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Experimental research on development of the controllable
disturbances in the wake at supersonic flow around the plate

V.I. LYSENKO, A.D. KOSINOV, Yu.G. YERMOLAEV

Russian Academy of Sciences,

Institute of Theoretical and Applied Mechanics,
Novostbirsk 630090, Russia.
e-mail:vl@itam.nsc.ru

THE DEVELOPMENT of the artificial disturbances in the boundary layer on the flat
part of a plate, the boundary layer on the opposite wedge (model stern) behind a fan
of expansion waves and the wake was investigated at Mach number 2.

1. Introduction

RESEARCH ON the flow in the wake behind an object is the important problem
of aerodynamics. The base drag of bodies of revolution at supersonic speeds can
be up to 30% of their complete drag (and particularly for cones — up to 50%;
MIHALEV [1]; KOVENYA and LEBEDEV [2]), i.e. the flow in a wake can determine
the aerodynamics of the flying apparatus. In addition, the value of the base drag
can differ by more than 100% at laminar and turbulent regimes (MIHALEV [1]).
Incidentally the condition of the boundary layer on a streamlined body renders
influence on the position of transition in the wake.

In the system “boundary layer — wake” the process of turbulence origin in
the wake behind a body has been investigated rarely so far. In the experiments
(BEHRENS [3], DEMETRIADES [4], BEHRENS and Ko [5], BEHRENS et al. [6],
MCLAUGHLIN et al. [7], MCLAUGHLIN [8], LYSENKO [9-11]) on the stability of
a wake at supersonic flow, the development of the natural disturbances is stud-
ied, therefore there are not the enough complete spatial characteristics of the
wave field of oscillations. These characteristics can be obtained at the study of
the controllable artificial disturbances, simulating the process of development
of the natural ones (KosiNov and MasLov [12]). While there are many works
(Kosinov and MasLov [12], KoSINOV et al. [13-15] and other), in which devel-
opment of the artificial disturbances in a supersonic boundary layer was studied,
the works on development of the artificial oscillations in a supersonic wake,
on the whole, are absent. The main limitation of application of the method of
controllable oscillations at the research on wave processes in a wake is the non-
uniformity of flow, that hinders the definition of wave characteristics of unstable
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disturbances, however the wave approach in a number of cases can be applied. In
particular, in a quasi-two-dimensional task the non-uniformity of flow is present
along a flow only, then it is possible to determine wave spectra on transversal
wave number, and in linear approximation — to determine the transmission char-
acteristics on wave numbers. Thus, the practical implementation of controllable
experiments in a wake depends on the flow character.

According to LEES and GOLD [16], in a wake both symmetric (varicose) and
antisymmetric (sinuous) disturbances can develop. And according to theoretical
work by CHEN et al. [17], in the supersonic wake the two-dimensional waves of
antisymmetric mode are the most unstable. Their phase velocity is about 0.8.
The two-dimensional character of the most unstable disturbances of this mode
remains at sub-, super- and hypersonic speeds of a flow. For the symmetric
mode at supersonic speeds the three-dimensional waves are the most unstable,
and the phase velocity increases with increasing Mach number. At M = 2 it
is approximately equal to 0.6. The symmetric mode (by character of instability
and values of phase velocity) is similar to the eigen-disturbances of supersonic
boundary layer.

The influence of disturbances in the model boundary layer on disturbances in
the wake is obviously possible, as their wave characteristics are close. At the same
time it is necessary to take into account the circumstance, that the formation of
a wake is accompanied by non-uniformity of flow in longitudinal direction, that
results in the change of discrete spectrum on wave numbers to the continuous
one.

The purpose of the present work was the study of development of the artificial
disturbances (initiated on the surface of a flat plate) in the system “boundary
layer on the flat part of a plate — boundary layer on the opposite wedge (model
stern) behind a fan of expansion waves — wake” at supersonic free-flow velocities.

2. Research methods and equipment

The present experiments were carried out in the wind tunnel T-325 (BAGAEV
et al. [18]) at free-flow Mach number My, = 2.0, unit Reynolds number Rej =
5.4-10%m~1, flow stagnation temperature 290 K.

As the basic test model (model 1), an insulated steel symmetric flat plate
(Fig.1) of 80 mm length (from the leading edge up to the back edge), 10 mm
thickness, 200 mm width, having the bow and stern as wedges with bevel half-
angle of the leading and back edges of 14°, was used. The length of both the
bow and stern parts was 20 mm. For realization of an additional experiment,
the model 2 (modified model 1) was used. For model 2 the stern looked like the
opposite wedge with bevel half-angle of 10°. Accordingly, the length of the stern
part has increased from 20 up to 28 mm, and the length of the central site has
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decreased down to 32 mm (on model 1 it was equal to 40 mm). Other differences
between models 1 and 2 were absent.

F1G. 1. The scheme of the model flowing around: (1) source of controllable disturbances,
(2) plate flat-part boundary layer, (3) fan of expansion waves, (4) opposite-wedge boundary
layer, (5) wake.

The plate was fixed rigidly to the lateral walls of the wind tunnel’s test sec-
tion and was established under a zero angle of attack. Inside of the model in
the center, a source of controllable disturbances (similar to KosINOV et al. [15,
19]) was placed. For excitation of the disturbances, the high-frequency electri-
cal discharge device was used. The artificial disturbances penetrated through
the hole of 0.4 mm diameter, 40 mm from the leading edge, into the bound-
ary layer on the top surface of the plate. At glow discharge, in the interspace
between an electrode and model surface (under the hole on the plate surface),
the pressure and temperature oscillations arose, which disturbed the boundary
layer, penetrating into it through this hole. A design and detailed description
of the disturbance generator are adduced in KosiNov et al. [19]. From the hole
of disturbance generator, the longitudinal z and transversal z coordinates were
measured.

The scheme of ignition of high-frequency electrical discharge consists of the
generator of signals G3-112/1, power amplifier, raising transformer and elec-
trodes (this scheme is described also in KosINOv et al. [19]). The process of
glow discharge was inspected by the oscillograph C1-96.

In the first section z = 8 mm, measured in the boundary layer, the parameter
of excess of the maximum disturbance amplitude above the natural background
was about 10, and in the wake it was about 2. The results presented in the paper
are obtained for oscillations of frequency f = 20 kHz.
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For measurement of disturbances, the constant-temperature hot-wire anemo-
meter and the probe (with the tungsten wire of diameter of 5 microns and length
of 1.2 mm) were used. The overheating of the probe wire was 0.8, and therefore
it is possible to assert that the fluctuations of mass flow were mainly measured.
The selective amplifier U2-8 was used as a frequent filter. With its help the
amplitude of a signal on frequency f = 20 kHz in the bandwidth of 1% was
measured.

The researches on development of disturbances in the model boundary layer
and in the wake behind model 2 were conducted in the layer, in which the
fluctuations are maximum. The measurements in the wake behind model 1 were
executed at £ = const, where E — mean voltage in the diagonal of the hot-wire-
anemometer bridge, equal to mean voltage at boundary-layer measurements in
the model end (it corresponded to moving of the sensor along the line of equal
mass flow).

The fluctuating and average characteristics of the flow were measured with
the help of the automated measuring system (KOSINOV et al. [19]) of the wind
tunnel T-325. The fluctuating and average hot-wire voltages were recorded by
a computer (DVK-3.2) using a ten-bit amplitude-digital converter (ADC) with
1 MHz reading frequency. The ADC was started synchronously with the gen-
erator setting the frequency of the introduced disturbances. For increase of the
signal/noise ratio, the synchronous summation of a-signal on 200 realizations
was carried out. The time length of each realization was 200 microseconds. The
averaged oscillograms of a fluctuation signal were controlled during the exper-
iment. It allowed to determine the bounds of the introduced wave packet on z
rather precisely. In experiments the oscillograms in several cross-sections on z
were measured.

The complete spectral processing of digital oscillograms was carried out by
an IBM PC. For spectral processing of experimental data, the discrete Fourier-
transformation was used

egw (2,y) = %Ze(m, Y, 2, tx)exp (—i[Bzj —wik]),
ik

where e(z,y, 2;,t) is the pulsation signal from the hot-wire anemometer, av-
eraged through realizations, T — the length of realization in time, w = 2nf —
circular frequency of a disturbance, 8 - wave number in 2-direction, j — list on
coordinate z, k — list on time. Amplitude and phase of disturbances (in their
notation we shall omit the index w, as the selective amplifier was adjusted to
one frequency) were found from the formulas

A; = {Re’[egu(z,y)] + Im’[egu (2, )]},
@ = arctg{Im[eg . (z,y)]/Relegu (7, y)]}-
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The wave-to-the basic flow inclination angle x = arctg [3/a,(3)], where the wave
number in z-direction o, was determined from the relation a,(3) = A®Pg(z)/Ax
due to linear phase dependence $g(z).

The phase velocity of disturbances was determined by the formula c¢; =
A zf/Ue, where A ; = 2r/a, is the wavelength of a disturbance, U, - flow ve-
locity at the layer border.

3. Results

In conformity with the conditions of flowing round the model, the boundary-
layer flow had a non-uniformity streamwise, connected with two fans of expansion
waves. The first fan started near to the place of change of the nose wedge to
the central (flat) model site, the second one — near to the place of change of the
central site to the opposite wedge. In KOSINOV et al. [14] (this work was executed
on the model “cone—cylinder”) it was found, that behind a fan of expansion
waves the pressure becomes constant at the distance equal to twenty values
of the boundary-layer thickness. For conditions of the present experiments, it
corresponds to about 6 mm from the first “fracture” of the model, moreover
for the model “wedge—plate” this distance should be even smaller. Thus, in the
present experiments the source of disturbances was placed in gradientless (on z)
flow. In this case we should expect the development of disturbances on the central
part of model, similarly to the results of experiments in the boundary layer on
the flat plate (KosINOV et al. [14]).

In this work, the development of controlled disturbances was investigated on
3 ranges: (I) on the central (flat) part of the plate, (II) at passage through a fan
of expansion waves and on the opposite wedge, and (III) in the wake.

3.1. On the central (flat) part of the plate

For definition of the character of development of the introduced spatial wave
packet (f = 20 kHz), the measurements of distributions (on transversal coordi-
nate z) of mass-flow fluctuations in the boundary layer were executed at z = 8, 13
and 18 mm. The analysed range corresponds approximately to one disturbance
wavelength. After the data processing, the wave amplitude-phase spectra on 3
and dispersion relations o, (8) and x(8) were obtained. In Fig. 2 the amplitude
spectra Aj on 3 for z = 8, 13 and 18 mm are shown, normalized by the average
value of mass flow in measurement positions. Thus, it was confirmed that on the
flat part of the model, as well as in case of the flat plate (KosiNov et al. [15]),
the inclined disturbances with 8 = +1 rad/mm are the most unstable. The
asymmetry in spectra is caused by properties of the disturbance generator;
this is confirmed after normalization of, amplitude spectra on B by the initial
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FIG. 2. Amplitude spectra for z = 8, 13 and 18 mm (flat part of model).
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FiG. 3. Normalized amplitude spectra for z = 8, 13 and 18 mm, and dispersion dependence
for = 8-18 mm (flat part of model).
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the initial(at = 8 mm) spectrum. It is demonstrated in Fig.3, where the ex-
amples of normalized amplitude spectra Ap for z = 13 and 18 mm (curves 1
and 2), depending on 3, and the dispersion dependence x(/3) (curve 3) are given,
where x is the angle of the inclination of the wave front to the basic flow. It
was found, that on the flat part of the plate the phase velocity of propagation of
disturbances ¢; =~ 0.55, the wave number in the streamwise direction a; = 0.45
rad/mm, and the inclined disturbances with x =~ 60° are the most unstable. All
the data, obtained in the boundary layer on the flat range of the plate, are in a
good agreement with the researches on a flat plate (KosiNov and MasLov [12],
KosINOV et al. [13, 15]).

3.2. At passage through a fan of expansion waves and on the opposite wedge

The measurements of distributions of controllable oscillations on z on the
opposite wedge are executed at £ = 25.2; 30 and 35 mm. In Fig. 4 the amplitude
spectra Aj on f for these values of longitudinal coordinate, normalized by the
initial spectrum of disturbances at £ = 8 mm, are exhibited. Figure 4 (curvel,
z = 25.2 mm) shows the considerable stabilization of disturbances at passage
through a fan of expansion waves (i.e. at the negative gradient of pressure).

101 ,»

08

i

S

06

04

02

0
B, rad/mm

1'Ax =252 /Ax =8
2-Ax =30 /Ax -8
3-

Ax =35 /Ax =8

FiG. 4. Normalized amplitude spectra for £=25.2; 30 and 35 mm (opposite wedge).

This statement is in a complete conformity with the results of the theoretical
works (GAPONOV and MASLOV [20], LYSENKO [21 -22], GAPONOV and PETROV
[23]) and the experiments (KOSINOV et al. [14], GAPONOV, KOSINOV et al. [24]),
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in which the investigations were carried out on the “cone-cylinder” model. As
a whole, on the opposite wedge after the fan of expansion waves (in the range
z = 25.2 — 35mm), a certain decrease of the disturbance level was found. The
obtained data correspond to the statements of GApoNOV and PETROV [23],
GAPONOV, KOSINOV et al. [24] that the stability, arising under influence of
the flow turn, is kept at large distance after its end, and correspond to the
conclusion of KOSINOV et al. [14] that at some distance after recovery (after
flow turn) of a boundary layer to the equilibrium condition, it remains stable.
However it is important to notice, that the work by GAPONOV and PETROV [23]
and part of the work by GAPONOV, KOSINOV et al. [24] are theoretical, and in
experimental work by KOSINOV et al. [14] and in the experimental part of the
work by GapoNov, KOsINOV et al. [24] the “cone-cylinder” model is analysed.

As it was already indicated, the measurements of distributions on z were
executed in a maximum of controllable fluctuations across the boundary layer.

Before the turn of flow (z = 20 mm) this maximum was at - = 0.9, after
oo Y oo
the turn - at B = 0.55. It was found, that the flow was homogeneous
PoclVoo

on z down to z = 30 mm, and at z = 35 mm the essential (up to 5-10%
concerning the mass flow in the free stream) distortion of flow in transversal
direction was revealed, which was close to periodic. This periodicity corresponded
approximately to 2 mm. Probably, the appearance of such non-uniformity on z
is caused by influence of the wake.

3.3. In the wake

As measurements of controllable oscillations in the near wake behind the
model have shown, the scale and non-uniformity level of flow in transversal di-
rection remained the same, as well as on the opposite wedge at £ = 35 mm. The

= 0.55. In Fig.5

measurements of distributions on z were executed at

the normalized amplitude spectrum A}g on wavenumber%%notohe wake for z = 43
mm is presented. One can see that in the wake, additional peaks in spectra on
[ occur. The data, obtained in this experiment for z = 48 mm, have turned out
to be distorted, as this cross-section is already in the zone of strong nonlinear
development of disturbances in the wake (and at about z = 53 mm, as the oscil-
lograms have shown, in the wake the laminar-turbulent transition starts). This
is why the additional investigation on changed model (model 2, with shorter
flat part of the plate — 32 mm instead of 40 - and longer model stern — 28 mm
instead of 20) was carried out to observe more confidently the development of
disturbances in a wake. Such change of model stabilizes these disturbances. At
first, as it was shown in the paper by LYSENKO [11], with increase of the length
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Ax -43/Ax =8

F1G. 5. Normalized amplitude spectrum for z = 43 mm (wake, model 1).

of the model stern part, the position of transition in a wake displaces down-
stream, and the stability of this wake slightly increases. Secondly, the decrease
of bevel angle of the stern part (when it is an opposite wedge) from 14° to 10°
and, naturally, the flow turn angle before a wake leads to reduction of intensity
of the appropriate shock wave, which can be the generator of disturbances (sim-
ilarly to the fan of expansion waves, which in works by KosINOV et al. [14] and
GAPONOV, KOSINOV et al. [24] resulted in the growth of sound oscillations).
And with decreasing of shock-wave intensity the generated disturbances can de-
crease accordingly. Thus, the above-stated factors should result (at investigation
on model 2) in considerable lengthening of the laminar site of disturbance de-
velopment in the wake and transition delay.

In Figs.6-7 the amplitude spectra A3 on 3 and x in the wake behind the
model 2 for £ = 41.5; 51.5 and 61.5 mm, normalized by the wave spectrum at x =
9 mm are presented. These results demonstrate the evolution of disturbances in
the wake and differ from the data shown in Fig. 5. At first, the relative amplitude
is essentially (6-7 times) less than for the first model; secondly, spectra are
more smooth, with smaller modulation of amplitude. Apparently, it is connected
with changes of the flow character, becoming less unstable, and with essentially
smaller non-uniformity of flow in transversal direction. In Fig. 8 the phase spectra
@5 on § for z = 41.5; 51.5 and 61.5 mm are presented. These spectra resemble
the phase spectra in the boundary layer. The dependences 2 and 3 are similar
to each other, that proves the similar correspondence of e, and .
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Fic. 6. Normalized amplitude spectra for « = 41.5; 51.5 and 61.5 mm (wake, model 2)
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F1G. 7. Normalized amplitude spectra on the angle of inclination of wave vector to a flow for
x = 41.5; 51.5 and 61.5 mm (wake, model 2).
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The estimation of the phase velocity of disturbances in the wake (z=51.5—
61.5mm), given in Fig.9 (curve 1) depending on the angle of inclination of a
wave vector to the flow, allows to conclude that in the experiments discussed
the evolution of the wake symmetric mode is mainly observed, which is close,
on phase velocities, to the eigen-waves of supersonic boundary layer. The curve
2 in Fig. 9, represented the dependence of amplitude of waves on the angle of
inclination (for z = 61.5 mm), shows that the disturbances with angles of incli-
nation more than 60° have the greatest relative amplitude. More complex evo-
lution of disturbances in the wake behind the first model can be connected with
greater instability and non-uniformity of flow. In principle, in any special case,
the last circumstance can result in strong detuning of disturbances on wave
numbers in longitudinal direction and generation of quasi two-dimensional
antisymmetric mode.

@y, deg.

200

-100 - 1
-200
25 -1? ' ol.s ' ofs ' 15 ' 2?5
B, rad/mm
l1-x=41.5mm
2 -x=51.5mm
3 -x=61.5mm

FiG. 8. Phase spectra for z = 41.5; 51.5 and 61.5 mm (wake, model 2).
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2- Aﬁ for x=61.5mm

Fi1G. 9. Phase velocity (for £ = 51.5 — 61.5 mm) and wave amplitude (for z = 61.5 mm)
depending on the inclination angle (wake, model 2).

4. Conclusions

For the first time by experimental way at supersonic speeds, the development
of the artificial disturbances in the system “boundary layer on the flat part of a
plate — boundary layer on the opposite wedge (the model stern) after a fan of
expansion waves — wake” was investigated. Strong stabilization of disturbances
at passage through a fan of expansion waves at transition from the flat plate to
the opposite wedge was confirmed. It was found, that the wake disturbances have
a complex wave structure and that for the symmetric mode in the supersonic
wake the three-dimensional waves are most unstable.
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On Bénard convection in a porous medium in the presence
of throughflow and rotation in hydromagnetics
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THE EFFECT OF THROUGHFLOW on a layer of a rotating fluid heated from below in
porous medium in the presence of a vertical magnetic field is considered. For the case
of stationary convection, the rotation has always a stabilizing effect. The medium
permeability has always a destabilizing effect whereas the magnetic field and the
throughflow have always a stabilizing effects in the absence of rotation. But in the
presence of rotation, the medium permeability is found to have a destabilizing effect
whereas the magnetic field and the throughflow have a stabilizing effects under certain
conditions. Graphs have been plotted by giving numerical values to the parameters,
to depict the stability characteristics. The magnetic field and rotation introduce os-
cillatory modes in the system, which were nonexistent in their absence. The sufficient
conditions for non-existence of the overstability are also obtained.

Key words: Thermal instability, throughflow, magnetic field, rotation, porous
medium.

1. Introduction

THE DETERMINATION of the criterion for the onset of convection in a horizon-
tal fluid layer heated uniformly from below is a classical problem associated
with Lord Rayleigh and H. Bénard. The steady state conduction solution be-
comes unstable, and convection begins when the Rayleigh number R exceeds
a certain critical value R.. A comprehensive account of the onset of Bénard
convection, under varying assumptions of hydromagnetics, has been given by
CHANDRASEKHAR [1]. In the classical problem, there is no flow of fluid across
the horizontal boundaries. A slightly modified problem when a layer of fluid
subjected to an adverse vertical temperature gradient with an imposed con-
stant vertical motion downward/upward through the layer, called throughflow,
produced by injection at one boundary and removal of fluid at the other bound-
ary, is studied by SHVARTSBLAT |2, 3, 4] and his results were summarized by
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GERSHUNI and ZHUKHOVITSKII [5]. The throughflow is measured by a Péclet
number P,.

Shvartsblat pointed out that the problem is of interest because of the impor-
tance of possibility in controlling the convective instability by adjustment of the
transverse throughflow and importance in control of convection by the adjust-
ment of transverse throughflow and also due to its relevance in meteorology. He
also found, for the case of conducting rigid permeable boundaries, that I, was
independent of the sign of P, and increased markedly with P, increasing, i.e. the
throughflow is stabilizing and is independent of the direction of the flow. GER-
SHUNI and ZHUKHOVITSKII ([5], p. 236) wrote that the stabilizing effect may be
explained as follows. With increasing injection velocity, a temperature boundary
layer forms at one of the boundaries. This decreases the effective thickness of the
stratified layer of fluid which (at sufficiently large P.) is of order deg ~ d/P,,
where d is the layer depth. On the other hand, the characteristic temperature
difference across the layer remains fixed. The critical Rayleigh number defined
in terms of d is thus of the order of R, ~ (d/deg)?, so that it increases with the
Péclet number according to R, ~ P2.

The effect of throughflow is in general quite complex. Not only is the basic
temperature profile altered, but also in the perturbation equations certain con-
tributions arise from the convection of both the temperature and velocity, and
there is an interaction between all is these contributions. The meteorologists
KRISHNAMURTI [6, 7, 8] and SOMERVILLE and GAL-CHEN [9] have discussed the
effects of small amounts of throughflow, but their main interest in it was the mea-
sure of a vertical asymmetry and associated stability of hexagonal cells. NIELD
[10] has studied the effect of vertical throughflow on the onset of convection in
a fluid layer by considering the boundaries which are either rigid or free and
either insulating or conducting. The effect of magnetic field on the stability of
thermal flow is of interest to geophysics, particularly in the study of earth’s core,
when earth’s mantle, which consists of conducting fluid, behaves like a porous
medium that can become convectively unstable as a result of differential diffu-
sion. Another application of the results of flow through a porous medium in the
presence of a magnetic field is the study of stability of the convective geothermal
flow.

The effect of vertical throughflow in a porous medium has not been exten-
sively discussed so far, in spite of its natural occurrence in many geothermal and
deep-sea hydrodynamic problems. The flow through porous media is of consid-
erable interest for petroleum engineers and for specialists in geophysical fluid
dynamics as stated in a book by CHIN [11]. A great number of applications in
geophysics may be found in a book by PHILLIPS [12]. When the fluid slowly per-
colates through the pores of a rock, the gross effect is represented by Darcy’s law.
As a result of this macroscopic law, the usual viscous term in the equations of
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fluid motion is replaced by the resistance term [_, f—q , where p is the viscosity
1

of the fluid, k; is the medium permeability and q is the Darcian (filter) velocity
of the fluid. HoMsy and SHERWOOD [13] and NIELD [14] have also studied the
convective instability in porous medium with throughflow.

The purpose of the present study is to discuss the effect of throughflow (so-
called mass-discharge) on thermal instability of the fluid in a porous medium
in the presence of rotation in hydromagnetics by using the linearized stability
theory and the normal mode analysis method. Earlier SPARROW [15] presented
an experimental study of the heat transfer and temperature field in an enclosure
in the presence of rotation and coolant throughflow. The in-situ processing of
energy resources such as coal, oil shale, or geothermal energy, often involves the
non-isothermal flow of fluids through porous medium. This throughflow is an
integrated feature of in-situ processing, and it is of interest to assess its effect on
the stability limits. Many operations and processes involving the thermal flow
of rotating fluid through porous medium with throughflow commonly occur in
geophysics, packed-bed processing, in-situ coal gasification and other problems.

2. Formulation of the problem and perturbation equations

Here we consider an infinite, horizontal, incompressible fluid layer of thick-
ness d, with the uniform and prescribed vertical velocity wg at the horizontal
boundaries, heated from below, so that the temperatures and densities at the
bottom surface z = 0 are Tp and pg, and at the upper surface z = d they are
T, and pg, respectively, and that a uniform temperature gradient 8 (= |dT/dz|)
is maintained. Here wp, the imposed vertical velocity is the magnitude of the
throughflow. The gravity field g = (0, 0, — g), a uniform vertical magnetic
field H = (0, 0, H) and a uniform vertical rotation 2 = (0, 0, £2) act on the
system. This fluid layer is flowing through an isotropic and homogeneous porous
medium of porosity € and medium permeability k.

Let p, p, T and q = (u, v, w) denote the fluid density, pressure, temperature
and filter velocity, respectively. Then the momentum balance, mass balance and
energy balance equations of fluid flowing through porous medium, following the
Boussinesq approximation, are given by

[Bq 1

(2.1) 5 + @V q]

=—Vp+(po+0p)g— ta+t°

. e (VxH)xH+ go(qxﬂ),

4
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(2.3) E%—f + (q.V) T = xkV?T.

Here E = e+ (1 —¢) (E—s—) is a constant, while ps, ¢ and pg, ¢, stand
PoCy
for the density and heat capacity of the solid (porous matrix) material and the

fluid, respectively.
The Maxwell equations yield

(2.4) = (H.V) q + enV*H,
(2.5) VH=0
d a 1 ! N
where — = — + —q.V stands for the convective derivative.
dad dt ¢

The equation of state is
(2.6) p=po[l—a(T-T),

where the subscript zero refers to values at the reference level 2z = 0. In writing
Eq. (2.1), use has been made of the Boussinesq approximation, which states
that the density variations are ignored in all the terms in the equation of motion
except the external force term.

The basic solution is

(27) q= (07 O: wﬂ)v T:_IBZ+TO, P = po (1+QIBZ),

where wy is the magnitude of the throughflow.

Here we use the linearized stability theory and the normal mode analysis
method. Assume small perturbations around the basic solution, and let dp, dp,
8, h(hg, hy, h;) and g'= (u,v, w), denote, respectively, the perturbations in fluid
density p, pressure p, temperature T, magnetic field H (0, 0, H) and velocity
q = (0, 0, wp). The change in density dp, caused mainly by the perturbation of
the temperature @, is given by

(2.8) dp = —apgb.
Then the linearized perturbation equations of the fluid reduce to:

1{0u 1 OJu 10 v e H (ahx th) 2
= + - +

2. =+ -~uwy=—|=—-—=0b0p - —
23) 5[6t+5w08z] pgc?a:dp klu 4 pg

5 TR
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— — p P
po Oy ki dmpg

o 1 8v]=d166 uv+ueH(%_8h3) 2

1
BARY [ S i
Al £ [Gt u F» 0z Oy Eug’

(2.11) é [f;: lwo ?;:] = —%aiép + gaf — Pl
(212) g—Z+g—Z+g—Z=0,

(2.13) E%g + wy gg = fw + kV?0,

219 B e D,

(2.15) ea;: = Hg—’: + enV2hy,

(2.16) 6% = Hg— + anth,

(2.17) ea;: = HZ—’;’ + enV2h,.

Applying the operator _Gi to Eq. (2.9), and —(% to Eq. (2.10), using (2.12)
T

and adding, we get

1[8 (ow 1 &w
1 (&2 0? vow pH_, 202
= () P e T S
where ( = @ — a_u is z-component of vorticity.

Jdr Oy
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2 2
Now applying 587: to Eq. (2.18) and ((73;5 + ;A?Jz) to Eq. (2.11) and adding,
we get
19 wd v]_s
(2.19) E§+?2"‘5;+k1:|Vw

__+_ iy e

82 | ay? dmpy 0z € Oz

:ga( o @ )9+peHiv2h 202 8¢

Applying —(% to Eq. (2.9) and 4 to Eq. (2.10) using (2.12) and adding, we

oz

get

19 w8 v 2020 0w p.H 0¢
2.2 ANl BT oo =5
(2:20) 63t+62 6z+k1]c € Bz+41rp06z’
where £ = % - % stand for the z-component of the current density.

Y
Now applying —(% to Eq. (2.15) and % to Eq. (2.16) and adding, we get
a 2], ;0€

(2.21) [Ea —enV ] £= Haz'

3. The dispersion relation

Analyzing the disturbances appearing in two-dimensional waves, and consid-
ering the disturbances characterized by a particular wave number, we assume
that the perturbation quantities are of the form

3.1 [w, ks 6, ¢ ¢
= [W(z), K(2), ©(2), Z(z), X(z)] exp (ikzz + ikyy + nt) ,

where kg, k, are the wave numbers along the z- and y- directions, respectively,
k = ,/(kZ + k2) is the resultant wave number and n is the growth rate which is,

in general, a complex constant.

Expressing the coordinates z,y,z in the new unit of length d and letting

d? k
skl o= el gl el P =L
v K n d? K dz
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Egs. (2.19), (2.13), (2.17), (2.20) and (2.21), using (3.1) become

o 1 P!
2 o gt el (D2~ o®
(32) E+PE+52P1 ( ‘)W

2,72 3
__goatd g weHd gy ypp 25,
v 4dmpv v
2
(3.3) (D2 dflf e Epic)© — P,DO = — (%) W,
H
(3.4) (D? —a® —poo) K = — (E—:) DW,
(3.5) ? ek p2op| 7= [0 my 4 (22 oy
e P elp dmpor Ve ’
Hd
(3.6) (D*—a® —po) X = — (E) DZ.

Eliminating ©, K, X and Z between Egs. (3.2) - (3.6), we get

1 P
07 [0~ o ~0) (072 ) (24 3+ 50)

{(Z—+%+ i D) (D2—a2—pza)+QD2H (D? —a®) W

e2py

+ (D2 —a? - Epjo — P,;D) (D2 = a.2)

{(U+ 1 g Pé D) (D2~a2—p20)+QD2}QD2W

E E €2p

+T4 (D? — a? — Epyo — P.D) (D? - a® — pyo)’ D*W

2 2 g 1 lé 2 2 2 2
= —a° — = e D D
(D a pga){(e +Pz -1-52 3 )(D a pgo)—}—Q }Ra W,
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d4 H2d2
gop is the Rayleigh number, Q) = B
VK dmpoven

202d?
number, Ty = ( sj

where R = is the Chandrasekhar

2
) is the modified Taylor number, p; = % is the Prandtl

d
number and P, = %% is the Péclet number accounting for the throughflow

effect. "

Consider the case when both boundaries are free as well as perfect conductors
of heat, while the adjoining medium is perfectly conducting. The case of two free
boundaries is slightly artificial but it enables us to find analytical solutions and to
make some qualitative conclusions. The appropriate boundary conditions, with
respect to which Equations (3.2)-(3.6) must be solved, are

(3.8) W=D>W =0, @=0, DZ =0,

at z = 0 and 2 = 1, K = 0 on the perfectly conducting boundaries, and
hz, hy, h, are continuous.

Using the above boundary conditions, it can be shown that all the even-order
derivatives of W must vanish for z = 0 and 1 and hence the proper solution of W
characterizing the lowest mode is

(3.9) W = Wysinnz,

where Wy is a constant.
Substituting the proper solution W = Wysinmz in the resultant equation,
we obtain the dispersion relation

1
(3.10) R = ( -;:c) (1+z+1Epyo1 + P.cotnz)

X [(w—1+ ! A L coth)+—Ql—
€ P &p (14 z + ipyoy)

(1+z+ zEplcrl + P,cotmz) (1 + z + ipaoq)
P. .
{(wl +€—;cot7rz) (1+w+1p201)+Q1}
1

3

R T 2 P’
. g
101 = F

Equation (3.10) is the required dispersion relation including the effects of
throughflow, magnetic field, rotation and medium permeability on the thermal
instability of fluid in a porous medium.
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4. The stationary convection

When the instability sets in as stationary convection, the marginal state
will be characterized by o = 0. Putting ¢ = 0, the dispersion relation (3.10)
reduces to

1
(4.1) R, = ( +$)(1+:E+Pecot7rz)

T

1 Pe Ql T1
X 1—3+E—2——c0t7rz +1+$+ 1 P
™ {(F—I—ﬁcoth) (l+.7:)+Q1}

which expresses the modified Rayleigh number R; as a function of the dimen-
sionless wave number z and the parameters P, 1, 71 and p;. The meaning
of this relation (4.1) is that for all Rayleigh numbers less than that given by
(4.1), disturbances in the wave number z will be stable; these disturbances will
become marginally stable when the Rayleigh number equals the value given by
(4.1); and when the Rayleigh number exceeds the value given by (4.1), the same
disturbances will be unstable.

In order to investigate the effects of rotation, medium permeability, magnetic
dR; dR; dR, 4 dR;

field and throughflow, we examine the natures of ——

a1y’ 4P’ 4Q, ¢ 4P,

analytically. Equation (4.1) yields

(4.2) diy - (1+z)(1+z+ P.cotmz)

ool x{(%+%cot1rz) (1+(L‘)+Q1}

This shows that rotation has always a stabilizing effect on the thermal instability
of a rotating fluid in a porous medium in the presence of throughflow.
Also Eq. (4.1) yields

dRy _ (l14z\ (Q+z+ Pecotmz) [ T (1+2x)
wn G- (50 R - i ey
dR; (1 +z+ Pecotnz) 4 T (1 +z)
(4.4) aQ: T |:1 {X1(1+m)+Q1}2:|’
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(4.5) 21;1 = (1 i w) cot mz [(% + 5221;8 cot TI'Z)

e T 1
(1+3:){1_ T (1+2x) }]
e2p1 {X1(1+2)+Q1}?

+

Q1 T\
Tive  XKato 1l

P.cotmz 1
—+ =) =X;.
( e2p i P) !

s {(1+2)+Q1P},

where

Thus for stationary convection, the medium permeability has always a desta-
bilizing effect, whereas the magnetic field and the throughflow have always a
stabilizing effects on the thermal instability of fluid in a porous medium in the
absence of rotation. But in the presence of rotation, the medium permeability is
found to have a destabilizing effect whereas the magnetic field and the through-
flow have a stabilizing effect if

{(1 + z) (52p1 + PP, cot Trz) + Q1€2P1P}2

4.6 T, <

" ; etpiP?(1+ 1)

If

(4.7) T > {(1 + z) (52p1 +PPecot7rz) ‘*‘Q]EzplP}?
' 1

e4p?P2(1 + 1) ’

then the medium permeability has always a stabilizing effect and the magnetic
field has always a destabilizing effect, whereas the throughflow has a stabilizing
or destabilizing effect on the system.

The dispersion relation (4.1) is analyzed numerically. In Fig. 1, R, is plotted
against the wave number z forpy =7, P.=4, Q1 =2, P=4,¢ =0.7,2=0.25
and T} = 10, 20, 30, 40. It is clear that the rotation has always a stabilizing effect
as the Rayleigh number increases with the increase in the rotation parameter.
In Fig. 2, R; is plotted against the wave number z for p; = 7, P.= 4, @, = 2,
T, =0,e =07, 2=025and P = 1, 2, 3, 4. It is clear that the medium
permeability has a destabilizing effect in the absence of rotation whereas in the
presence of rotation parameter (77 = 20) (Fig. 3), medium permeability has a
stabilizing effect for small wave numbers and destabilizing effect for higher wave
numbers. This is because, in their simultaneous presence, there is a competition
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between the stabilizing role of rotation and destabilizing role of the medium
permeability, and the rotation parameter succeeds in stabilizing a certain wave
number range.

In Fig. 4, R; is plotted against the wave number z forp; =7, P =4, e = 0.7,
2=10.25 FP,=4,T1 =0and Q1= 1, 2, 3, 4. It is observed that the magnetic field
has always a stabilizing effect in the absence of rotation, whereas in the presence
of rotation parameter (77 = 20) (Fig. 5), magnetic field has a destabilizing effect
for small wave numbers and a stabilizing effect for higher wave numbers. This
is because, in their simultaneous presence of medium permeability, rotation and
magnetic field, there is a competition between the stabilizing role of rotation
and magnetic field and a destabilizing role of medium permeability, and each
parameter succeeds in stabilizing a certain wave number range. In Fig. 6, R;
is plotted against the wave number z for p;y = 7, P = 4, Q; = 10, T} = 0,
€=0.7,2z=0.25and P, =4, 5, 6, 7. It is observed that the throughflow has
a stabilizing effect as the Rayleigh number increases with the increase in the
throughflow parameter in the absence of rotation, whereas in the presence of
rotation parameter (T = 100) (Fig. 7), throughflow has a stabilizing effect or
destabilizing effect on the system.

120

—a— Curve 1

20 1

X

F16. 1. The variation of Rayleigh number (R;) with wave number (z) for p1 = 7, @1 = 35,
P =4 P. =4, =07 2=0.25 T =10 for curve 1, T1 = 20 for curve 2, T = 30 for
curve 3 and T = 40 for curve 4.
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Fi1G. 2. The variation of Rayleigh number (R:) with wave number (z) for py =7, ¢1 = 2,
T)=0,P. =4, =0.7 2= 0.25; P =1 for curve 1, P = 2 for curve 2, P = 3 for curve 3
and P = 4 for curve 4.
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Fic. 3. The variation of Rayleigh number (R:) with wave number (z) for p1 = 7,
Q1=2,T, =20, P.=4, ¢ =07, 2z=0.25; P =1 for curve 1, P = 2 for curve 2,
P =3 for curve 3 and P = 4 for curve 4.
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T,=0, P=4, ¢=07 2=025 @i =1forcurvel, @, =2 for curve 2, Q1 =3 for
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F1G. 5. The variation of Rayleigh number (R;) with wave number (z) for p; = 7,
P.=4, Ty =20, P=4, e=0.7, z=025; Qi1 =1 for curvel, Q1= 2 for curve 2,
Q1 =23 for curve 3 and Q; =4 for curve 4.

[269]



—s— Curve 1

70 1

40 4

30 1

20 1

10 1

X

FiGg. 6. The variation of Rayleigh number (R:) with wave number () for p1 =7, Q1=2,
T, =0,P=4, e =07, z=0.25; P.=4 for curve 1, P.= 5 for curve 2, P.= 6 for curve 3
and P. =7 for curve 4.

145

140

135

125 4

120 1

115 r v T r T T T

X
Fi1G. 7. The variation of Rayleigh number (R;) with wave number (z) for p, =7, Q1= 2,
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for curve 3 and P. = 7 for curve 4.

[270]



ON BENARD CONVECTION. . . 271

5. The case of oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in the stability
problem due to the presence of throughflow, magnetic field and medium per-
meability. Multiplying (3.2) by W*, the complex conjugate of W, and using
Egs. (3.3)—(3.7) together with the boundary conditions (3.8), we obtain

o 1 2 9 2 gaa’k
1) | =+= 14 W) - T—=
(5.1) (€+PE)<|D 2+a? W) 7

[<|D@|2 +a? |@|2> + Epio? <1c—)|2> — P/(DE 6%

+d? [(‘-’E— & r%) (121”) - E% (DZ* Z)]

+ L [((1D*K[ + 30 IDK| +.a* [KF)) + pao” {(1DKP +a? DKI) )

-

/

- ﬁ [(D*W* DW) + a* (DW* W)] = 0,

Putting o = i0;, where o; is real and equating the imaginary parts of Eq.
(4.6), we obtain

2
- ) é <|DW|2 + a2 |W|’~’> + %Epl <|9|2> o

d? £
~= (121%) - £y (|DKP + oK)
€ 4w pov
It is clear from (5.2) that o; may be zero or non-zero, meaning that the modes
may be non-oscillatory or oscillatory. But in the absence of magnetic field and
rotation, (5.2) reduces to

(5.3) oi [% <|DW|2 +a? |W|2> Ll g(?j;nEpl <|@|2>] —0.

Here the quantity inside the brackets is positive definite. Hence

(5.4) g; = 0.
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This shows that whenever ¢, = 0 implies that o; = 0, then the stationary
(cellular) pattern of flow prevails in the onset of instability. In other words, the
principle of exchange of stabilities is valid for the fluid heated from below in
porous medium with throughflow in the absence of magnetic field and rotation.
The oscillatory modes are introduced due to the presence of magnetic field and
rotation, which were non-existent in their absence.

6. The case of overstability

The present section is devoted to find the possibility as to whether instability
may occur as overstability. Since we wish to determine the critical Rayleigh
number for the onset of instability via a state of pure oscillations, it suffices to
find the conditions for which (3.10) will admit solutions with o; real.

Equating real and imaginary parts of (3.10) and eliminating R; between
them, we obtain

(61) Agc:% + AQC% + Ajc; + Ag =0,

P.cotmz + 1
e2py P

eEp, P,cotnz P.cotmz ? 2X,
—— -T ——— | E
( P 1)+( e’py ) o {( e’p1 ) TP

P, cot E
+[EP1Q1X1{2X1+1}+T1{_‘3¥(E_ &+ 113?1} y

2

where we have put ¢ = of, ( ) = X;, (b+ Pecotmz) = X3,

b=1+ z and

(6.2) Ag = b

[ XX, (b? —Elez) b

2
[&Xﬁfz (b® — eQip2) + Q3 (Ep1 — p2) +P2Q1T1X2 b?

1
+ [EQfPE cot 2 (62 — Elez)

4
P2 |,2 FPecotnz eEp
(6.3) Az = = [b + {75 (E+¢€)+ Iz } b] :

Since o is real for overstability, the three values of ¢; (= o%) are positive. So
the product of roots of (6.1) is positive, but this is impossible if Ay > 0 and
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A
Az > 0 (since the product of the roots of Eq. (6.1) is ——A—O). Ap > 0 and

Az > 0 are, therefore, sufficient conditions for the nonexistence of overstability.
It is clear from Eq. (6.2) and (6.3) that Ay and As are always positive
if

el
(6.4) Epy > po, —Péﬂ >Ty and b > v/Qiepo,
which implies that

Ev v ve\%( d? Le Y2 Hd
; — > - — — d (1 =
(6.5) - >77’ n<E(k1) (49%2) and ( +as)>(41rp0) o

1. e.

ve d? k=d He Hd
(6.6) En>k, kK<E (E) (4__“!22#2) and (1 + e )>(47rp0) nw
3 2 242 He
Ve d k*d He Hd
Thus, En>&k, k<E (E) (4:22—”2) 4 (1 i )>(4wpo) nm

are the sufficient conditions for the nonexistence of overstability, the violation of
which does not necessarily imply the occurrence of overstability.
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Penny-shaped crack in a piezoceramic cylinder
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THE ELECTROELASTIC response of a penny-shaped crack in a piezoelectric cylinder of
finite radius is investigated in this study. Fourier and Hankel transforms are used to
reduce the problem to the solution of a pair of dual integral equations. They are then
reduced to a Fredholm integral equation of the second kind. Numerical values of the
stress intensity factor, energy release rate and energy density factor for piezoelectric
ceramics are obtained to show the influence of applied electrical loads.

1. Introduction

MECHANICAL RELIABILITY and durability of piezoelectric ceramics offer im-
portant considerations in the design of smart structures and devices. In recent
years, significant efforts have been made to the study of fracture behavior of
piezoelectric ceramics [1, 2]. In the theoretical studies of the piezoelectric crack
problems, the electrical boundary condition imposed across the crack surface
remains a debating issue. There are two commonly used electrical boundary
conditions. PAK [3] has assumed the crack face to be free of surface charge
(the so-called condition of impermeability) while SHINDO et al. [4] have as-
sumed that the normal component of the electric displacement and the tan-
gential component of the electric field are continuous across the crack face
(the permeable crack boundary condition). The impermeable crack is an in-
appropriate model [1, 5|. Recently, NARITA and SHINDO [6] obtained a crack
growth rate equation of a plane strain slit-like permeable crack parallel to the
edges of a narrow piezoelectric ceramic body under Mode I loading. The re-
sults indicated that under applied uniform strain, positive electrical fields (elec-
trical fields in poling direction) impede crack propagation while negative elec-
trical fields (electrical fields applied opposite to the poling direction) aid the
crack propagation. SHINDO et al. [7] also made a finite element analysis (FEA)
for the single-edge precracked piezoelectric ceramics for various electric fields
to calculate the total potential energy release rate and mechanical strain en-
ergy release rate for permeable and impermeable cracks, and performed the
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single-edge precracked beam tests on piezoceramics to verify the theoretical
predictions of the influence of the applied electric field on the fracture be-
havior of piezoceramics. They concluded that for applied displacements, the
total potential energy release rate and mechanical strain energy release rate
for the applied positive electric field under the permeable boundary condition
are lower in magnitude than those for the applied negative electric field. This
explains an increase in the fracture initiation load in the presence of a posi-
tive electric field as observed in the experimental studies. For applied load, the
positive (negative) electric field increases (decreases) the total energy release
rate and mechanical energy release rate. The FEA results for applied force are
in agreement with experimental findings of PARK and SuN [8] and SHINDO
et al. [9].

The strain energy density theory has opened the door to a new and fruitful
area of research in fracture mechanics [10]. In recent works, the energy density
criterion was applied to determine the piezoelectric crack growth segments for
conditions of positive, negative and zero electric field based on the imperme-
able assumption. Failure stresses of Mode I and II cracking were also obtained
[11]. It is evident that this assumption is valid only for modeling flaws of finite
thickness.

This paper considers the electroelastic problem of a penny-shaped crack in
a piezoelectric circular cylinder under tensile loading. The method of solution
involves the use of Fourier and Hankel transforms to reduce the mixed boundary
value problem to a pair of dual integral equations. The solution is then given in
terms of a Fredholm integral equation of the second kind. The stress intensity
factor, energy release rate and energy density factor are determined and numeri-
cal results are shown graphically to demonstrate the influence of applied electric
loads.

2. Problem statement and basic equations

Consider a penny-shaped crack of radius a embedded in a long circular piezo-
electric cylinder of radius b (b > a). It is assumed that the center of the crack
is located on the axis of the piezoelectric cylinder and its plane is normal to
that axis. Figure 1 shows the geometry of the problem where the position of
a point is defined by the cylindrical coordinates (r,8,z). In this coordinate
system, the crack occupies the region 2 = 0, 0 < 8 < 27, 0 < r < a. The
piezoelectric cylinder is transversely isotropic with hexagonal symmetry; it is
subjected to a far-field normal stress ¢,, = 0o. Two possible cases of electri-
cal boundary conditions are considered at infinity. The first case is a uniform
electric displacement, D, = D; and the second is a uniform electric field,
E, = Ey.
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T Dyor En

Fig. 1. Geometry and loading of a piezoelectric cylinder with a penny-shaped crack.

The constitutive equations for piezoceramics poled in the z-direction can be
written as

Ur 3
Orr = C11Ury + Cl2 - + 13U, —en E,

Ur
a9 = Crgtiny + Ol + ClUsz — €1 By
(2.1) >

Uy
Ozz = C13Urr + ClS? + €33U;,; — essE,

Ozr = C44(“r,z + uz,r) —esEr J

D, = 615(ur,z + uz,r) +enky
(2.2) .
D, =e3z (ur,r + _7"‘) + es3uy , + €33 F,



278 F. NARITA, S. LiN, Y. SHINDO

In Egs. (2.1) and (2.2), o+, 006,0:2, 02 are components of the stress tensor; D,
and D, the components of electric displacement vector; v, and u, the compo-
nents of displacement vector; E, and E, the components of electric field vec-
tor; ¢11, €12, €13, €33, C44 the elastic moduli measured in a constant electric field;
€11, €33 the dielectric permittivities measured at constant strain; and e;s, €31, es3
the piezoelectric constants. A comma implies partial differentiation with respect
to the coordinates. The electric field components are related to the electric po-
tential ¢(r, z) by

Er = "¢,r
(2.3)

Ez = —¢,z
The governing equations can be written as:

Up,r Ur
c11 | Uppr + _T"‘ = ;‘2‘ + cqqUy 2,

+(c13 + Ca4) s, + (€31 +€15) P =0
(2.4)

Ur 2 Uz, r
(c13 + 044) Uprz + —T— + €33Uz 2z + Caq Uz pr + -

r

+e15 (¢’,r'r + ¢'T) i e33¢,zz =0

7

u U
(2.5) (€31 + e1s) (ur,rz + %) + €15 (uz," + ;,r)
Pr
+ es3u; .. — €n ¢’,rr + T - 533(]5,22. =0.

In a vacuum, the constitutive equations (2.2) and the governing equations (2.5)
become

Dr = 6[)E,-,
(2.6)
D, =€y E,;
P _
(27) ¢,1‘r + T + ¢,zz - 01

where ¢ is the electric permittivity of the vacuum.
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Referring to the semi-infinite region z > 0, 0 < 7 € b, 0 £ 8 < 2m, the
boundary conditions can be expressed in the form

(2.8)

(2.9)

(2.10)

(2.11)
(2.12)
(2.13)
(2.14)
(2.15)

(2.16)

o.(r,0) =0 (07 <0,

02.(r,0) =0 (0<r

<
UZ(T',O)=0 (GSTS

E.(r,0) = E&(r,0) (0 <r<a),

¢(r,0) =0 (a<r<b),
D, (r,0) = D;(r,0) (0<r<a),
orr(b,2) =0,
or2(b,2) =0,
D,(b,z) =0,

CaseI: 0,,(r,2) =00, D,(r,z)=Dyx ((0<r<bz— ),

CaseIl: 0,,(r2) = 0o, E.,(rz)=FEx (0<7r<b2z— 00),

where the superscript ¢ stands for the electric field quantity in the void inside
the crack. The far-field normal stress o is expressed as

(2.17)

where

(2.18)

(2.19)

(2.20)

] =

c10g — elDoo (Case I),
Too —
ag — EQEOO (Case II),

(c11 + c12){(e11 + c12)€33 — 2(cd; + 2c13e33€31 /€33 — c33e3) /€33)}
(€11 + @12){caz(cr1 + c12) — 2¢25}

]

o (c11 + c12)ess/esz — 2c13€31 /€33
: €11 + C12 '

_ (enn + c12)eas — 2c13e3
€11+ Ci2

Note that og is a uniform normal stress for a closed-circuit condition with the
potential forced to remain zero (grounded) and ¢; = ¢17 + e§1/633, Ci2 = c12 +
6%1/633, C33 = C33 + C%3/€33 are the piezoelectric stiffened elastic constants.
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3. Solution procedure

Assume that the solutions u,,u, and ¢ are of the form

3 e o]
urp(r, 2) %Z/ (o) exp(—v;az)Ji(ar)
j=1 0
+a.;-Bj ()1 ('y;ar) cos(az)|da + axr,
(3.1) 4 0
2
(%, 2) = ;;0/{ a) exp(—y;az)Jo(ar)

+L,Bj(a)I0 ('y;ar) sin(az)} da + bz,
"

{_ %AJ(Q) exp(—'yjaz)Jo(ﬂ’T)

2 T
(32) $(r,z) ==
-z

j=1

r

b; ,
+—‘sz(a)Ig(’yja'r) sin(az)} da — ¢y 2,
Y

where A;(a) and Bj(a) (j = 1,2,3) are the unknowns to be determined, Jy()
and Jy() are the zero and first order Bessel functions of the first kind, and
Iy() and I;() are the zero and first order modified Bessel functions of the first
kind, respectively. The real constants aoo,boo and Coo will be determined from
the far-field loading conditions, and fy] ; 'yJ ,aj,bj,a b (7 =1,2,3) are given in
Appendix A. Application of the Fourier transform to Eq (2.7) yields

co

(3.3) @ = %fC’(a) sinh(az)Jy(ar)de (0 < v < a)
0

where C(a) is also unknown. The stresses, electric field intensities and electric
displacements can be obtained by making use of Egs. (2.1)-(2.3), (3.1) and (3.2).
The electric field intensities and electric displacements in the void inside the crack
can also be obtained from Egs. (2.3), (2.6) and (3.3).
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By applying the far-field loading conditions, the constants aee, bse and ceo
are evaluated as

CasE I.

1

Ooo = 5{_(831 es3 + c13e33)aoo = (613633 - c33831)D00},
1 2

boo = 5 [{(611 +ci2)ess + 2e3}ooo + {(c11 + c12)ess — 2613831}D°°]’

(3.4)

1

o — 5 [{2613631 —(c11 +c12)ess}ooe + {(e11 +e12)cas — 2C%3}D°°:|’

8 = (c11 + c12)(cszess + ed3) + 2(—clzess + cazed; — 2cizesess).

Cask I1.
- { + ( es)FE. }
a = C Ci13€ — C )
R v e —— 13000 13€33 — c33€31 ) B
i
3.5 boo = [_ +
(3.5) 0o 92, — cz3(crt + €12) (e11 + ¢12)000
+ {2613631 —{en + 612)633}Eoo],
Coo = B

The boundary conditions of Egs. (2.8) and (2.10) lead to the following relations
between unknown functions:

(3.6) %A] (a) + %AZ(Q) + :);—ZA;;(Q) =0,
(3.7) " dy(e) + 2 y(a) + % fy(a) =0,

(3.8) f_,' = C44(aj’)’32 + l) — 615bj (] = 1,2,3).
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Application of the mixed boundary conditions in Eqgs. (2.9) gives rise to a pair
of dual integral equations:

o0
aFD(a)Jy(ar)d Z/agnyBJ fyjar)da
J=1y

:—%croo (0<r<a),

(3.9)
/D )Jo(ar)da =0 (a <r <b),
0
where
(3.10) D(a) = A;(la) _ Aii(:r) _ A:;(:),
3
(311) F= Zgjdj
j=1

(312)  di =m(bafs —b3f2), do=a(bsfi —bif3), ds=y3(b1f2—b2f1),

(3.13) gj = c13aj; — C33 + 833bj (j = 1,2,3).

Through Egs. (2.12)-(2.14), the unknowns Bj(a)(j = 1,2, 3) are related to the
new parameter D(«a) and are given in Appendix B. Note that the only unknown
in Egs. (3.9) is D(«) since A;(a), B;(a)(j = 1,2,3) are related to D(a) through
Egs. (3.10) and (B.1) in Appendix B.

The solution of a pair of dual integral equations (3.9) may be obtained by
using a new function ¢(£) and the result is

1

(3.14) D(a ”I‘;"a? f &(€) sin(aat)dt.
0

The function @(£) is governed by the following Fredholm integral equation of
the second kind:

1
(3.15) 2() + [ oK (€, mdn ¢

0
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The kernel function K (£,7) is
i 3 o= 3
316) K(61) = 5 D] [ 5 >~ dor (e Kalria)
: 0 :

— Nji(@) K, (v;ab)} sinh(y;aan) sinh(y}aa{)da

in which Ky() and K () are, respectively, the zero and first order modified Bessel
function of the second kind, and Mj;(a), Nji(e) (3,5 = 1,2,3), A(e) are given
in Appendix B.

The displacement components u,, u, and electric potential ¢ near the crack
border are

ki /1 3
e = lF 1 Zaidj{(COSQ o1 +'yfsin2 91)1/2 +Cos{91}1/2’
J=1
(3.17)

k N
u; = __lgj Z jdy_]{(CC’S2 6 + '732 sin61)'/2 — cos 6,}/2,
1 1

3
ki+/ b;d; y
(3.18) b = 1—FT1 Z —J—)TJ{(COSZ 6 + 'yj-’ sin6;)/2 — cosel}l/z,
: j

and the singular parts of the strains, electric field intensities, stresses and electric
displacements in the neighborhood of the crack border are

Err = ZF\/_ZaJdR (61),

3
aﬂ +1) S
By ZF\/_Zd R5(61);
E, QF\/_Z X R3(61),
(3.20)
ko
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g = 2F\/_ZdeR (61),

(3.21) 0y = 2F\/_Zgjd R4(6y),
fJ 7 s
o Z R
2F\/_ =
”J i ps
D, = Z R 91
2F\/_ s
(3.22)
D, = F \/_ Zh d; RE(61),
where
(3.23) h; = e3a; —e33 — €ea3bj,
. (cos? 8, + 'yJ?- sin’ 01)1/2 + cos &y 12
Bty = cos? 6 + y2sin’ 0 '
1T Yy s o
(3.24)
RO = — (cos? 6, + ’y? sin? 91)1/2 — cos 6 it
- L cos? 6 + ’)432 sin? 4,

and the polar coordinates r; and #; are defined as

(3.25) no= {lr—a?+2)7

(3.26) f; = arctan ( C ) .
r—a
The stress intensity factor k; for the permeable crack is obtained as

(3.27) by = T {9 r—a)} 022 (r, 0) —aoofqi( ).

r—a’t
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The electric displacement intensity factor kp is also given by

1/2 y B
(328)  kp= lim {2(T — a)} D:(r0) = | % ]ZT hyd; | k.
The stress and electric displacement intensity factors for the impermeable crack
are discussed in Appendix C.

By using the concept of crack closure energy and the asymptotic behavior
of stresses, displacements, electric displacement and electric potential near the
crack border, the total potential energy release rate G may be expressed as

(3.29) G= hmoA—a/{a“(T] u,(Aa — 1)

+ 0. (r)ur(Aa — r1) + Dy (r1)d(Aa — rp) }dr,

where Ag is the assumed crack extension. Expression relating G for the per-
meable crack to k; is obtained by substituting representations for the stresses,
displacements, electric displacement and electric potential in the vicinity of the
crack into Eq. (3.29) and taking the limit. The result is

il bid;
(3.30) G FE—J—Zh d; Y L K.
=1 7 j=1 j=1 4

The mechanical strain energy release rate G includes only the mechanical en-
ergy released as the crack extends and is given by

Aa
1
(3.31) Gy = Al.]zr-ﬂlo e f {ozz('rl)uz(Aa —11) + 0z (71)ur (Aa — rl)}d'rl.
0

Writing the mechanical strain energy release rate expression for the permeable
crack in terms of the stress intensity factor, we obtain:

T oo~ d;
(3.32) G =— | 5= 3 —j k.
i=1
The total potential and mechanical strain energy release rates for the imperme-
able crack are also given in Appendix C.
When the stress intensity factor k; and the electric displacement intensity
factor kp are present along the crack border, the fracture criterion should depend
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on a combination of k; and kp reaching a critical value. Such a criterion can be
developed by referring to the amount of energy stored in a volume element ahead
of the crack. The critical value of this energy density will be used to determine
whether the piezoceramic has reached the state of failure or not [10, 11]. For the
piezoceramic, the energy stored in the volume element dV is

1 1
(3.33) dW = {i(arreﬂ + OyrEar + Opz€ry + 02265,) + i(DrEr + DzEz)} dV.

Substituting Egs. (3.19)-(3.22) into Eq. (3.33) yields the quadratic form for the
energy density function

aw 1 S
—(ap + ap)k? = —

3.34 — =
( ) av. n T

in which the coefficients aps and ag depend on the angle ¢, and they are given by

1
(335) am =gz Zm,auz(e1 Za,d}z (6,)
j=1

3

fid .77 +1) : :
+Z J ]RS Z J Rs 01 Zg]dJRj(el)ZdJRj(el) ’
J=1 =1 =

3

3
(336) a = gz | 2 LERI0) S 2L RS 0)

=1 7 i=1 ,Y]

3 3
—Y " hjd;RS(61) ijde;‘(al)} :
J=1 j=1

The magnitude, S, of the 1/r; energy field in Eq. (3.34) will be referred to as
the energy density factor for the permeable crack. The energy density factor for
the impermeable crack is also given in Appendix C.

For a penny-shaped crack under tensile loading, fracture will always occur in
the normal plane. SiH [10] has assumed that crack initiation starts in a radial
direction along which the energy density is a minimum. Necessary and sufficient
conditions for S to have a minimum value are

dsS d’S

E=O, '—->O

(3.37)
d6?



PENNY-SHAPED CRACK... 287

Rapid crack growth occurs when the minimum energy density factor reaches a
critical value:
dw
(338) Smin = Se = T1c (W)Cy
where 1. represents the last ligament of slow crack growth, just prior to the onset

of rapid fracture. Each increment of stable crack growth ri1,712,..., 715, ..., T1c Up
to the rapid crack propagation is determined by the condition

(dW) W JES SR .

(3.39) — e

711 T2 T1j T1c

If the fracture process due to increasing electromechanical load is unstable, then
each increment of crack growth will increase monotonically, i.e.

(340) T < T <- <1 < < Tee

The corresponding energy density factors will also increase according to S;/r1; =
const:

(3.41) 51<8 < <8< <8,

A stable fracture process corresponds to decreasing increments of the crack
growth:

(3.42) T >Te > 2>7r > > T,

where 11, is the last increment of growth before the crack arrest. A corresponding
decrease in the energy density factors takes place:

(3.43) S$1>8>->8;>:->8,.

In the piezoceramic, a combination of the conditions described by Egs. (3.40)
and (3.42) can exist. That is, the increments of crack growth may either increase
or decrease, depending on the material properties and the nature of combined
electromechanical loading.

4. Numerical results and discussion

The determination of the stress intensity factor, energy release rate and en-
ergy density factor for the permeable crack requires the solution of the function
@(&). The solution of the Fredholm integral equation of the second kind (3.15)
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governing ®(£) has been computed numerically by the use of Gaussian quadra-
ture formulas. Once this is done, k;,G and S can be found from Egs. (3.27),
(3.30), (3.31) and (3.34). The simultaneous Fredholm integral equations of the
second kind (C.11) were also solved numerically to yield the values of the func-
tions @1(1) and P(1). These values were then inserted into Eqgs. (C.13) and
(C.14) to determine the stress and electric displacement intensity factors for
the impermeable crack. The energy release rate and energy density factor were
calculated by using Egs. (C.15), (C.16) and (C.18)—(C.20). The piezoelectric
materials are assumed to be the commercially available piezoceramic P-7. The
elastic, piezoelectric and dielectric properties of material are listed in Table 1.

Table 1. Material properties of a piezoelectric ceramic P-7.

Elastic stiffnesses Piezoelectric coefficients Dielectric constants
(x10'°N/m?) (C/m?) (x107'°C/Vm)
Ci1 €33 C44 Ci2 C13 €31 €33 €15 €11 €33
P-7 13.0 119 25 83 83 -10.3 147 135 171 186

Figure 2 shows the normalized stress intensity factor wky J200al/? as a func-
tion of the crack-radius to cylinder-radius ratio a/b for different values of the
normalized electric displacement e;Ds/c100 (Case I) and for the permeable
(exact) and impermeable (approximate) cracks. The data are normalized by
the stress intensity factor 209a'/?/m of an infinite P-7 piezoelectric ceramic for
Do = 0 C/m? corresponding to the applied uniform displacement. A similar
phenomenon was observed for the stress intensity factor of the permeable and
impermeable cracks. Note that an increase of a/b causes an increase in the stress
intensity factor. When electric displacement is applied, which is equivalent to
applying a surface charge, 7k /200a1/ 2 increases or decreases depending on the
direction of the electric displacement. The stress intensity factor k; normalized
by 20.0a'/2/7 corresponding to the applied uniform stress for the permeable
and impermeable crack models is independent of the normalized electric dis-
placement e;Duo/€100. A similar explanation applies to the results shown in
Fig. 3 for Case II as the normalized electric field e; Ey/0g is varied. In the case
of electric field loading, which can be more readily achieved in the laboratory by
applying a constant potential difference across the piezoceramic cylinder, apply-
ing the field in the positive direction decreases the stress intensity factor, whereas
the negative electric field increases it. For 3 Do /c100 — 1.0 or e2E/0p — 1.0,
wky /200a'/? approaches zero. The stress intensity factor is also studied for dif-
ferent conditions of the electric potential at infinity of the piezoceramic cylinder:



T : 2 T T
Permeable crack
------- Impermeable crack /.

2.5

Fi1G. 2. Stress intensity factor versus a/b for different electric displacement
e1Do fc100 (Case I).
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FiG. 3. Stress intensity factor versus a/b for different electric field e2 Foo /o0 (Case II).
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an open-circuit condition where the electric potential remains free (zero electric
displacements) and a closed-circuit condition with the potential forced to remain
zero (grounded). Note that the stress intensity factor for E, = 0 is smaller than
the one for Do, = 0.

Figure 4 shows the total energy release rate G for the permeable crack under
applied uniform displacement versus normalized electric displacement e; D, /100
(Case I) for a/b = 0.5, where the result has been normalized by the energy re-
lease rate G pg for Do, = 0. For comparison, the mechanical strain energy release
rate Gy for the permeable crack, total energy release rate Gy and mechanical
strain energy release rate G pry for the impermeable crack are also included in the
figure. Energy release rates Gy, Gy and G psr are normalized by the mechanical
strain energy release rate Gprpo, total energy release rate Grpg and mechanical
strain energy release rate G psypo for Doo= 0, respectively. Comparing the results
from the total and mechanical energy release rates, little difference is observed.
The total energy release rate for the permeable crack is lower for positive electric
displacements and higher for negative electric displacements. Hence, a positive
electrical load will tend to slow the crack growth and a negative electrical load
will tend to enhance the crack growth. The numerical results for the permeable
crack are found to be in excellent agreement with the observations of SHINDO
et al. [7]. On the other hand, when a positive electrical load is larger, a negative
total energy release rate is produced for the impermeable crack. The imper-
meable assumption leads to an overly attractive prediction regarding the crack

T A S B S s i e
Permeable crack
Total G
] s Mechanical Gy
U Impermeable crack
Na R mmmees Total G,
o R Mechanical Gy,

G
—
|

ab=0.5 -
Applied displacement R

\

P ST SR T N SR SR U S N V1
-%.5 0 0.5
E]Doo /C]O'O

FiG. 4. Energy release rate versus electric displacement e, Dy, /¢10¢ (Case I).



PENNY-SHAPED CRACK. .. 291

arresting ability of electrical loads in cracked piezoceramics. Figure 5 shows the
corresponding result for Case II. Here the data G, G, Gy and Gy have been
normalized by the energy release rates Ggo, Gpgo, Greo and Gy for Es = 0,
respectively. The presentation of data for the impermeable crack causes confu-
sion in using the electrical boundary conditions on the crack face. Figure 6 gives
the plot of the normalized total energy release rate G;/Grpo for the permeable
and impermeable cracks under applied uniform stress versus normalized electric
displacement e; Dy, /c104 (Case I) for a/b = 0.5. Also shown is the normalized
mechanical energy release rate Grar/Grarpo-

2 EELICLPS S EI
e Permeable crack
\ Total G
-\ — Mechanical G,
T Impermeable crack
------ Total G,
------- Mechanical Gy
=]
=1
1_ -
Q
O
a/b=0.5
A
Applied displacement s
oy ey g ey
-%.5 0 0.5 1

FI1G. 5. Energy release rate versus electric field e2 E /o0 (Case II).

Figure 7 shows the corresponding result for Case II. Appling the electrical
load in either direction decreases the total energy release rate for the imper-
meable crack and eventually arrests the crack growth. However, experimental
investigation does not confirm this crack-arresting behavior. The total and me-
chanical energy release rates for the permeable crack are independent of the
electrical loading.

Figure 8 gives the variation of the normalized energy density factor 725/4ac3
with angle 6; for different values of e; D /c10¢ (Case I) and a/b = 0.5. Exclud-
ing the extreme values at the crack boundaries, all curves for the permeable and
impermeable cracks possess minimum at §; = 0. The variation of 72S/4a0? with
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& i

F1G. 6. Energy release rate versus electric displacement e1 Do /€100 (Case I).

6, for Case II is found to be similar to that for Case I. Figure 9 shows the crack
growth segment r1; (energy density factor S;) for the permeable crack under ap-
plied uniform displacement versus normalized electric displacement e; Do /c109
(Case I) for a/b = 0.5 and 6, = 0, where r1; (S;) has been normalized by the
crack growth segment rypg (energy density factor Spo) for Do, = 0. Also shown
are data for the impermeable crack normalized by r17po (Srpo) that corresponds
to the crack growth segment (energy density factor) for Do, = 0. The presence
of positive electric displacement D, leads to a decrease in the crack growth
segment (energy density factor) for the permeable crack. In contrast, the crack
growth segment (energy density factor) increases as the electric displacement
Do increases in the negative direction. Figure 10 shows the corresponding re-
sult for Case II. The data r1; (S;) and ry;; (S;1) have been normalized due
to r1go (Sgo) and ri7pe (Sreo) for Eo = 0, respectively. For the permeable
boundary condition, no difference in the effects of the electrical loads on crack
propagation is found for the criteria (the stress intensity factor, total energy
release rate, mechanical strain energy release rate and energy density factor).
Figures 11 and 12 exhibit the dependence of the crack growth segment (energy
density factor) for the permeable and impermeable cracks under applied uni-
form stress on €1 Do /C1000 and e3Foo/040, respectively. Based on the energy
density criterion for the impermeable crack, we cannot explain the experimental

results.
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5. Conclusions

The electroelastic problem of a piezoceramic cylinder with a penny-shaped
crack has been theoretically analyzed. The results are expressed in terms of
the stress intensity factor, energy release rate and energy density factor. It is
found that the stress intensity factor tends to increase with increasing crack-
radius to cylinder-radius ratio, depending on the electrical boundary condition
on the crack face. For the permeable boundary condition, positive electrical loads
impede crack propagation in piezoelectric cylinder under applied displacement
while negative electrical loads aid the crack propagation. The experimental study
has shown that crack growth inhibition corresponds to a positive field. For ap-
plied stress, electric fields have no effect on crack propagation. No consensus is
reached on the fracture criteria for the impermeable piezoelectric cracks, and
the stress intensity factor, energy release rate and energy density factor criteria
for the permeable crack are superior to the fracture criteria for the impermeable
crack.
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Appendix A

*yj‘? (4 =1,2,3) in Egs. (3.1), (3.2) are the roots of the following characteristic
equation:
(A.1) aoy® + boy! + coy® +do = 0,
where

ap = cq4(c3zeaz + e%ii)a

2 2
bo = —2case15€33 — cr1€33 — caa(caa€nn + cr1€3z) + €3z(crz + caq)

+ 2e33(c13 + caa) (€31 + €15) — Ciqe33 — caz(es1 + e15)?,
(A.2)

co = 2c11€15€33 + Case’s + c11(cazern + casesz) — €11(cra + caq)?
— 2e15(c13 + ca4) (€31 + e15) + €iqe11 + caa(ear + e15)?,

do = —c11(caaenn + 6%5)
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and, 'y] , Gj, by, a], 5 (_7 =1,2,3) stand for the abbreviations:
' 1

Y

(A4) (a1 +exs)(easy; — caa) — (c13 + caa)(e337] — €1s)
' (caay] — c11)(ess¥? — e15) + (c13 + caa) (€31 +e15)7;

(caay} — c11)aj + (c13 + ca4)

(As) ] = bl
€31 + €15

(A.6) a; = —aj'yf,
(A.7) b; = —b;
Appendix B

The unknowns Bj(a)(j = 1,2,3) can be related to the new parameter as

3
Bi(a) = Z

/ {My;(@)Gi(s,a) + N1i(a)G;(s,a), } D(s)ds,
=l 3
3 o0 ’
(B1) Bafe) = 57 Y- b [{Ms()Gils,) + Nal)Glls, @) } Do)
=1 0

00

: 3
Bile) = ﬁ ; & / (Ml (s, &) + Narlo)Oels o), D), da
= 0

where
2 %-32
G‘l(51 a) = ; 3271.2 + Cl’2 J()(bs),
(B.2)
y 2 s
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My;(a) = mi{ga(a)r3(a) — gz(a)ra(a)},
Myi(a) = mi{gz(a)ri(a) — qi(a)r3(a)},
Mj3i(a) = mi{q1(a)ra(a) — g2(a)r1(a)},

(c12 — Cll)ai{

Nyi(a) = b

q2()r3(@) — ga(@)r2(a)}

+23 {ralalpa(@) - ra(@pa(a)) + S {pa(@)as(o) ~pa(ena(@),
(B.3) i :

Nos(e) = 2% (4 0 (0) — gy @)

+L e (@) - n@lpala)} + S palaln @) - m(@as(o)),

1

Nyi(e) = 2= 0% 4 ()1, @) — ga(a)ri (@)

+%{r1 (@)p2(a) — r2(a)pr1(a)} + %{m(a)qu(a) - p2(a)qi(a)},

(1 =1,2,3);

(B.4) Ala) = pr(a){g2(a)rs(a) — gzs(a)ra(a)} + p2(a){gs(a)ri(a)

— qi(a)rz(a)} + p3(a@){qi(a)r2(a) — g2(a)r1 () }

and
pi(a) = ayimilo(v,ab) + ¥inil1 (v;ab),
(B.5) gila) = fil1(v;ab), (1=1,2,3);
ri(a) = il (v;ab),
m; = c116; — €13 + e by,
(B.6)

B= 615((15’7’12 +1)+enb; (i=1,2.3).
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Appendix C

The impermeable boundary condition becomes
D,(r,0) =0 (0<r<a),

(C.1)
¢(r,0) =0 (a<r<bh).

The boundary condition of Eq. (2.8) leads to Eq. (3.6). Making use of mixed
boundary conditions of Egs. (2.9) and (C.1), two simultaneous dual integral

equations are obtained:

¢/ oo oo
[aF11D1(a)J0(a'r)da+[aF12D2(a)Jg(ar)da
0
3 oo
— Z/agj'y_,B (@) Iy(v,ar)da = —Eom
(C.2) q el 2

/Dl(a)Jo(ar)da =0 (a<r<b)

;

o0 o0
/aFngl(a)Jg(ar)da +/aF22D2(a)Jo(ar)da
0 0

3 o o]
(C.3) ¢ ;!a v Bj(a)Io(y ar)da - —§D*
/Dz(a)Jg(ar)da =0 (a<r<b),
[ ©
where
Bl = o) et L At
o "2 V3
(C4)

Daar) = —mu @M@+—&M,

(0<r<a)

(0<r<a)

3 3 3 3
(C5) Fu= Zgjdj, Fip = Zgjlj, Fon =) hjdj, Fp= Ehjlja
Jj=1 j=1 j=1 §=1
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(C.7)

h=m(fo—f3), l=v(fi-5H), b=v(fi-/1)

Ds (Case 1),
D =
coog + e3Eo  (Case II),
iy e3s(c11 + c12) — 2ci3€31 - 2e31 +eas:
(ci1 + c12)cs3 — 233 ci1 + ¢z ’

3

Bila) = 575 2 [ (Mul0)Gils,e
=17

+N1;(a)Gi(s, a)H{d; D1 (s) + 1;Da(s)}ds,

1 o o]
Bs(a) = K—a_) Z}/{MQi(Q)Gi(SaQ)
=L
+Noi (@) G (s, @) H{di D1 (s) + 1:Da(s) }ds,
1 T
Bu(@) = 5 2 / {Ms;()Gils, @)
=0

+N3,;( ) (S O.')}{d D1 —+— l; Dz )}ds

The unknowns D, (@) and Dz(e) can be found by the same method of ap-
proach as in the permeable case. The results are

(C.10)

Dife) = ~72a? f &,(¢) sin(aat)d,

1
Dy(a) = —%a2f¢g(§)sin(aa§)d§.
0
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The functions @, (¢) and $3(£) in Eqgs. (C.10) are the solutions of the following
simultaneous Fredholm integral equations of the second kind:

1 1
B1(E) + () + / 1 (m) K11 (€, m)dn + f &) K126, mdn = €,
0 0

Fy

(C.11) F—nél(ﬁ) F—m@(f).
1 i -
+f¢1(n)K21(£,n)dn+/¢z(n)K22(§,n)dn = %5.
0 0

The kernels Kj;(€,1)(i,7 = 1,2) are given by
4 1
_ ) 2 ; ’ ] . ’
Ku(¢n) = 72, J"S'=1 9575 /—/_‘\(a) ;:1 diyi{v;aM;ji(a) Ko(y;ab)

— Nji(a) K, (’ylab)} smh('yzaan) sinh(y aa!g)da,

8

Kna(6,m) = WZFmZgﬂJfA Z Ly {vieMj () Ko (;cxb)

— Nji(@) K1 (y;ab)} sinh(y;aan) sinh(y;aaé)de,
(C.12)

3
Ka(€n) = QFuZhﬂ? [ ata L dnitiadu(@)Katriad

—Nji(a)Kl('y;ab)}sinh (y;aam) sinh(y aaf) o,

3
4 '
K€, ) = QFmZth |55 > tenra(@Ko(rot

0
— Nji(a)K, (y;ab) } sinh(7;acm) sinh(y aaf)

The stress intensity factor k; and electric displacement intensity factor kp for
the impermeable crack are obtained as

(€13) B = Z0v/a{@1(1) + B3(1),
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(€.14) ' ——awf{F” W) + 24,0 )}

Using the field distribution in front of the crack border, the total potential
energy release rate G and mechanical strain energy release rate G for the
impermeable crack are

3
— 7’ o 5
why) &= 2(F11 Fay — FiaF5)? {(F11F22 Fszl)j;’)’j
3 3 boss
LD Dt 4
j=1 j=1 V3
2 2 biay O 2 bt L&
+ Zhjtjz]—]"+zhjsjz g (Fanz—Fqul)z:—J kikp
roc SR | | =11 j=1 1

3
i s t;
C18) Gu=- Dl Ll DO LU S
(C.16) = 2(F11F22—F12F21){('1 j) 1 ( i j) 1 D}

J:
where
sj = djFoy — l; Fo,
(C17) j = aj j
tj = de12 = ljFu.

The energy density factor are expressible in the forms

where
1
- S k2 + Bakrkp + Bsk),
- o 8(F11F22—1"125'21)2('81 i+ Bekikp + P3kp)
1

(C.20) Sg = 5 (Bak? + Bskikp + BskD),

8(F11F22 — FiaFy1)
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(C. 21)
fg 7 ps SJ aﬂ'] s
B = ijsj (6,) Zajs] (6,) +2Z L R3( 9)2 R(Ol)

= Zgjs]-R;(Gl) Zsz;(al

3 3 3 3
c c it s a' 7 +1 s
=3 m;t;RS(61) > ajs;RS(61) —22’3—_’1% Z ke Rwl)
i=1 i=1 =1V j=1
3 3 3 3
+ Y gitiRE(61) Y siRS5(61) — Y m;s;Ri(61) ) ajt;RE(61)
i=1 j=1 j=1 j=1
3 2 3
8; ti(ajvy +1)
—2Zf’ 1R300 Y. IR ) + 3 g5 5 0) th (61),
J

=1 W j=1 j=1

3 iy
B = ijt RE(61) Zajt]Rc 0,) + 22 it ’RS(Hl)Z MR;(fh)

j=1 j=1 j=1 M = i
3 3
=Y gitiR§(01) Y t;RE(6y)
3=1 ge=1
3 g b 'S 3
Bi=> ,y—’_SjRj(f)l) Z ~I Rs(6 Zhjs, <(61) S bjs; RE(61)
j=1 " =1 Vi j=1
3 3
fs == 3 TR0 3 LI R6: +Zhjtj (61) Zb 5;RE(61)
ge=1 1 j=1 ’YJ .
3 3
-3 :—;SJ-RS Z 2% LLR61) + Z hjs; RS(61) Z bt RS(61),
Jj=1 Jj=1 j=1 g=1

3 3
fs = Z%tmgwl)z LR (6:) Eh t; RE(61) Zb itR5(61)-
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THE TWO-DIMENSIONAL flow problem of a third order incompressible fluid past an
infinite porous plate is discussed when the suction velocity normal to the plate, as well
as the the external flow velocity, varies periodically with time. The governing partial
differential equation is of third order and nonlinear. Analytic solution is obtained
using the series method. Expressions for the velocity and the skin friction have been
obtained in a dimensionless form. The results of viscous and second order fluids can
be recovered as special cases of this problem. Finally, several graphs are plotted and
discussed.

1. Introduction

THE OSCILLATING flows play an important role in many engineering applica-
tions. The study of such flows was first initiated by LIGHTHILL (1] who studied
the effects of free stream oscillations on the boundary layer flows of viscous,
incompressible fluid past an infinite plate. Thereafter STUART [2] extended it
to study a two-dimensional flow past an infinite, porous plate with constant
suction when the free stream oscillates in time about a constant mean. After
the appearance of LIGHTHILL'S [1] classic paper on the response of skin friction
in laminar flow due to fluctuations in the free stream, considerable interest has
been developed in the subject of boundary layers which have a regular fluctuating
flow superimposed on the mean boundary flow. A large number of papers deal-
ing with this subject have appeared, cf. for example WATSON (3], MESSIHA [4],
KEeLLY [5] and LAL [6]. The idea has been also extended to magnetohydrody-
namic flows, SURYAPRAKASARO [7], and the elastico-viscous flows, KALONI [8],
SOUNDALGEKAR and PURI [9] and PURI [10]. The boundary layer suction is a
very effective method for prevention of the separation. The effects of different
arrangements and configurations of the suction holes and slits on the undesired
phenomenon of separation have been studied extensively by various scholars, and
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have been compiled by LACHMAN [11]. In technological fields, the boundary layer
phenomenon in non-Newtonian fluids has recently become a fascinating problem,
under a wide range of geometrical, dynamical and rheological conditions.

Some experiments by BARNES et al. [12] confirmed that an increase in the
flow rate is possible and that the phenomenon appears to be governed by the
shear-dependent viscosity. In fact, in [13] WALTERS and TOWNSEND show that
the mean flow rate is unaffected by second-order viscoelasticity. Although the
second-order model is able to predict the normal stress differences which are
characteristic of non-Newtonian liquids, it is not shear thinning or thickening,
the shear viscosity is constant. Third-order model exhibits shear-dependent vis-
cosity, for a simple-shearing motion (v = (yy,0,0)), where 7 is the rate of
strain. The relation between the shearing stress and the rate of strain is given
by Szy = p (1 F T24?) vy, where T} is the shear relaxation time (its reciprocal is
the characteristic rate of strain at which the apparent shear viscosity noticeably
decreases or increases), and p is the lower limiting viscosity. Experiments made
by BRUCE [14] has shown that there are materials that exhibit: (1) strong normal
stresses but are weakly shear thinning or thickening (class 1 a,b); (2) roughly
equal normal and shear effects (class 2 a,b); (3) weak normal stresses, but they
are strongly shear thinning or thickening (class 3 a, b).

Since many years there has been much interest in the effect of a variable
suction velocity on the flow field. Regarding the elasto-viscous (Walters liquid B')
model, SOUNDALGEKAR and PURI [9] obtained the perturbation solution for the
fluctuating flow of the elasto-viscous fluids past an infinite plate with variable
suction.

As far as the authors are aware, no attempt has been made to examine the
effect of the variable suction velocity on the flow fields of third-order fluids past
an infinite plate. In the present work such an attempt has been considered.
Literature survey revealed no previous attempts on studying this problem, even
in the constant suction velocity case. The external flow velocity in the present

paper is taken as U(’) [1+ gewt ] and the suction velocity is assumed to be of the

' o FLE r . i p
form v, [l—i— € Aetv't }, where v, is a non-zero constant mean suction velocity,

€ is small and A is a positive constant such that € A < 1. By neglecting higher
powers of €, approximate solutions are obtained for the velocity field in the
boundary layer.

2. The constitutive model

The incompressible, homogeneous fluid of third order is a simple fluid of the
differential type whose Cauchy stress tensor has the representation [15]

(2.1) T = —pl+pAi+a1As+as A2+ 8 As+0: (A1 Ag+AsA )+ (trA2) Ay,
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where —pl is the indeterminate part of the stress due to the constraint of in-
compressibility, u, ay, as, 81,32 and S; are material constants, and the tensors
Ap, n=1,2,3 are defined through [16]

A, = (gradV) + (gradV)7,

(2.2)
A, = (% + V.V) A, 1+ A, (gradV) + (gradV)TAn_l, n>1,
where V is the velocity and ¢ is the time.

JOSEPH [17] proved that the rest state of fluids of grade n, n # 1, any is un-
stable in the spectral sense of linearized theory when the ratio of the coefficients
of A, and A, _; in the constitutive equation is negative. Hence, if a; < 0 then
the above model exhibits unacceptable stability characteristics. On the other
hand, Eq. (2.1) must be consistent with thermodynamics principles. The ther-
modynamic of fluid model by Eq. (2.1) has been the object of a detailed study
by Fospick and RAJAGOPAL [18]. They have shown that the Eq. (2.1) to be
compatible with thermodynamics, and the free energy to be minimum when the
fluid is at rest, the material constants should satisfy the relations

,U'ZOv 0120, ﬁ1=ﬂ2=0,

B3 > 0, —V24pfs < a1 + az < /24uB3.

It is easy to see that the ratio of the coefficients of A and Ajg in the form of
T, i.e. the “ratio” (ﬂ, does not satisfy neither the hypothesis of JOSEPH [17] nor
the hypothesis of RENARDY [19], who assumed the coefficients a1 (n > 5 and
here 3) of A, is non-zero for instability. We also point out that the retarded mo-
tion approximation does not lead the models. Thus subject was clearly explained
by DUNN and RAJAGOPAL [20]. Therefore, the model of Eq. (2.1) reduces to:

(23)

(2.4) T = —pl + pA; + 1Az + 2A? + B3 (trA2) A,
The equation of motion, in the absence of body forces, is

LB 1

(2.5) P

' d
where p is the density of the fluid in the dimensional form and prd is the ma-

terial derivative. The fluid is incompressible, thus only isochoric (i.e. volume
preserving) flows are possible, i.e. the flow satisfies the constraints

(2.6) divV = 0.
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We consider a two-dimensional incompressible fluid flow along an infinite
plane porous wall. The flow is independent of the distance parallel to the wall
and the suction velocity normal to the wall is directed towards it and varies
periodically with time about a non-zero constant mean value vlﬂ. The z'-axis
is taken along the wall, y'-axis normal to the wall. Dash denotes dimensional
quantities. Thus for the problem under consideration, we seek a velocity field of
the form

(2.7) V= [ul (y’,t') ,v',O] 3

where v < 0 is the suction velocity.
From Egs. (2.6) and (2.7)

It is evident from Eq. (2.8) that v' is a function of time only. Hence we
consider v in the form [4]

!

(2.9) v = —up(l+ € At ).

The negative sign in Eq. (2.9) indicates that the suction velocity normal
to the wall is directed towards the wall. In view of Egs. (2.4), (2.7) and (2.9),
Eq. (2.5) takes the form

o 1 Oy 1 9P 0
2.10 S e m L E ATy o ST 2D
(2.10) = vo(14 € Ae )ay oz +V8y”"

2
83’ ; N 3| 66 [0u ) 8%
e 14+ € Ae™? S|+ | =] =,
dy” ot UO( e ) Byal po\%y ) oy*

’

ay

’

p

1

(2.11) o 10P
. atr . pl ayra
where
K= ﬁi?
p
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’

—— is small in the boundary
dy

layer and can be neglected [9]. Hence the pressure is taken to be constant along
any normal and is given by its value outside the boundary layer. If U’ (¢') is the
stream velocity parallel to the wall just outside the boundary layer, then

From Eqgs. (2.9) and (2.11), it is clear that

/

_loP _aU'
p or  dt
and the Eq. (2.10) takes the form

o’ / NGy dU 8%y
2.12 -— — 1 Ae¥' | — = — e
212) 5 ”°(+E ¢ )ay & TP

! [ 2 [

o | Bu ' S\ Bu 603 (Ou | 8%u
i+ = a0 = 1+ € Ae™ i s k=t | (e —
P [ayzat ”0( S ) o | T \oy ] &

The boundary conditions are
(2.13) w =0 at y =0 and u = Ut) as y — .

We introduce dimensionless quantities defined by

't 12 1 !

) vyt 4vw
= u: t= O—a W= —5,
v 4v g
(2.14) \
CY'U’ ”U,, UI 6 2o
=— 20 y u=—, U=—, €= %Uogvoga
P Us Uy ¥

where U(') is the reference velocity and w' is the frequency. Equation (2.12) takes
the dimensionless form
19du

nOu  1dU  §%u
R wiy 2™ == Slat e 2
(2.15) 19 (1+ € Ae )ay T X a9

1 &u - O ou\? 0%u
& — (1 A wty ¥ ™ Y il
+ o 1970 (1+ € Ae )6y3]+€1 (ay) 5

subject to the conditions
(2.16) vu=0 at y=0 and u— U as y— o0,
where

(2.17) U =1+ € e*t,
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3. Perturbation solution

We note that the resulting equation of motion (2.15) is of the third order.
Moreover, this equation is nonlinear as compared to the cases of the second order,
elastic-viscous [9] and Newtonian flow [4] equations. As a result, it seems to be
impossible to obtain the general solution in a closed form for arbitrary values of
all parameters appearing in the nonlinear equation. Even in the case of constant
suction and elastic-viscous fluid [8], all analytic solutions obtained so far are
based on the assumptions that one or more of the parameters are zero or small.
Therefore, we seek the solution of the problem as a power series expansion in
the small parameters €. Accordingly, we assumed that the velocity component
u can be expanded in powers of €; as follows:

(3.1) u(y, €1) = uo(y)+ €1 wi(y) + ...

Substituting Eq. (3.1) into Eq. (2.15) and the boundary conditions (2.16), and
then collecting terms of the same powers of €, one obtains the following systems
of partial differential equations along with appropriate boundary conditions.

System of order zero

(3.2) ;11—%%9 -(1+ € Aeiwf)%";(’ = %“i wt | ‘?;_:20
o~ 0 a0 2]
(3.3) w=0 at y=0 and uy— 1+€e® as y— oo
System of order one
By 15— eacn G - %"’;1
+a ;11-:—;% — (14 € Ae™t) %3:;] + (%—1:’)2 %2;‘—2“,

(3.5) uy=0 at y=0 and uw; — 0 as y— oo.



FLUCTUATING FLOW OF A THIRD ORDER. .. 311

Zeroth-order solution

We note that the zeroth order mathematical problem is same as that of SOUNDAL-
GEKAR and PURI [9] except that (—k) is replaced by « in Eq. (3.2). Thus, in
order to avoid repetition, the details of calculations are omitted and the solution
is directly given by

1—Se™™ — (1 — S)e™¥ + Lye™"

(36) wyl(y,t) =1—e¥—aye ¥+ € et (1-8)e "
o (l-y)e?
where
: 1
(3.7) B [—\”’L;‘"*] ,
h? (h-l—%) (1—%)
38 L= )
.5 v1+iw
(3.9) Bl 22
w
First-order solution
Now, let
(3.10) u1(y,t) = [L(Y)+ € e~ fa(y).

Substituting Egs. (3.6) and (3.10) in Eq. (3.4) and boundary conditions (3.5),
comparing nonharmonic and harmonic terms and neglecting coefficients of €2,
we get

(3.11) gt . SdL 1 8 4oy

iwa\ d’fy  dfs
312 ad—ys“‘(”T)dTﬂ‘az +5h

Clf 1

A5 [ i

+a).



312 T. HAYAT, S. NADEEM, S. P. PUDASAINI, S. ASGHAR

(3.13) at y=0 and y — o0 :fi=fa=0,
where
A
(3.14) B =e% [% -3(1- S)] o Bk (h2S — 2h8)e (Rt
A A
—e V| = ——
(3.15) B;=e [12(9+2y)+‘2 6]
A A 9A
—e [Z(Q—{-y?——?y) — g(y— 1) - 5 —1+43y+S—25y

— e~V [2h(1 — S) +4hL — 2L — h* — B’ Ly] .

There have been several investigations devoted to study the existence and
uniqueness of the solutions to the equations governing the flows of fluids of
differential type [21-23]. These equations are usually higher order partial differ-
ential equations than the Navier-Stokes equations. Hence the issue of whether
the “no-slip” boundary condition is sufficient to have a well-posed problem is
very important. This question can not be answered by any generality for fluids
of differential type of complexity n, for arbitrary n. However, if attention is con-
fined to fluids of grade 2 or grade 3, one can provide some definite answers, while
some partial answers are also possible for fluids of grade n [24].

Before proceeding with the solution of Egs. (3.11) and (3.12), it would be
interesting to remark here that although in the classical viscous case (a = 0) we
encounter differential equations of order two [2,4], the presence of the material
parameter of the second order fluid increases the order to three. It would therefore
seem that the additional boundary condition must be imposed in order to get
a unique solution. In order to overcome such a difficulty, several authors have
studied an acceptable additional condition. FOSDICK and BERSTEIN [25] have
studied the flow in the annular region between two porous rotating cylinders.
They assumed one of the constants in the solutions to be zero. However, there
is no apparent reason for such a choice. FRATER [26] has studied the asymptotic
suction flow. Since only two of the coefficients in the solution can be found by
the no-slip condition, he imposes an extra condition that the solution tends to
the Newtonian value as the coefficient of the higher derivative in the equation
approaches zero. However, the perturbation expansion may give correct results
under certain conditions [27]. Thus following [8, 28|, we overcome the difficulty in
the present study using perturbation expansion for small material parameter «
and assume the solution in the form as follows [28]:

fi=foo+afu+ O(Cﬁ2)a

(3.16)
fo = foa + afiz + O(c?),
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which is valid for small values of « only. Putting Eq. (3.16) in Egs. (3.11) and
(3.12) and equating the coefficient of & we obtain

&fo  dfn _ —e~ %

(3.17) ke s ;

(3.18) d;;y - % = —% $ye Y,

(3.19) dz;;’? + % - izwfm =B,

(3.20) d;;r;? % - iZ—’fu = —i{f - %‘"%"; — By,
B for=/fu=fo2=fiz=0at y=0,

for=fuu = fo2=fr2=0as y — oo.

Solving Egs. (3.17) to (3.20) under the boundary conditions (3.21), we have,
in view of Eq. (3.16),

(3.22) fi= Tli [e'y {2+a(9+2y)} - e~ {a (9 g = 2y) + 2}] ,

(3.23)  fo=M, (e—3y - e“"y) + N (e7v- e—“y) + P (e—("”)y _ e—hy)

M, (e — e_hy) + Nz (e7V— e_hy) + P, (e’(h"'z)y— e~hv)
— a & :
+ e (36y — 248y + 3Ay? — 2Ay)
dw

where

2[A-6(1-S 2iA h? —2h) S
(324) M, = [ 24_( )]1 N1:3Z_a 1% ( ) W’

= = h? +3h+2— —

(3.25) My = —(36M, +9A+8—85), Ny= _—42(12N1 =154 = 24),

w 3w

_ oy e 2

(3.26) B 2h(1 — §) +4hL — 2L — h* — KL

w
h? h—2—-—
+3 1
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In view of Egs. (3.10), (3.22) and (3.23), we have

1
(321)  wi=gs[eV2Ha@+2)}—e {a(9+y" - 2) +2} ]
My (e73 —e™™) + Ny (e7¥ — ™M)
+P, (e—(h+2)y _ e—hy)
M, (e7% - e_hy) + Ny (e V- e_hy)
+P (e—(h+2)y _ e—hy)

pleH (36;, — 248y + 3Ay® — 2Ay)
Jw

J i gt
—a

Now from Egs. (3.6) and (3.27), the velocity field in the boundary layer is given by

. 1-Se ™™ —(1-98)e¥—
(3.28) u=1-e?-—aye¥+ee“| a{(l1-5) e —(1-y)e?}
+Lye™

+ € I]-z-[e_y{2+a(9—+—2y)}—e_ay{a(9+y2—2y)+2}]

M, (€_3y — e—hy) + N; (B"y - e_"y)
+By (42 _ )
M, (e — e ™) + Ny (e7¥ — e~hv)
+P; (e—(h+2)y _ e—hy)

+3—2—e—3y (36y — 24Sy + 3Ay* — 2Ay)
w

+ €€ giwt

The real, u,, and the imaginary, u;, parts of this expression, respectively,
yield

(3.29) w=1-e?(1+aoy)+ 1 {2+ a(2y +9))

—e ¥ {a(y® -2y +9) + 2}] + e{ M, cos(wt) — M;sin(wt) },

(3.30) u; = € (M, sin(wt) + M; cos(wt)) ,
where
(3'31) M‘l" = mT10 + Elmrn)

(3.32) M; = my, + eamyy, -
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The parameter functions my,,, mj,,, my,, and m;,, involved in u,,u; and M;, M;
are explicitly computed, and are listed in the Appendix.

The other interesting aspect of the solution (3.28) is, however, the prediction
of the shear stress near the wall. From Eq. (4) the expression for the shear stress
is given by

2 ’ 4 ! 3
, ou oq | 0% . 1\ O%u du
33)  P.o=pe—rt— |momr — v (1+ € Ae™? 265 | a7 |
which in virtue of Eq. (2.14) reduces to

P’ﬁ! a 62 i azu = au 3
34 p,—_%ty _ % X1TU 414 e Aet) 22 ,_1(_),
(3.34) = Tt a1 |30t (1+ € Ae )(,,y2 3 5y

where u is given by Eq. (3.28).

4. Discussions

In order to investigate the effects of the third order fluid on the velocity
profile near the plate (both in case of constant and variable suction), we have
plotted u, against y in Figs. 1 to 4 for the different values of ¢, €;, A, w, o and
wt = /2. From Figs. 1 and 2 we observe that the velocity profile increases with
fixed w and large values of €. Figure 3 is prepared to bring out the effects of
the variable suction velocity on the separation of the fluid at the plate for large
frequency. It is evident from this figure that velocity increases with an increase
in w, in A and €y, the third order fluid parameter. Further, for fixed €;, increase
in €, A and w increases the velocity and then the two velocities coincide (see
Fig. 4).

In Figs. 5 to 9 the fluctuating parts are plotted for different values of €, €,
w, a, A and for wt = 7 /2. For A = 0, it is noted that an increase in €; with
fixed € and w (Fig. 5) leads to a decrease in M,, but with increase in €; and for
¢ = 0.2 and w = 10, M, is almost the same. Figure 6 shows the effect of ¢; in
case of variable suction. In this case, it is noted that increase in ¢; leads to a
decrease in M, first then the curves tend to coincide. Further, it is clear from
Fig. 7 that for ¢; = 0.7 and increase in A and w, results in a decrease in M,
and ultimately the curves are almost the same. In case of non-Newtonian fluids
at large w and increase in €; there is a fall of M; (Fig. 8), which is not observed
in Newtonian fluids. From Fig. 9, one can conclude that an increase in A and w
leads to an increase in M; first; then there arises a decrease, then increase and
finally it reaches zero level.
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Fic. 1. Graphs for the parameter values a = 0.7,e = 0.5,wt = 7/2, A = 0,w = 10.
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Fi1G. 2. Graphs for the parameter values a = 0.8,¢ = 0.5,wt = 7/2, A = 0,w = 100.
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Fi1G. 3. Graphs for the parameter values e = 0.2, = 0.8, wt = 7 /2.
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F1G. 4. Graphs for the parameter values e; = 0.7,a = 0.9, wt = 7/2.
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Fi1G. 6. Graphs for the parameter values a = 0.7,wt = 7/2,¢ = 0.2, A = 0.4,w = 10.
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FiG. 9. Graphs for the parameter values @ = 0.7,wt = 7/2,e = 0.2,¢; = 0.9.

5. Conclusions

In this paper, the unsteady flow past an infinite porous plate is studied under
the following conditions:
(i) the suction velocity normal to the plate oscillates in magnitude but not in
direction about a non-zero mean value,
(i) the free stream velocity oscillates in time about a constant mean value.
The solution obtained is the sum of steady and unsteady parts. The following
results are obtained:
1. There is a decrease and increase in the fluctuating parts M, and M; with
the increase of the third order parameter €; and A # 0.
2. Increase of variable suction, increase in €; and A lead to an increase in the
velocity.
3. The velocity increases as the third order fluid parameter increases.
The results for constant suction can be obtained by taking A = 0.
5. The solution for second-order fluid with variable suction can be obtained
as a special case of this problem by taking ¢; = 0.
As far as the authors are aware, no attempt has been made to examine the effect
of variable suction velocity for second order fluids. However, a second order fluid
exhibits normal stresses but is not shear thinning; the shear viscosity is con-
stant. The third order approximation of a simple fluid exhibits shear-dependent

~
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viscosity. Keeping this fact in view, the problem considered for the third order
fluid in this paper is more general.

Appendix

Equation (3.28) is a very complex algebraic equation. In order to split it into
real and imaginary parts, for brevity, we define the following list of parameters:

1+ vV1+w? -1+ v1+w?
mrl = —2 ” m;, 1= ——2 5
1 1 1
My, 1 = 5 4 §m,1, Mg, : = Em,-l,
i, B My, T L
T m2 4 m? B m2, +m?’

My, 1= My, (R4 + 4BR3) — My (R;; - 4BR4) y

Mi, : = My, (R3 — 4BR4) + my, (R4 + 4BR3),
my, 1= 96A/R5, mis 1= 2A (w— (24)2/w)/R5,

s := {Re (R7 + 4BRg) + Ry (Rs — 4BRy)} / (RE + Rj) ,
“mig := {Rg (Rs — 4BR7) — Ry (R7 + 4BRs)} / (R% + RY)

bl

1 1

My = == (36mi; +32B), my, 1= = (36my, +94),
4 324

Myg 1= gﬁ(13A+24), Mg ' = —3?,

My, : = {(—8Bm;, +4R19— Ry — Ri2) Rig+(8Bm,, +4R13—2R14— R15) Ro}
- (R%G + Rg) )
my 1= {(8Bm;,+4R13—2R14— Ri5) Rig—(—8Bmi,+4R1g— Ri1 — Ry2) Re}
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My, = 1€ ™2 cos(m;,y) — 4B sin (my,y)) —a(4Be ™™ 2Y sin (my,y)— (1—y)e™Y)
+ ye~ "2 (my, cos (miyy) + mi, sin (M4, )
My, = € "2Y(4B cos (my,y)+ sin (m,y)) —4Be™Y — 4Bae™™"2Ycos (M, 1)

+ ye~"m2¥ (my, cos (my,y) — mir, sin (M4,y)),

My, 1= (Mpg—amy,) (e73Y —e ™2 cos (miyy) ) — (mi; —amy,) e”™2Y sin (my,y)
— amg, (e7¥ — e7™2Y cos (my,y)) — (2B/3 + my) €772 sin (my,y)

+ 3204wt 4 (myy — amy,) e,

Miyy = (Mg —amy,) €™ 2 sin (my,y)+ (mi; —amy,) (€7 —e™™2Y cos (M4, y))
— amy,e”™2¥ sin (my,y) + (2B/3 — amy,) (7Y — e ™72Y cos (M, y))

— (12y + 3A4y® — 24y) ae % /(3w) + (mi — amy) e %,

where
R, := ng — m?z, Ry :=mj, +w/4, R3:= Zmzzmh + R Ry,
Ry :=mp, Ry — 2m,,my, Ra, BRs:= (24)2 + wz, Re¢ .= Ry + 3my, + 2,
Ry := Ry — 2my,, Rg = 2my,my, — 2m;,, Ry :=2m,m;, + 3m;, — w/4,

Ryo : = my,my, — my,my,, Ripi=2m., + Ry,

Rip :=m, Ry — 2my,my,my,, Riz = mi,my + me,myy,

Ry := My + My My Ry5 := m,-4R1+2mT2mi2mi4, Rig =Ry +3m72—2,
B:=Ajw.

The parameter functions h, L, S, My, My, N1, N2, P; and P, of Egs. (3.7)-(3.9)
and (3.24)—(3.26) can now be expressed in terms of these m,s and m;s as follows:

1 1 } : ;
h=§+§mrl+z§mil = My, + 1174,, L =m;, +1my,, S=1-14B,

My = mypg + 1y, M> = my, +1m,,, N, =1i2B/3,
Ny = Mry + 1Myg, P, = myg +1imy,, Py = mpy +im,,.

Substituting the values of these parameters, Eq. (3.28) can be split into real and
imaginary parts (the calculation is very lengthy and tedious but straightforward),
u, and u;, as given in Egs. (3.29) and (3.30), with

M, = my,, + e1myy,, M; = my,, + e1myy, .
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