# MATERIAŁY PLISSN 0209-0058 ELEKTRONICZNE

ELECTRONIC MATERIALS

2-4





INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH INSTITUTE OF ELECTRONIC MATERIALS TECHNOLOGY

#### INSTITUTE OF ELECTRONIC MATERIALS TECHNOLOGY

# MATERIAŁY ELEKTRONICZNE ELECTRONIC MATERIALS

#### **QUARTERLY**

Vol. 45, No. 2 - 4 2017



Creating the English language version of the journal "Electronic Materials" and digitalization of "Electronic Materials" to provide and maintain open access through the Internet - tasks financed in accordance with the 593/P-DUN/2017 agreement from the funds of the Ministry of Science and Higher Education intendend for the science dissemination.

WARSAW ITME 2017

# MATERIAŁY ELEKTRONICZNE ELECTRONIC MATERIALS

#### **CONTENTS**

# Influence of gold electrodes on the properties of shear horizontal acoustic plate mode viscosity sensor in BT-cut quartz

W. Soluch, M. Łysakowska, T. Wróbel

Until now the influence of gold electrodes on the properties of shear horizontal acoustic plate modes (SHAPMs) in BT-cut quartz (-50.5°YX90°) was never before calculated or measured. Calculation presented in this study show that the amplitude of mechanical motion at the quartz plate surface decreases with an increase of the thickness of the gold layer. When the thickness of the gold layer is increased only on one side of the quartz plate, the amplitude decreases on the same side, whereas it remaines unchanged on the opposite side. For one of the SHAPMs, the amplitude of mechanical motion become about twice as big when the gold layer thickness increased from about 0.1  $\mu m$  to 1  $\mu m$ . This effect was confirmed by the measurements of the changes of the delay line insertion loss against viscosity of glycerine and water solutions.



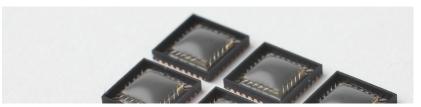
# The influence of reducing agents on the reduced graphene oxide specific surface area determined on the basis of nitrogen adsorption isotherm

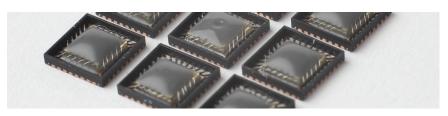
The most common way to determine the specific surface of materials is to utilise direct methods, such as the flow method and the adsorptive method with the implementation of the adsorption isotherm equations. In our work we used the Brunauer, Emmet and Teller (BET) equation for the nitrogen adsorption isotherm description. Our goal was to examine the influence of reducing agents on the specific surface area of reduced graphene oxide. Graphene oxide was reduced by thiourea dioxide, thiourea, ammonium thiosulfate and sodium hydrosulfite.

T. Strachowski,
M. Woluntarski,
M. Djas,
K. Kowiorski,
Z. Wiliński,
M. Baran,
J. Jagiełło,
M. Winkowska,
L. Lipińska



## Preparation of a BiTel polar semiconductor with a strong asymmetric inversion


The paper describes the synthesis and crystallization processes of a BiTel polar semiconductor, carried out by a modified vertical Bridgman method (VB), or/and by CVT (chemical vapor transport) method, in a horizontal position. For BiTel samples, the measurements were performed by Van der Pauw method and by the structural techniques (EDS, XRD and Raman spectroscopy), which confirmed the presence of a pure BiTel phase in the obtained materials.


A. Materna



On the cover: Graphene-based magnetic field sensors made in ITME.

Authors of the device: Tymoteusz Ciuk, Andrzej Kowalik, Iwona Jóźwik, Włodzimierz Strupiński









#### **EDITORIAL OFFICE ADDRESS**

#### **Institute of Electronic Materials Technology**

Wólczyńska Str. 133, 01-919 Warsaw

e-mail: ointe@itme.edu.pl www: matelektron.itme.edu.pl

#### **EDITORIAL BOARD**

#### **Editor in Chief**

dr hab. inż. Katarzyna PIETRZAK, prof. ITME

#### **Associate Editor**

dr hab. inż. Paweł KAMIŃSKI, prof. ITME

#### Subject Editor:

dr inż. Marcin CHMIELEWSKI dr inż. Tymoteusz CIUK dr inż. Ewa DUMISZEWSKA dr hab. inż. Anna KOZŁOWSKA

#### **Advisory Board:**

prof. dr hab. Jacek BARANOWSKI prof. dr hab. inż. Andrzej JELEŃSKI dr hab. inż. Rafał KASZTELANIC, prof. ITME dr hab. inż. Ludwika LIPIŃSKA, prof. ITME prof. dr hab. Anna PAJĄCZKOWSKA prof. dr hab. Ewa TALIK prof. dr hab. inż. Andrzej TUROS

#### **Advisory Assistant:**

mgr Anna WAGA

#### **Linguistic Editors:**

mgr Maria SIWIK - GRUŻEWSKA dr Mariusz ŁUKASZEWSKI

#### **Technical Editor:**

mgr Szymon PLASOTA

#### **CONTACT**

Editor in Chief phone: (22) 639 58 85 Editorial Assistant phone: (22) 639 55 29

#### PL ISSN 0209 - 0058

### A quarterly quoted on the list of scientific journals of the Ministry of Science and Higher Education

7 points - according to the statement of the Ministry of Science and Higher Education.

#### Published articles are indexed in databases:

BazTech, CAS - Chemical Abstracts

Published articles of a scientific nature are reviewed by independent researchers.

The paper version is the primary version.

The quarterly is published in open access.

Circulation: 200 copies

# INFORMATION FOR AUTHORS AND READERS

#### I. Submission rules

- 1. Only the manuscripts not published previously can be accepted. The author of the paper or the person submitting the manuscript of a multi-author work on behalf of all co-authors are required to declare that the work has not been published previously. If the test results contained in the manuscript have been presented earlier at a scientific conference or a symposium, the information on this fact should be given at the end of article containing the name, place and date of the conference. At the end of the article the authors should also provide the information on the sources of a financial support of the work, the contribution of scientific and research institutions, associations and other entities.
- **2.** The manuscripts both in Polish and in English can be submitted. Due to introducing all the articles printed in *Electronic Materials* to the Internet , the author should make a statement on the copyright transfer of the author's economic rights to the Publisher.
- **3.** Concerned about the reliability of the scientific work and the development of an ethical attitude of a researcher, a procedure has been introduced in order to prevent any cases of scientific dishonesty and unethical attitudes, defined as *ghostwriting* and *guest authorship* (honorary authorship):
  - ghostwriting occurs when someone has made a substantial contribution to the publication without revealing his participation as one of the authors or without mentioning his role in the acknowledgments in the publication;
  - guest authorship occurs when although the contribution of a given person is negligible or it has not taken place at all, he or she is an author/co-author of the publication.

The Editors require that the authors disclose the contributions of the individual authors in the preparation of a multi-author work, giving their affiliations and the information on their participation in the creative process, i.e. the information on the authors of the work's idea, assumptions, methods, etc. that have been utilized during the article preparation. The main responsibility for this information is borne by the author submitting the manuscript.

**4.** The Editors are obliged to keep the documentation of any forms of the scientific dishonesty, especially the violation of the ethical rules that are obligatory in science. All discovered cases of *ghostwriting* and "guest authorship" will be disclosed by the Editors, including the notification of the relevant entities, such as the institutions employing the authors, scientific societies, associations of scientific editors, etc.

### II. Procedure of articles review and approval for print

- **1.** The author's materials directed for print in "Electronic Materials" are subjected to evaluation by the independent reviewers and the members of the Editorial Board.
- **2.** The reviewers are suggested by the thematic editors the members of the Editorial Board, responsible for a given subject field.
- **3.** At least two independent reviewers from outside the research institution affiliated by the author of the publication are called for the evaluation of each publication.
- **4.** In case of a publication in a foreign language, at least one reviewer is called, affiliated in a foreign institution with the seat in a country other than that of the origin of the author of the manuscript.
- **5.** The author or authors of the manuscript and the reviewers do not know their identities (the so-called "double-blind review process").
- **6.** A review is in written form and contains a clear conclusion of the reviewer concerning the article acceptance for the publication (without corrections or with necessary amendments to be made by the author) or its rejection.
- **7.** The criteria for the article acceptance or rejection and a possible review form are disclosed to the public on the website of *Electronic Materials*.
- **8.** The names of the reviewers of the individual publications or the editions are not disclosed. Once a year, in the last issue of "Electronic Materials", a list of the cooperating reviewers will be made public.
- **9.** The Editors of *Electronic Materials* may edit the material obtained, shorten or supplement it (after an agreement with the author), or not qualify it for the publication.
- **10.** The Editor-in-chief refuses to publish the authors' materials in the following cases:
  - the contents of the manuscript are illicit,
  - any signs of the scientific dishonesty, and especially *ghostwriting* and *guest authorship*, will be found out,
  - the work has not received a positive final evaluation from the reviewers and the thematic editor.
- **11.** The Editor-in-chief may refuse to publish the article if:
  - the topic of the work is not in line with the subject field of *Electronic Materials*,
  - the manuscript exceeds the acceptable volume and the author does not agree to shorten the article,
  - the author refuses to make any necessary amendments proposed by the reviewer and the Editorial Board,
  - the text or the illustrations provided by the author do not meet the technical requirements.

#### INSTRUCTIONS FOR AUTHORS

The editorial office of *Electronic Materials* kindly asks the authors for sending the ordered articles by e-mail to the address ointe@itme.edu.pl or on a magnetic medium, according to the following specifications:

#### **TEXT**

- a) The article content should be delivered in the files with an extension supported by Word software (DOC and DOCX as the best file formats). The text should be written in a continuous manner, divided into consecutively numbered sections with the titles. The symbols of the variables should be written in italics. The approximate locations of the illustrations should be indicated in the text of the manuscript; however, any illustrations should not be imported into the text file but placed as the separate files (see point 4).
- b) The captions to the illustrations, both in Polish and in English, should also be provided as the separate files.
- c) The following items should be present on first page of the article: the given name and family name of the author, degree, authors affiliation, postal address, e-mail, the article title, both in Polish and in English.

#### **ABSTRACT**

- a) The abstracts, in Polish and in English, should be attached to the article. Each abstract version should not exceed 200 words.
- b) Keywords, both in both Polish and in English, should also be added.

#### **REFERENCES**

- a) The references should be cited in the text in square brackets in order of their appearance in the text.
- b) Reference style:
- · Book:

Author: Title. Edition. Publication place: Publisher's name, Publication year, ISBN.

• Multi-author edited work:

Title. Edited by (editors' names): Edition. Publication place: Publisher's name, Publication year, ISBN.

Book section (chapter) from a book of the same authorship:

Author: Book title. Edition. Publication place: Publisher's name, Publication year, ISBN. Section (chapter) title, section (chapter) pages.

• Book section (chapter) from a multi-author work:

Author: Section (chapter) title. Book title. Publication place: Publisher's name, Publication year, ISBN.

Journal article:

Author: Article Title. "Journal title" Year, Volume, Number, Pages.

• On-line journal article:

Author: Article title [online], Year, Volume, Number [Access - date] Pages, URL. ISSN.

• WWW site:

Author: Title [online]. Publication place: Issuing body [Access - date], URL.

#### **ARTWORK**

- a) Each illustrative material should be saved in a separate file (PCX, TIFF, BMP, WFM, CES, JPG) with a resolution not less than 150 dpi.
- b) In case of the illustrative materials that have not been originally created by the author(s), the original source should be cited in the references.

#### **FORMULAS**

- a) The formulas should be numbered consecutively with Arabic numerals
- b) The variables should be presented in italics.
- c) In case of the formulas that have not been originally derived by the author(s), the original source should be cited in the references.



#### Institute of Electronic Materials Technology

133 Wólczyńska Str. 01-919 Warsaw, Poland

phone: (+48 22) 835 30 41 e-mail: itme@itme.edu.pl

fax: (+48 22) 864 54 96 www.itme.edu.pl

The Institute of Electronic Materials Technology develops advanced innovative production technologies of materials characterized by a perfect crystallographic structure and excellent properties, as well as components based on these materials. The scope of R&D activities carried out covers the following areas:

- graphene;topological insulators;materials for spintronics;
- self-organising materials;
- photonic crystals, including plasmonic materials and metamaterials.
- · wide gap semiconductors, including silicon carbide
- for GaN HEMT transistors;
   semiconductor-doped glass optical fibres for photovoltaics;
- eutectic materials for photovoltaics;
  SiC wafers and SiC epitaxial layers;
  glass-ceramic seals for fuel cells;

- thermoelectric materials;
- inert matrices for a safe storage of radioactive waste;
  electrode materials for lithium ion batteries;
- · ceramic-metal composites and FGMs.
- materials for III-V based semiconductor lasers (obtained using GaAsP, InGaP, AlGaAs, GaAs, GaSb and InP), wafers, epitaxial structures;
- GaN-based epitaxial structures;
- · materials for solid state lasers, produced using strontium-calcium niobate;
  • infrared photodetectors and UV photodetectors;
- oxide crystals for lasers, passive Q modulators, scintillators, electro-optical and piezoelectric devices, substrates for superconducting HTSc layers;
- glass and ceramics with carefully designed spectral characteristics, including transparent ceramics;
- · diffractive optical elements and microlenses;
- nanostructured thin layers;
- luminescent nanopowders and nanocrystals;
- optical fibres and waveguides, including active and photonic fibres.

- silicon monocrystals (standard Si wafers and Si wafers with special properties);
- porous silicon;
- silicon foils;epitaxial layers on silicon;
- · SiC wafers and SiC epitaxial layers;
- nanopowders and polymer-based powders, pastes and inks for printed electronics;
- · photosensitive pastes;
- piezoelectric crystals;ceramic-metal composites;
- · super-pure metals.

#### ITME has elaborated a great number of innovative electronic components based on the manufactured materials, for instance:

- optical fibres (active and photonic), filters, diffractive lenses, two-dimensional photonic microstructures;
- passive elements on membranes (sensors);
- filters, resonators, sensors and actuators based on surface acoustic waves;
- · semiconductor devices (lasers, transistors,
- photodetectors, Schottky diodes);
   solid state lasers and microlasers.

#### The manufacture of state of the art components is possible at ITME due to high-tech equipment enabling:

- · design and manufacture of masks;
- deposition of dielectric thin films (Si0<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, AIN);
- · multilayer metallization;
- · use of lithography: contact printing using deep UV, electron beam pattern generation;
- application of various etching techniques, including reactive ion etching and controlled sidewall etching.

#### Advanced methods of material properties investigation:

#### The characterization of materials is performed at ITME by the following methods:

- standard chemical analysis and spectral instrumental methods (flame atomie emission spectrometry, atomie absorption spectroscopy, ultraviolet to far-infrared spectroscopy);
- Mössbauer spectroscopy (conventional, conversion electron method, X radiation method and unique "rfMössbauer" method developed at ITME);
- X-ray powder diffraction using the Rietveld method, High Resolution X-ray diffraction, X-ray reflectometry and X-ray diffraction topography;
- scanning electron microscopy and a method based on synchrotron radiation;
- electron paramagnetic resonance;
- atomie force microscopy;
   standard thermal methods (high-temperature) microscopy, thermogravimetry, differentia!thermal analysis, dilatometry, etc.) and X-ray methods; • mechanical methods (testing resistance, friction,
- hardness, etc.);
- optical methods (microscopy, absorption, reflectometry).

#### Methods of electronic and photonic components investigation:

ITME tests optoelectronic, microelectronic and piezoelectric devices, using special techniques enabling the characterization of components, including:

- I-V and C-V measurements;
- deep level transient spectroscopy;
- · impedance measurements and the measurements of scattering matrix elements up to the frequency of 20 Ghz;
- noise measurements;
- · analysis of operational parametres of lasers and photodetectors.