the flow is mapped
back to the physical plane, enables us to determine the shock foot positions. Starting
from these points a pair of cuts is constructed in the two Riemann sheets such that, on
the physical discontinuity curves corresponding to the hodograph cuts, the stream function
and the velocity potential are continuous and the slope of the curves is single-valued. One
of these two continuity conditions could be replaced by the Rankine-Hugoniot shock
relations, since for a free stream of near-sonic speed the shock at the shoulder of the thin
wedge will be so weak that the entropy changes across the discontinuity curve will be
negligibly small. Such cuts eliminate those parts of the hodograph domain which contribute
to the physically anomalous three-sheeted flows. Across the discontinuity curves in the
physical plane there occur jumps of flow variables such as velocity, pressure and density,
but not the integrated variables, stream function and velocity potential. This whole proce-
dure is called shock fitting. Each of the fitted shocks has its foot at the shoulder of the
double wedge and its tip is located at the double point where two physical limit lines form
a cusp. Finally, by properly relating the solutions obtained in the two Riemann sheets aero-
dynamic characteristics are obtained.

2. Qualitative description of the flow

2.1. The physical flow field

VINCENTI and WAGONER [39] have investigated the aerodynamic characteristics, at
a small angle of attack, of a thin double-wedge profile over the range of supersonic flight
speeds for which a detached bow wave exists ahead of the wedge. In their work the effects
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of the angle of attack are regarded as a small perturbation of the flow previously calcu-
lated at the zero angle of attack. The authors used relaxation procedures in the hodograph
plane to solve Tricomi’s equation for the mixed flow region and the method of character-
istics for the purely supersonic region behind the shocks attached at the wedge shoulders.
Transonic flow past a lifting double wedge in a sonic free stream is described in FERRARI
and Tricomr [10].

For a free-stream speed slightly less than sonic, the physical flow field is similar in
its general features, but has the distinctive aspect that each of the embedded supersonic
pockets in the subsonic flow is completely bounded by the sonic line and terminating
shock wave, both of which originated from the wedge shoulder (see Fig. 1). Further,

Fi1G. 1. Physical flow past a double wedge.

there are no recompression shocks occurring at the tail of the double wedge. The leading
stagnation point (B,), which stays at the leading vertex (B) of the double wedge at the zero
angle of attack, moves downstream with an increase in the angle of attack. It moves onto
the lower forward wedge surface and its distance from the leading vertex is unknown
a priori. The dividing streamline y = 0 is curved near the leading stagnation point B,
before it impinges normally on the lower forward surface and then follows the contour
of the double wedge. The lower half of the flow field, that is, the flow below the dividing
and zero streamline y = 0, is qualitatively similar to symmetric flow. Starting from the
forward stagnation point, the streamline p = 0 moves a certain distance upstream along
the lower forward surface before it experiences a sudden sharp turn around the nose B.
This sharp turn is achieved by means of a Prandtl-Meyer expansion up to supersonic
speed, generating the first supersonic region attached at the very front tip on the upper
forward surface of the double wedge. However, for a thin double wedge the turning angle
exceeds 130°, which is the limit for expansion to a vacuum. As a consequence, the stream-
line w = 0 is detached at the vertex B to allow a separated flow at the front tip on the
upper forward surface. Nevertheless, experimental evidence shows that for a small angle
of attack and for a free stream of near-sonic speed the flow is reattached to the upper
forward surface, confining the separated bubble to a small closed region. The streamline
y = 0 therefore follows the free surface of the bubble up to the point of reattachment
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before it follows the rest of the upper forward wedge surface. The reattachment in the
physical flow is actually brought about by the action of an oblique shock located at the
point of reattachment. There are additional and more significant supersonic regions near
the shoulders of the double wedge as a result of acceleration of the flow along the forward
faces and local Prandtl-Meyer expansions at the shoulders, i.e. the convex corners C
and G. The regions are bounded by sonic lines and terminating shocks. For a small angle
of attack the rear stagnation point is, unlike the leading one, attached at the tail E of
the double wedge leading to a dividing, slightly curved, streamline downstream.

The difficulty in the analysis of the asymmetric problem comes from the separated
bubble which virtually alters the effective airfoil profile. The bubble pressure is indetermin-
ate unless viscosity is considered and the boundary of the bubble is not well determined
experimentally. A practical assumption made at this stage is that for a sufficiently small
angle of attack the separated bubble plus its peripheral embedded supersonic flow region
occupy only a very small part of the entire flow field near the vertex B of the double wedge.
In consequence, the bubble effect may be considered to be of only secondary importance
and can be neglected in the first approximation. Various authors, such as GUDERLY and
YosHIHARA [16], VINCENTI and WAGONER [39], and FERRARI and Tricomr [10], neglected
the bubble effect and this procedure is also followed in the present paper. As a conse-
quence, the leading stagnation point is brought back to the nose of the double wedge
and the curvature of the dividing streamline impinging on it is thereby reduced.

2.2. The hodograph flow field

The analysis of transonic flow past two-dimensional airfoils of wedge type has the
advantage that most of the hodograph flow domain is known a priori. For a double wedge
at the angle of attack the physical flow field maps onto two sheets of a Riemann surface
in the hodograph plane, one sheet for the upper half of the physical flow field and the
other for the lower half, The branch line common to the two Riemann sheets is, to a good
approximation, the image of the forward and rear dividing streamlines, the curvature
of which is assumed small near the two stagnation points. The flow at infinity in the physical
plane is represented in the hodograph plane by a branch point. To make the hodograph

FIRST FAMILY OF
HODOGRAPH CHARACTERISTIC

STREAMLINE

SONIC LINE

FiG. 2. First Riemann surface of the hodograph plane.
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FiG. 3. Second Riemann surface of the hodograph plane.

flow domain analytic, a small circle is introduced at the singular branch point and a cut
is made along the branch line. In Figs. 2 and 3 the two Riemann sheets are shown separately.
Asymmetry of the two becomes evident when the wedge is set at the angle of attack.
Nevertheless, in the first part of this paper, it suffices to describe the procedures in only
one of the two Riemann sheets since the behavior in the two sheets is similar.

Following the streamline ¢ = 0 in the first Riemann sheet of Fig. 2, the flow along
the upper forward surface BC, is inclined at a constant angle 6, (6,,—a > 0), where
0,, is the half wedge angle. At the apex C, there occurs a local Prandtl-Meyer expansion
represented by the epicycloid C,D,. The flow is turned by the expansion through the
wedge angle to follow the upper rear surface D, E, which is inclined at another constant
angle —0,,, (—0,—a < 0). The points B, C, D, and E are all singular points at which
first and possibly higher derivatives do not exist. At the stagnation points B and E, math-
ematical difficulties can be avoided since, in their neighborhood, the solution is known
from the incompressible potential flow theory. The singularities at C; and D, are removed
by replacing the hodograph boundary BC, D, E as an approximation by a highly-curved
analytic contour closely following the original boundary: see the dotted lines in Figs. 2
and 3.

3. Mathematical formulation

3.1. Hodograph transformation

The steady two-dimensional, asymmetric, inviscid transonic flow under consideration
is generated by a thin symmetrical double wedge at a small angle of attack in a high sub-
sonic free stream. The flow is assumed to be irrotational and isentropic. From the irrotation-
ality condition and the continuity equation, we can write

6.1 ¢x ¢y]=[ u U]'
Y= ¥y —gv gu

In the above ¢, v, u, v, g, x and y are all dimensionless variables scaled respectively as
follows: u and v are velocity components divided by the maximum velocity Gmax; € is the
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density divided by the stagnation density go; x and y are scaled with the chord ¢ of the
double wedge; ¢ and y are the velocity potential and stream function, respectively, both
made dimensionless in terms of the composite quantity §m,, * ¢. Here and in what follows,
any constant or variable with a tilde above it will imply that the quantity is dimensional.
Inversion of Eq. (3.1) gives, with g% = u’+o’,

X4 Xy pqcosf —gsinf
(3.2 . .
> Vs 0g* |ogsin®  gcosf
. . . . ¢q ¢ﬂ :
Multiplying both sides of Eq. (3.2) by the matrix % wh we obtain
q

[x, xa] B [COSWQ —SiHGIQQ] )
Yo Yol ~ Lsinb/g  cosb/eq)ly, vel
When the complex coordinate z = x+iy is introduced, the above becomes

02/0q = %e”(¢.+i%%) ,

(3.3)

ey 1 1
32{@9 = ‘q"em(¢a+i—e-1pa) .

Eliminating z from the above two equations by cross-differentiation, and equating real
and imaginary parts, we have

$a=14q : ( 1 )w
e =qg\%a |V

=42

¢9 0 Y

where the density is given by (y is the ratio of specific heats)
(3.6) 0 = (1—g?)tle-n,
Equation (3.6) is obtained from Bernoulli’s equation

=~ dp

d +—=—= 0

qdq 3

and the reversible adiabatic energy equation

=t

8%

-1 ﬁz+q2=§éan =

The mapping relation is then
(3.7 dz = z,dq+z,d0,
where the derivatives z, and z, are given by Eqs. (3.4). These equations can have more

explicit expressions in terms of the stream function y in the polar coordinates (g, 6) when
¢ and g are eliminated by means of Eqs. (3.5) and (3.6). They are

+1

Y2 g
y—1

l_qz Yo l»

1-

1 cosf
(3.8) X, = ——— [sinﬂ +
q od Yq 2
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1 ;
(3.8) xg = — [gcosby,—sin Oy,
[cont.] eq
_r+!
1 cosf _sinﬁl y-—-lq
yl 0q Ya q l_qz Yo |

1 2
Yo = -9—4— [gsin By, +cosByy).

3.2. Governing equations and boundary conditions

Equations (3.5) can be combined into a single expression by cross-differentiation.
When Eq. (3.6) is used to eliminate the density dependence from the resultant equation,
we obtain

1 3-
1———::1 q* 1+—~—-y_)1’ q°
3.9 TR ol SUSPANE SRS ol AN )
(3.9) Vet Z21=gy Yt =) %

This is the governing partial differential equation for the stream function in the hodo-
graph polar coordinates (g,0) and is called Chaplygin’s equation. It is noted that this
equation is now linear but still remains of mixed type regardless of the coordinate trans-
formation. This is because the equation becomes elliptic in the subsonic region of the
flow domain where g < [(y—1)/(y+ 1)]*/?, and hyperbolic in the supersonic subdomain
where [(y—1)/(y+1)'/* < g < 1. It is also noted that, since the equation itself is homo-
geneous, inhomogeneous boundary conditions are expected to be specified in order to
generate a nontrivial solution of the problem.

The boundary condition on the wedge surface and along the dividing streamlines is
straightforward physically. On these boundaries the stream function remains constant
and, for convenience of formulation, it will be taken equal to zero hereafter. In formal
notation, along the hodograph boundary A, BC, Do EF,, in the first Riemann sheet and
A, BG, HyEF, in the second Riemann sheet, it is

il v(g,6) = 0.

The second boundary is given in the far field of the physical flow or in the neighborhood
of the singular branch point in the hodograph plane. Physically the condition states that,
at distances sufficiently far from the body, the streamlines align more and more closely
to the free stream since the disturbances become infinitesimally small there. Gross [14]
used a first-order doublet solution of the Prandtl-Glauert equation as a far-field condi-
tion applicable at some finite distance from the body in the subsonic flow region. The
accuracy increases asymptotically as the distance from the body is increased. For the
present problem of transonic flow, we use an asymptotic far field condition in the hodo-
graph plane due to GERMAIN [12]. This is valid in the neighborhood of the branch point,
which is located in the subsonic region. Mathematically we begin with the following two
definitions:
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q
(3.11) e fﬂd ;

; q
3.12 L(o) = h B ()]
(3.12) 0) = _QTII_ eq)-
Equations (3.5) then readily reduce to the simpler form
(3'13) ¢8 = wo‘)

¢ = L(0)¥%s,

from which the hodograph partial differential equation in Frankl’s canonical form follows
immediately:

(.19 Yoo+ L(0) g = 0.

Define a new independent variable s such that

(3.15) s(0) = [ [L(o)]*do.
0
Then, Eq. (3.14) becomes in the (s, 0) coordinates
(3.16) Yoo+ s —A(S)ys = 0,
where
@17 As) = — L@ L)
' ) do :

Further, by. defining a new stream function
(3.18) v* = [L(9)]V*y,

we obtain a hodograph equation of the canonical elliptic type, which holds in the subsonic
region of the flow domain,

(3.19) Vo +yE—N(s)y* =0,
where
(3.20) NGs) =+ L@ [L(a) %L(c)—%(jda— L(a)) ]

From Eq. (3.19) we can obtain an asymptotic expression for the stream function y*(s, 6)
in the neighborhood of the point at infinity A, (or F,), with the leading term

(3.21) ¥*(s, 6) = Ar-V2sin (% + a'),
where

2= 024(s—54)%

(3.22)

p 0
sint = —.
r
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In the above, A4 is an amplification constant and «’ is a constant accounting for the angle
of attack effect. Then the second boundary condition is given by Eq. (3.21) which applies
asymptotically in the neighborhood of the branch point 4.

The. partial differential equation governing the velocity potential ¢(q, 6), which is
obtained when y and p are eliminated from Eqgs. (3.5) and (3.6), is given by

- y+1q2 ( 3y 1 )( y+1 ) 23“42(1
(323) é«q 2 ¢ + ¢ = 0:
1- +1 2 q
7 q(l—qz)(l— ay
which differs from Chaplygin’s equation only in the coefficient of the first order derivative.
The boundary condition along the dividing streamlines and on the double wedge surface is
(3.29) grad¢ -m=0

where n is a unit normal vector at a point on the boundary. Alternatively, if the stream
function is solved first, a more convenient mathematical condition can be adopted on
the above boundaries, namely,

(3.25) d¢ = ¢.dx+¢,dy
or
(3.26) d¢ = g(cosOx,+sinfy,)dq +q(cos Ox,+sinby,)do.

When the mapping relations Eqs. (3.8),-(3.8), are used, the increment of the velocity
potential d¢ is completely described in terms of the stream function in the hodograph
polar coordinate system (g, 6). In the far field of the flow domain another asymptotic
expression, such as Germain’s term, would be appropriate for the velocity potential.

In the present work, however, Eq. (3.26) is used again, which yields Dirichlet type boundary
conditions when integrated.

3.3. Limit lines and shock fitting equations
It will first be shown, for later reference, that the streamlines are orthogonal to the

equipotential lines in the physical plane of a two-dimensional steady compressible po-
tential flow. Along an equipotential line

(3.27) dp = p.dx+¢,dy = 0
_ ¢x _ _u

(3.28) ( ) = e

whereas on a streamline

(3.29) dy = %dx+w,dy =0,

(3.30) ( ) . B
= ou u

Therefore

dy dy\ _
G310 (E)\' (Ex_)o =-L
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Thus the two families are orthogonal. CRAGGS [5] shows that any point which is singular
of order one lies on a singular curve. Here a limit line is defined by a singular curve at
each point of which the Jacobian of the transformation from the hodograph to physical
plane vanishes. Not both of its derivatives vanish, however.

Applying a series of theorems due to Craggs, LIGHTHILL [25] demonstrated several
properties. First, the limit line in the physical plane (the physical curve corresponding
to the hodograph limit line) is, except near a cusp point if the limit line is cusped,

1) an envelope of one family of characteristics,

2) a cusp-locus of streamlines, equipotential lines, and the other family of character-
istics. Further, all these curves lie on the same side of the limit line.

EIQ':JEiPOTENVIﬂL CHARACTERISTIC
OF ONE FAMILY

CHARACTERISTIC
OF THE OTHER FAMILY

STREAMLINE

LIMIT LINE L

FiG. 4. Ordinary point of a limit line in the physical plane.

In Fig. 4 the above properties are illustrated, following Lighthill. Lighthill also showed
that, at a cusp point of a cusped limit line,

1) the families of curves touching the limit line at ordinary points do so also at the
cusp point, and

2) those curves having cusps at ordinary points of the limit line pass directly through
the cusp point of the limit line.

These results are illustrated in Fig. 5. Furthermore, on a limit line in the hodograph
plane, both the streamlines and the equipotential lines touch the characteristics of one
family at ordinary points of the limit line. At a point corresponding to the cusp the stream-
line and the equipotential line osculate a characteristic. As a partial proof of this, we
show that the streamline and the equipotential line are tangent at a point of the hodo-
graph limit line. At a hodograph point (g, 6), the streamline has the expression

(3.32) dy = p,dq+yedf = 0,
dé L")

3.33 il [P - 2

( ) (dq )v Yo

whereas the equipotential line has
(3.34) dp = ¢ dg+dedf = 0,
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o\ ¢,
039 kel

EQUIPOTENTIAL
LINE

CHARACTERISTIC
CHARACTERISTIC OF -ONE FAMILY
OF THE OTHER FAMILY

STREAMLINE

LIMIT LINE

FiG. 5. Cusp point of a limit line in the physical plane.

If the point (g, 6) is on a limit line, the Jacobian of the transformation to the physical
plane vanishes there, so that
1
2

ox,y) _ 3,y gy _ 1 Abw) _
5a,0) ~ Ae,v) a,6)  ea® 9g,0)

From Egs. (3.33) and (3.35), using the last equation, it follows that on a hodograph limit
line
db do
. (dq ), ‘dq ).s
The proof of the properties is found in Lighthill’s paper.

Limit lines, which occur only in the supersonic region, are physically unacceptable
since the flow near a limit line is many-sheeted in the physical plane. Experimental obser-
vation shows that for the flow past wedge-type airfoils a shock wave appears near the
wedge shoulder, approximately at the location of the theoretical limit lines in the physical
plane. The existence of such a shock wave in the real fluid flow is strongly supported by
the fact that in the theory the flow acceleration and pressure gradient become infinite at
the limit lines so that irrotational flow breaks down due to the large friction and heat
conduction effects. As a result, a shock or shocks have to be fitted into the solution found
mathematically from the hodograph transformation. Now, suppose that Chaplygin’s
equation, with the given boundary conditions, is solved in the first Riemann sheet of
the hodograph domain given by Fig. 2, and that the streamlines can be constructed as
shown in Fig, 6.

(3.36)
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The branch point 4, (or F,) behaves as a source or sink of the hodograph streamlines
since the point A, is the image of points at infinity in the physical flow field. The hodo-
graph streamlines converge towards the branch point as the absolute value of the stream
function increases from zero. In the supersonic subdomain a hodograph streamline,
with an absolute value of the stream function less than a critical positive number, say C,

\’/—somc LINE
C

STREAMLINES

e ————— HODOGRAPH
S = CHARACTERISTICS

Do

Fi1G. 6. Streamlines and limit lines in the first Riemann surface.

will have at least two points where the streamline is tangential to the hodograph character-
istics. The loci of such points constitute a pair of limit lines A, and A, and at a point T}
it is seen that the streamline » = C, osculates a characteristic curve and the limit line
* A;+4,. Such a point is called a double point and, at a corresponding point in the physic-
al plane, the two limit lines will form a cusp. The streamlines in the physical plane are
cusped at each of the two limit lines in the upper half of the physical plane; this means
that the flow is three-sheeted there. Also it should be noted that as a result, the rear faces
of the double wedge protrude upstream, so that the original configuration of the double
wedge is not obtained exactly. This awkward situation is due to the fact that the mathematic-
al hodograph boundary and the corresponding flow domain contain a section which is
physically redundant and, unfortunately, unknown a priori. In Figs. 6 and 7 the three-
sheeted flow are distinguished by the numbers (i), (i), and (iii). In Fig. 8 the equipotential
lines are presented in the upper half of the physical plane and are also seen to be cusped
at the limit lines. The equipotential lines cross the streamlines perpendicularly and there-
fore they intersect the wedge surface at right angles.

The difficulty brought about by the presence of the limit lines is overcome by introduc-
ing a discontinuity curve in the solution, as mentioned earlier. The construction of such
a curve is subject to the following three fundamental conditions:

1) the hodograph discontinuity curve D, T;+ D, T; maps onto a single physical discon-
tinuity curve DT, (see Figs. 9 and 10),

2) the streamlines are continuous across the discontinuity curve DT in the physical
plane, and

3) either the equipotential lines are continuous in the physical plane, or the Rankine-
Hugoniot relations are satisfied.



FiG. 7. Streamlines and limit lines in the upper half of the physical plane.

A

SHOCK CURVE
S(xy) =2 (q,8)

¥=C

Ag

Fi1G. 9. Shock curve in the first Riemann surface.

[639)
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FiG. 10. Shock curve in the upper half of the physical-plane.

The procedure determining such a discontinuity curve is called shock fitting, the curve
being the shock wave. The shock foot is located at the wedge shoulder in the physical
plane to satisfy the closed body requirement, which will be discussed in Sect. 5. In the
hodograph plane the upstream point of the shock foot is, in turn, obtained from a shock
relation. Starting from these two hodograph shock foot points the discontinuity curve
can be obtained using the above three conditions. Now let (g,,0,) and (g,,0,) be the
velocity vectors at the points immediately upstream and downstream of the shock, respect-
ively [see the points R,(q,,0,) and R,(g,,0,) in Fig. 9 and the point R(x,y) = R, = R,
in Fig. 10]. Let # be the magnitude of the angle of inclination of the physical shock curve
at the point R(x, y) and let ' = f—0, be the relative angle of inclination of the shock
at the point R, measured from the incident flow direction in the physical plane. Also let
8 = 6, —0, be the angle of flow deflection at the same shock point. Then the geometric
relation between these variables is

+_ _41—4ac080
(3.38) tanf’ = aind

From this equation, the expression for B is obtained as

_ gycosb; —g,cos0,
(39 tang = q,sin0,—q,sinf,

Then the condition (1) requires that the slope of the physical shock curve S(x, y) =
= S(x(q,0), ¥(g,0)) = Z(g,6) be single-valued at the physical point R(x,y), which
is the image of the two distinct hodograph points R,(g,, 0,) and R,(g;, 6,). Mathematic-
ally this condition can be written

dy dy dy
a0 ant = (3 ),.., = (2), = (&),
where the transformations dx(q, 6) and dy(q, 6) are given, respectively, by the real and
imaginary parts of Eq. (3.7). Equation (3.40) implies that the hodograph shock waves
Z,(q4,0,) and X,(g,,0,), i.e. the curves D, Ty and D, T, in Fig. 9, map onto one and
the same physical shock wave S(x, y), or the curve DT; in Fig. 10, provided one and the
same physical point D can be assigned to the upstream and the downstream hodograph
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shock foot D, and D,. This last requirement is realized by fulfilling the closed body condi-
tion: the exact configuration of the double wedge is recovered by the shock foot which
rests at the wedge shoulder. Now when dx and dy are replaced by their explicit expres-
sions in the (g, 0) coordinates, we have

dy _ A(df/dq)+B
(3.41) dx = C(dojdg)+D "’

where
A(g, 0) = gsinfy,+cosby,,

- - }’+: 2
sin -
Bla,0 = costy, 520 —r=T0,
C(q, 0) = gcosby,—sinby,,
y+l ,
fom—c:ff
; cosf -1

D(q,0) = —sinfy,— l?__qz Yo-

By introducing Eq. (3.41) into the relation (dy/dx); = (dy/dx), in Eq. (3.40), we have,
With the IlOta.ti.O'n Al = A(qlﬁﬁl)' Az = A(qz, 62), etc.,
(ﬁ) _ (B,C,—A4,D,)(db/dq), +(B,D,—B, D,) )
dq |, (4,C,—A,C,)(d/dq), +(B,C,—A,D,)
Also from the relation tanp = (dy/dx),, we have
Dltanﬁ
a (e =

where tan g has the expression given by Eq. (3.39). Equation (3.42) with Eq. (3.43) forms
an ordinary differential equation for the hodograph shock wave Z,. The other comple-
mentary conditions are

(3.42)

(3.44) (41, 01) = v(q2, 0>),
and
(3.45) #(q1, 0,) = ¢(q2, 0,).

An alternative condition to either of Eqs. (3.44) and (3.45) would be the velocity jump
condition across a shock, in the form

(346) H(qliﬂls 43!62) = 0.

Such a condition can be obtained explicitly from a shock polar without difficulty. The
function H has the dimensionless form

2 y—1
1‘11 +2 +1+Qz

_ y-1 ‘I%‘Hh Y+
G H = givgs -0 40:92
These conditions determine the hodograph shock wave X, +2, uniquely. NociLLa [32]
showed that the hodograph shock curve touches the limit line at the double point. As
a matter of fact, it turns out that at this very special point in the hodograph plane the

4+ $+cosz(6, —0,).

3 Arch. Mech. Stos. 5/81
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streamline, the equipotential line, a characteristic curve of one family, and the hodograph
shock wave all osculate the limit line 4, +1,. In the physical plane the limit line L,+L,
is an envelope of characteristic curves and, as mentioned earlier, forms a cusp at the
double point. Also, in the physical plane, the streamline, the equipotential line, and the
characteristic of one family pass directly through the double point, whereas the character-
istic of the other family and the shock wave touch the limit line at the double point. The
last argument means that the shock strength becomes infinitesimal at the double point,
which coincides with the tip of a fitted shock. To conclude this section, we note that a similar
fitting procedure applies to the second Riemann surface to obtain another oblique shock
wave attached at the second shoulder of the double wedge in the lower half of the physical
plane.

4. Numerical integration

4.1. Rectangular computational coordinates
A new system of hodograph polar coordinates (7, w) is chosen such that its origin
is located at the branch point 4, (Fig. 11). The transformation is

= (*+45+2ng,cosw)?, 0<g <1,
@1 q = (7*+9%+2n9,cosw) <gq

Fic. 11. Hodograph polar coordinates systems (g, 6) and (7, ).

whereas the inverse transformation is
7= (@*+95—-299,c080)2, 0 < 7 < 7(w),

gsinf
tanw = ———,
gcosf—q,

4.2)
-n<w<sm,
where 7(w) is the maximum radius at the given azimuthal angle . Now let Germain’s

term be applied at a finite distance from the double wedge in the physical plane, or in the
hodograph plane in the neighborhood of the branch point, say at 5 = &(w), where
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0 < g(w) <€ 7j(w). Then a system of rectangular Cartesian coordinates (£, w), shown in

Fig. 12, is defined by

n—&(w)
=—, 0<<¢<1,
w)— elw
@3) N(w)— &(w)
w=w, =—-AS<OIT.
w
A
y=0
¢=$(6)

——

DIVIDING STREAMLINE (LEADING)

vy, y:0
#“é‘{hﬂ ‘..-—th FIELD *I’%‘.}
0.0 or—¢

DIVIDING STREAMLINE (TRAILING)
¥=0
b4, (6)

FiG. 12. Rectangular Cartesian coordinate system (&, ).

Then Chaplygin’s equation (3.9) transforms to

(4.9) O(¢; w)pee+ P(¢, ©)pro+Q(E, ©) Yot R(E, 0)pp+S(¢, 0)pa = 0.

UPPER SURFACE
FOF THE DOUBLE
WEDGE

Before the expressions for the coefficients are given, functions of the dummy variables

m and n are defined as follows:

f(m)—( ) +mo( 22’

m 611 am 6n

*n 0% on
h(n) = 5+ M‘“’T;:Jf”(?)a*

where M(g) and N(g) are again

1...l’+_1qz
M@) = — 2=,
(4.6) q (l_q )
1+—-3:’l’ g
@=—2

3
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Then the coefficients of Chaplygin’s equation (4.4) have the form

0¢,0) = 1) 2 ) +25m.00 % E 10 Z)’

P¢,w) = 2[3(?1,-'») o +f(w )‘3 ]
4.7 (¢, ) = f(w),
o2t 9%t
R(¢, w) = 2g(n, )—5—>— Ty +f(@) 5~ +h(rx) F +h( )‘3

S(E’ GJ) o= h(w)'
Next, Germain’s condition (3.21) needs to be transformed to the new coordinate
system. The integral for ¢ in the definition (3.11) has, in the case of a perfect gas (y =
= 1.4), the following exact expression:

o(gq) = — [%cos’t+%cos3t+cost+ln tan(-;—t)]
with
t =sin!q.
Also, the definition (3.12) has the explicit form
L(g) = lz(l — _L)
e y=1 =g}
where it is recalled. that

1
o(q) = (1—g*-1.
Then the integral in Eq. (3.15) turms out to be

4 1 2 qz 1/2
il sk _qf E(‘"ﬁT—?) %

This integral has no closed form solution but can have an asymptotic expression in the
neighborhood of the branch point A4,, where the flow speed is g,. It is
1/2
e o e 2 4 g
(4°8)2 § san ot qun \l )’—'l l_q2 H(q q\n)
in which the function H is given by

4.9) H(e) = 1—ae—be?—ce*— ...,
where

&= 4—qx (E < l)s

a= 2‘11‘” ( “ pEa + l)

_ 1 [# +p(5gh=1) _,
3q3 2(1-4g2)? )
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1 [#3_'_4_‘1320#2 +F(l—2qi+9q:u_4q?o+4q:)+ I]

‘T4 21-g2y
with the definition
_ 1 9
p=1""
Germain’s condition (3.20) now becomes, at a point g near the point at infinity g,
(4.10) ¥(a.6) = ALL@] [, e)l-msin(%r(q, 6)+a’),
where

— 2 2
r(g, 0) = 62+ 9~ 3=) (1— 2 e )HZ(q—qm),.
(4.11_) 9% }’—1 I_Qm

sin(z(q, 0)) = 7(;;-? 5

Here the functions L(¢q) and H(g—gq,) are given by Egs. (4.7) and (4.9), respectively.
As mentioned earlier, A is an amplification constant and the constant ' accounts for the
effect of the angle of attack. However, it is possible to drop the constant a’ from consider-
ation by aligning the x-coordinate with the free stream direction in the physical plane.
Such a physical coordinate x has been chosen in this paper and the constant a’ will not
be considered henceforth. The amplification constant A is assigned the value unity for
the time being in this section, but later, in Sect. 5.1, correction factors will be found in the
two Riemann sheets by fulfilling the closed body requirement. In Eq. (4.11) caie needs
to be taken not to define a multiple-valued inversion. The inversion is taken here such
that

if 0<—<=zn: =20 (in the first Riemann sheet),

(S

<0: <0 (in the second Riemann sheet).

When Eq. (4.10) is transformed to the computational coordinate system (£, w), we
obtain the final form of Germain’s condition. Recalling that Germain’s term was evaluat-
ed at # = ¢(w), or £ = 0, we denote the final form formally by

(4.12) Y&, 0)eao = pe(w), -—-n<O< 7.
The other boundary condition is on the ‘double v;redgc surface
(4.13) (& 0y =0, —-a<ow<m,
and along the dividing streamlines

(4.14) P& O)oasn=0, 0<EZI.

The governing partial differential equation for the velocity potential, Eq. (3.23),
transforms in a way similar to Chaplygin’s equation. In the computational coordinate
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system (£, w), it takes the same form as Eq. (4.4) with different expressions for the coef-
ficients R(¢, w) and S(&, w). If the function N(g) in Eq. (4.6), is altered to

3y—1 z)(_y-n z) y+l ,.
1 _)T—Tq 1 _-_y—lq +2y__19(1 q°)

—any[1=2tL o)’
q(1 q)(l y_lq)

(4.15) N(g) = (

then the governing equation can be written essentially in the same form as before, i.e.
(4.16) O0(¢, w)ge+ P(§, 0)peo+Q(¢, ®)pao+ R(E, w)de+S(¢, w)pa = 0,

where the coefficients are given by Eq. (4.7);-(4.7)s again. The boundary condition
given by Eq. (3.26) transforms to

(4.17)  d¢ = q[(cosbx,—sinbly,)g,ne + (cosbxy +sin Oy,) 0, ne]dé

+q[(cos0x,+5in0y,)(g, e +9w) + (C0s Ox5 +5in 0y4)(6, 70 + 0a)]dw .
For the rectangular domain shown in Fig. 12, we have either d4 = 0 or dw = 0 on each
of the four boundaries and therefore the expression for the increment d¢ in Eq. (4.17)

takes a much simpler form there. When it is integrated, we obtain inhomogeneous boundary
conditions of the form

¢, 0 =n) = ¢(%),
¢, 0 = —7) = ¢,(§),
¢ = 1,0) = ¢s(w),
(¢ = 0,0) = dy(w).
For convenience of formulation in the following section, where a numerical technique

known as Telenin’s method is applied, the boundary conditions at @ = +x will be made
homogeneous by defining a new velocity potential (£, w). Consider the following defini-

tion:

(4.18)

n+w

(4.19) 9, @) = O, )+ = b () + T~ 62(6).

Then the new function @(£, w) is subject to the conditions
D¢, w=mn)=0,
¢(§sw = —75) = 0$

T+w T—w

O = 1,0) = ps(@) -5 () - 72451,

(4.20)

n+w 1

D = 0,0) = pu(@)— 56,0~ " $:(0)

and is governed by a new, inhomogeneous partial differential equation
421) O, w) P+ P(¢, 0) Do+ Q(&, ©) Pow+ R(E, 0) P+ 5(£, 0) D, = T(£, ©),

where the force function T4, w) is given by
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n+w

@2 Te = -(F26+ 50800 (b1 01) P

n+w n—w

' : 1 1
- T% +?¢2)R(£a w)— (E¢I_F¢1)S(E! w).

4.2. Telenin’s method

Telenin’s method presents an alternative to finite difference methods, at least in one
coordinate direction, and has been successfully applied to many fluid mechanics problems.
In this method the unknowns are approximated by interpolation polynomials, Lagrange
or trigonometric, in one of the independent variables. In the present problems for the
stream function and the velocity potential, noting that the homogeneous boundary condi-
tions at w = +x in the w-direction are periodic for all £, we can best approximate the
dependent variables by trigonometric polynomials.

To present the method of solution in a unified manner for both the stream function
and the velocity potential formulation, let y(£, w) denote either (¢, w) or ¢(§, w). Then
our task is to solve a linear mixed partial differential equation of the form

(4.23) A(¢, 0) xee+B(§, ) 2t + C(§, ) Yoo+ D(§, w) xe+ E(§, ®) yo = F(§, ®)
in the domain 0 < é < 1, —# < @ < & with the boundary conditions
1,0 =n)=0,
1, 0= —-n)=0,
16 = 1, 0) = a(w),
1€ =0, ) = b(w).

Now if we approximate the unknown variable y(£, w) by a trigonometric polynomial
of the form

(4.24)

N
i=1

then the boundary conditions at w = +n, Egs. (4.24), and (4.24), are certainly satisfied.
If we define, for equally-spaced discrete values of wy, k = 1,2, ..., N,

(.4'26) x&(E) - Z(E. wl}b
4.27) Hy= sm(f “_2‘”‘ )'
(4.28) hy, = Hj',

then the coefficients in Eq. (4.25) satisfy the condition

N
(4.29) i) = D) hual®

i=1
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and Eq. (4.25) becomes

N N
(4.30) 2(8, w) = 2 Zhu 2:(&)sin ( ;”%“’)

i=1 j=1

From Eqs (426) and (4.30), the derivatives of (¢, w) are, for fixed values of w,, k=
=1,2,.

xe(€, ) = x(8),

206, @) = 228,

N

Xalb, 0) = — 2 Z %huxstf)cm(j ”_zw"),
i=1 j=1

N N
Bl 00) = = D) D) L huyzi@)cos (i ";“’*),
i=1 1-1
Zoa(&, @) = — 2 ) ( )huxt(&‘)sm( 2“’*).
Upon substituting into Eq. (4.23), we obtain
(4.31) 2 (6)— Z [ (8) 2 () + A (©)xi(D)] = (),
where
B(éa wt) D(E! ml)
x,y(§) = A(E, m,)( ki — A, s)am
5 ) E s Wy
(432) ®) = S+ HE (B
F(f, wk)
P’k(&) = A(E;wk) »
where
E = 2 %h,,cos(j-’%i),
j=1
y .\2
S =), (%) h.;sin(; i )
J=1
1, if k=i,
6“={0, if k#i.

In vector notation Eq. (4.31) can be written, for 0 < £ < 1,
(4.33) '@ —KEf (&) —ADNE) = &(é),
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where f(£) is a vector with definition

f(g) . {Zn X2s <+es xN)T

and K(&) and A(£) are matrices the elements of which are given by Eqs. (4.32), and (4.32),,
respectively, and finally, g(¢) is a vector

g(E) - (F'h M2, ---sFN)T-
The two remaining boundary conditions are, from Eqs. (4.24), and (4.24),,

(4.34) f®)lear = (alwy), a(w,), --‘.a_(wu))".
(4.35) J@)le=o = (b(wl); b(wy), ..., b(wh‘))r-

The system, N coupled second-order ordinary differential equations represented by
Eq. (4.33) and the two split boundary conditions given by Eqs. (4.34) and (4.35), con-
stitutes a two-point boundary value problem, the solution of which is considered in the
following section.

4.3. Two-point boundary value problems

To solve two-point boundary value problems, KELLER [23] gives a detailed account
of shooting techniques. These techniques solve the problems as a sequence of initial value
or Cauchy problems and are necessarily iterative methods. For the present problem these
methods may exhibit difficulty of instability because of the mixed nature of the domain
considered for the solution. In this report, to solve a system of coupled ordinary differential
equations with split boundary conditions, a method due to BABENKO, VOSKRESENSKII,
Lyupimov and RusaNov [1], and NEwMAN [31] is used. It is essentially a finite difference
approximation of the derivatives, followed by a double sweep method.

First, the coordinate £ is divided by M equal mesh steps in the interval 0 < £ < 1.
The derivatives in Eq. (4.33) are approximated by the central difference schemes

(4.36) 7@y = Fm it Loy,
@37 7@ = Tt o,

where £, is written for f(&,) and 4 is a step size. Then, for the interior pointsn = 1,2, ...
..., M—1, we obtain a system of coupled algebraic equations

(438) (I+_§'Kn)fil—l_(21+AzAn)fn+ (I_%Kn)fn+l = Azgm
where I is an identity matrix of order N. The boundary conditions are
(4'39) fM’ = (a(ml)s a(wZ)r seny a(wﬂ))rs
(4.40) fo = (b(@,), b(wy), ..., b(wy))T.

The system consisting of Eqs. (4.38)-(4.40) is, when combined, another matrix equa-

tion of the form Df = d. Here D is a tri-block diagonal matrix, d is a vector of dimension
N(M —1) whose first and last elements contain the information from the boundary con-
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ditions, Eq. (4.40) and Eq. (4.39), respectively, and f is the vector (f1,f3, .-, fue—1)".
The underlying concept of the double sweep method is that Gaussian elimination of a large
matrix of order N(M—1) is unnecessary because of the tri-block diagonal property of
the matrix of the present problem. Instead, we can choose inversion of a matrix of smaller
order N at each of the (M — 1) interior mesh points by assuming a special algebraic rela-
tion between two adjacent mesh points, such as

(4.41) fo= Tfasrtta
or
(4.42) Jaer = T fattacss

where T, and ¢, are the coefficient matrix and vector at the mesh point 7, both unknown
and of order N. Substituting Eq. (4.42) into Eq. (4.38), we obtain

(4.43) fo= Wit (I-—‘;—K,)f.,,ﬁ wit [(I-f-%K.) ty—y— A‘g.],
where
(4.44) W, = (I+4%4,)- I+%K.) Tiys
Comparing Eq. (443) with Eq. (4.41), we find
T, = Wit (I—%K.).
(4.45)

= W;l[(:——g-x.)t._l—m ]

Setting n = 0 from Eq. (4.41) and using the boundary condition Eq. (4.40), we get

(4.46) fo = Tofi+to = (b(wy), b(@y), ..., b(wn))T,
which is satisfied, for a finite vector f;, if we choose

To =0,
(4.47) °

o = (b(wt), b(w;), ceey b(my))r.

These two are the initial values for the coefficients 7}, and ¢, in the recurrence formulae,
Eqgs. (4.45), and (4.45),. From these equations, as n increases from 1 to (M—1), the
coefficients 7, and ¢, are determined successively, and this procedure is called the forward
sweep. At the second boundary & = 1, from Eq. (4.42) with n set equal to M,

(4.48) Ju-1 = s futtu-s.

When the boundary condition Eq. (4.39) is used, since the coefficients Ty_, and fy_,
are known, the vector fi,_, can be evaluated. Initiated from this local solution of the
problem, the solutions at the adjoining points n = M—2, M—3, ..., 2, 1 can be succes-
sively determined from Eq. (4.42). This procedure of back-substitution is called the reverse
sweep. The two sweeps, forward and reverse, constitute a cycle of double sweep. This
double sweep method has been successfully applied to nonlinear equations by BABENKO
et al. [1] in solving supersonic inviscid three-dimensional flow past smooth bodies. At
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a plane of constant matching coordinate, the character of the body condition is transferred
by the forward sweep along a ray up to the shock position, where the rest of the boundary
conditions are given. Flow variables are calculated in the backward sweep of the ray.
Using the old values of unknowns in the coefficients of nonlinear algebraic equations,
the unknowns in the current cycle of double sweep can be determined. With the appropriate
relaxation factor, the iterative process converges rapidly.

5. Other preliminary formulae and results
5.1. Closed body condition

It was noted in Sect. 3.3 that the mathematical hodograph boundary constructed in
Fig. 6 does not allow the original double wedge configuration to be reproduced in the
physical plane. Elongation of the rear faces of the double wedge upstream, as seen in
Figs. 7 and 8 for the upper rear face only, is due to the fact that the hodograph domain
is analytic and certain parts of the hodograph boundaries are physically superfluous
despite their mathematical consistency. Here a pair of cuts is needed in the two Riemann
sheets to eliminate the redundant parts of the hodograph boundary and domain so that
the original figure of the double wedge as well as a one-sheeted flow is retained.

Suppose that the curve D, T} D, in Fig. 9 is the hodograph shock in the first Riemann
sheet of the hodograph domain obtained by solving the shock fitting equations, and
that the curve DT; in Fig. 10 is the corresponding physical shock wave. In the second
Riemann sheet, let the hodograph shock be represented by H, T;; H, (not shown) and the
corresponding shock wave by HTy;. The initial value 6,(g,) for the shock-fitting ordinary
differential equation (3.42) can be taken from the coordinates of the downstream shock
feet, D, and H,, in the first and second Riemann sheets, respectively. Now consider the
following closed body condition in the physical plane

G.1) Bi;’dz =0,

where z = x+iy. The surface of the double wedge has, in the hodograph domain where
a pair of shocks D, T} D, and H, T H, is fitted in the image BC, D,nD, EnEH,nH, G, B.
The hodograph characteristic curves C, D, and G, H, of the hodograph boundary span
zero distance in the physical plane since they are the images of isolated physical points,
the shoulders of the double wedge. Then the real part of Eq. (5.1) can be put in the form

.2) Jax+ [dx = fdx+ fdx-cosa

BC, D,E

Further, due to the symmetry of the double wedge in the chord direction, the following

relations hold:
cos®, cosf,,
= f cosﬂ,: fdx,

Xy = J‘d cosﬂ,,, fdx
cos B,,l

2

(53)
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In the hodograph plane along the wedge face images BC,, D,E, BG, and H,E, flow
inclinations are constant and therefore the derivatives of the stream functiom in those
directions vanish. Then we have the condition d60 = 0 and also the condition dy/dg = 0
on the above images. With 6, used to denote the angle of wall inclination, which is either
6., or —0,,, the increment dx along the wedge wall becomes simply

(CX)) dx(g, 6,) = x.(q, 0,)dq.
Using Eq. (3.8), for the derivative x, in the above, we have
(55) dx(q’ el’) = Q(Q, 63)"’0(Q: as)dq:
where
+1
- m:fl_ q?
(5'6) Q(q ’ 03) = —CcCos 6: ?_('] :’q‘z_)';m;‘_"ﬁ .

For practical purposes, the function (g, 0,) in the above can be easily expressed in the
computational coordinate system (£, w) in terms of y; (£ = 1, w) only, since the other
derivative y,, (£ = 1, w) vanishes. In the hodograph polar, Egs. (5.3), and (5.3), become

Qs
0
| 24.6.) 50, 6.,)da

o
g=0
(1]
_ cosf,, f ( P P i a
- COSBW: Q G5 = “"1) ég‘!”l@- = w‘) q,
(5'7) g=q(D3)
r d
Xu= fQ(q, —Gw,)ﬁf;’n(q, —0,,)dq
g=0
0
cosf,, F
= _.czse_’ f Q(Q5 ﬂw‘)ae '}"]'[(q, B"l)dQ!

q=q(H,)

where g* is the sonic speed ((y—1)/(y+1))'/?, and ¢(D,) and q(H,) are the flow speeds
at the downstream shock feet D, and H,, respectively. The hodograph shock foot posi-
tions ¢(D,) and g(H,) are determined from the above two equations. The stream function
of the form y;(g, ;) in the above equations indicates that, if the subscript i = I, it is the
integral of Chaplygin’s equation in the first Riemann sheet and, if i/ = II, it is the stream
function solved in the second Riemann sheet. The function Q(q, ;) in the integrands of
Eqgs. (5.7), and (5.7), has a second order singularity at ¢ = 0 as is seen from Egs. (5.6),
and thus the integrals diverge near the integration limit ¢ = 0. However, it is a remov-
able singularity if the solution of the incompressible potential flow is used locally near
the stagnation points. By the Schwarz-Christoffel transformation of the wedge to flat
plates, we can show that the complex potential of the incompressible flow over a wedge
of the inclination angle 6, is

(58) Wine = Cl g/ ixmtake (Z = rew; Wine = ¢1nc+iv"lnc)'
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The imaginary part of this equation is

nf

= [(n—0Bs)gi
(5.9) Yine = Cy 1™ sm(u—ﬁ,)'
Also the flow speed is given by

dw dw

2 _ lnc inec
{5-10) qlne - dz dz
or

Quae = Cyr/a=03
Using Egs. (5.9) and (5.10), we obtain

d

5.11 —3a Yinc
( ) dﬁ Yi lo=s,

= Cq::{g:

which has, for a thin wedge of the small half wedge angle 6,, a high order zero at the stagna-
tion point. If this expression is used in Egs. (5.7), and (5.7), in the small subinterval near
the integration limit ¢ = 0, i.e. in 0 < ¢ = g, < fg* where # < 0.3, then the terms
in the equations become integrable. It is noted that the constant C in Eq. (5.11) is determin-
ed by matching the 0-derivative of the stream function of the incompressible flow with
that of the compressible flow at the point of flow speed fg*.

When Egs. (5.3), and (5.3), or, more explicitly, Egs. (5.7), and (5.7), are substituted
into the closed body condition, Eq. (5.2), it is seen that the equation is not satisfied. This
is due to the fact that in each of the two Riemann sheets the stream function, which is
determined with the unknown multiplicative constant in Germain’s term set to unity,
is not appropriately amplified. For this reason y;(g, 6,) in Eqgs. (5.7), and (5.7), may be
replaced by B; - (g, 0,) where B, i = I and II, are the correction factors. From Eq. (5.2),
with substitution of Eqgs. (5.7), and (5.7);, we can determine

B. = cosf,, cosa
'~ Xi(cos,, +cosb,)) ’
(5.12)
cosf,, cosa
By 2

= Xu(cosB,, +cosb,,) °

It may be noted that, given the downstream shock foot positions D, and H,, the con-
tinuity conditions of the stream function and the velocity potential do not give unique
upstream shock foot positions in the hodograph plane. Thisis due to the fact that the physical
upstream shock foot points C; and G,, which are singular, have their images on the epi-
cycloid portions of the hodograph boundary. This means that the hodograph streamline
and the equipotential line coincide with the epicycloid, a hodograph characteristic. To
be able to isolate a single point as an upstream shock foot point, the velocity jump condi-
tion, Eq. (3.46), may be used.

To conclude this section it is pointed out that the imaginary part of the closed body
condition, Eq. (5.1), yields no new information beyond that already provided by its real
part.
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5.2. Aerodynamic characteristics

The pressure coefficient C, is defined by

(5.13) C. i"_"‘“ ;
_féwéfo
In dimensionless form this becomes
y=1 p—ps
5.14 Cc,=""" PP
(514) » Y 0wdn

where p = p/po (Po is the stagnation pressure) is used, or

o T
y—1 (1—-¢*)7-' —(1—-g3) 7!
y 9% (1—g%)/o-1

Using the mapping equations, we have the following expressions:

(5.15) C,(q) =

= y=1
dx(q, 6,) = —cosb, P(—gy=1 30 36 vi(q, 0,)dq ,
(5.16) i
I~y =17 &
dy(g,0,) = —s osﬁ:—zwﬁ:ﬁ E'P'(q’ 0)dq,

where i = I and II.

Then the pressure coefficient C,(x) or C,(y) is given parametrically by Egs. (5.15),
(5.16); and (5.16),.

The drag coefficient is defined by

(5.17) Co=~ f Cn-e,dl,
Body
where n is an outward unit normal vector at a point on the airfoil surface, e, is a unit

vector pointing in the x-direction, and 4/ is an infinitesimal distance increment on the
airfoil surface. For the double wedge, the above expression becomes

(5.18) Co= [Cdy+ [Cay- [C,ay- [cCap.
BC, DiE BG, HiE
On the other hand, the lift coefficient is
(5.19) C.=— f Cu-edl
Body
which takes the following form for the double wedge:
(5.20) c,,_—dex- f6dx+j6dx+ f0dx

D:E
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5.3. Results and discussion

The problem described is solved for a double wedge of a wedge angle 9° in a high
subsonic free stream of speed g, = 0.37 (M, = 0.89) and at angle of attack 1°. These
figures are chosen so that the transonic potential flow model used in the theory is justified
to the maximum extent.
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FiG. 13. Streamlines in the computational coordinate system (&, w). The first Riemann surface.
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Fic. 14. Equipotentials in the computational coordinate system (£, w). The first Riemann surface.
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FiG. 1>. Streamlines in the hodograph polar coordinate system (g, ). The first Riemann surface.
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FiG. 16. Equipotentials in the hodograph polar coordinate system (g, 0). The first Riemann surface.
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FiG. 17. Streamlines in the computational coordinate system (&, w). The second Riemann surface.
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STREAMLINE
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rIG. 18, Streamlines in the hodograph polar coordinate system (g, 6). The second Riemann surface.

Streamlines and equipotential lines are shown in Figs. 13, 14, 15 and 16 for the first
Riemann surface. They clearly illustrate how the troublesome limit lines together with
the adjacent, physically redundant regions could be excluded from the solution by a shock
wave constructed with the fitting conditions, Egs. (3.42), (3.44) and (3.45). In addition,
Figs. 15 and 16 show how the hodograph shock wave osculates the limit line at the double
point in the hodograph polar plane. Figures 17 and 18 represent the solution of Chaplygin’s
equation in the second Riemann surface. The shock wave in this case is based on the
velocity jump condition across a shock, Eq. (3.46), in place of Eq. (3.45). The result is,
indeed, not much different in quality from the previous one, the shock being of mild
strength. The distribution of the flow speed g, Mach number, density and pressure coef-
ficient C, along the double wedge surface is presented in Figs. 19 and 20. The local lift
coefficient in the chord direction is predicted in Fig. 21. The assumption made at the
beginning of the present theory, that the leading stagnation point is attached at the nose
of the double wedge is responsible for the unrealistic, vanishingly small local lift coefficient
near x = 0. In reality, a shift of the stagnation point to a certain distance from the nose

1.4 —

Cp

X
0l 02 03~04_05 06 07 08 09 10

Q.BI—

0.8

F1G. 19. Chordwise distribution of nondimensional quantities. Upper surface of the double wedge.
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-0.8 b

Fic. 21. Chordwise distribution of the local lift coeffcient of the double wedge.

on the lower forward surface of the double wedge will contribute to the production of
a finite local lift at x = 0. On the other hand, the more realistic condition that the sonic
speed is attained at the shoulder of the wedge surface leads to a more reasonable result
near the mid-chord. The shock waves in the physical plane, Fig. 22, appear inside of the
supersonic region near the tips, which is in agreement with TSUGE [38] and NociLraA [32].
Tsuge, as a matter of fact, indicated that in general the end of the shock wave cannot
reach the sonic point.

There has appeared no previous theory or experiments for comparison for the double
wedge at an angle of attack in the range of high subsonic free stream speed. Unlike a stream-
lined airfoil, the existence of a small viscosity in the flow would cause a large adverse
pressure gradient in the rear faces of the double wedge. The boundary layer-shock inter-
action will, in high probability, separate the flow downstream of the wedge shoulders,
producing large experimental drag and less lift than calculated, and even dislocate the
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Fic, 22. Shock waves and sonic lines in the physical plane.

shock positions predicted by theory. Further, experimentally it is known to be difficult,
due to the lack of resolution, to probe that part of the shock wave which is embedded
in the supersonic region. It is remarkable that even in the theory the shock strength is so
weak that the compression Mach wave becomes tangential to the shock wave toward
its tip.

6. Conclusions

In the analysis of asymmetric supercritical transonic flow using hodograph equations,
the double wedge has an inherent advantage, within the common approximation made
in the literature, over the generalized airfoils: the boundary of the hodograph domain
is known a priori. The theory presented in this report, however, provides an insight which
extends, far beyond the flow past a double wedge, to the supercritical transonic flow in
general. The combination of Telenin’s method and the double sweep method has proven
powerful in solving the Dirichlet type problems with mixed equations, for both the stream
function and the velocity potential. Through shock fitting, limit lines which appear only
in the transonic or supersonic potential flow are related directly to the experimental pheno-
mena, the recompression shock waves. Fitted shocks, however, exhibit more sophisticated
structure than experiment can provide: the end of the shock wave is embedded in the
supersonic region. The lift coefficient would be more successfully predicted by the method
if i) the accurate position of the leading stagnation point were given as a function of free

i
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stream Mach number, wedge angle and angle of attack, ii) the flow behavior after a sharp
turn at the forward vertex could be realistically incorporated into the solution, and iii) the
hodograph far field conditions could be improved to a higher order of accuracy.
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