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Transitions to complex flows in thermal convection 

F. H. BUSSE (BAYREUTH) and R. M. CLEVER (LOS ANGELES) 

CONVECTION driven by thermal buoyancy in a layer heated from below represents the simplest kind 
of hydrodynamic instability. This simplicity manifests itself in the supercriticality of the onset of con­
vection rolls and of all subsequent bifurcations that have been investi~ated so far. The transmitions 
to three-dimensional forms of convection are reviewed in this raper m dependence on the Prandtl 
number and their physical mechanisms are interpreted. Specia attention is devoted to the cases of 
steady and oscillatory knot convection. 

1. Introduction 

THE COMPLEX dynamical processes involved in turbulent flows have challenged fluid dy­
namicists for over a century. Transitions to turbulence in particularly simple flow con­
figuration such as plane Couette flow and pipe flow are difficult to investigate because 
bifurcations from the basic solutions have not been found. Even in the case of Poiseuille 
flow in a channel where the bifurcation in known (THOMAS, (14]; see also DRAZIN and 
REID, (12]) this knowledge is of limited use because the bifurcation is delayed owing to 
dynamical constraints and the experimental observations typically show a sudden onset of 
turbulence at much lower Reynolds numbers. 

In terms of existing symmetries a fluid layer heated from below represents an even 
simpler configuration for the study of turbulence than those mentioned above. The energy 
source for the turbulent flow does not depend on the horizontal direction and the depen­
dence on the vertical coordinate is the minimal dependence required for a turbulent state 
under steady conditions. Thermal convection in a layer of a Boussinesq fluid does indeed 
exhibit number features which reflect the simplicity of the energy source and the degree 
of symmetry of the geometrical configuration. The onset of convection and subsequent 
transitions to more complex forms of convection occur in the form of supercritical bifur­
cations such that the property of stability is usually taken over by the bifurcating solutions. 
This feature facilitates the numerical simulation of the evolution of convection flows with 
increasing Rayleigh number. 

High degrees of symmetry of a problem are not only attractive because of the resulting 
simplifications of the mathematical analysis. They are often essential in the study of 
bifurcations because the latter are typically characterized by broken symmetries. In more 
general configurations without the respective symmetries, the bifurcations are replaced by 
imperfect bifurcations and transitions are no longer clearly identifiable because they occur 
gradually. We thus will focus in the analysis on the ways in which symmetries are broken 
as convection rolls become three-dimensional cellular motions or propagating waves and 
new degrees of motion are occupied in subsequent transitions. 

There are two general conclusions that can be derived from a study of convection. 
The first statement concerns the mechanisms of the various instabilities of convection 
rolls which accomplish the transitions to three-dimensional flows. It is found that even 
when a three-dimensional flow has been introduced by one of these mechanisms, the other 
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mechanisms tend to reappear at higher transitions. The instabilities of rolls thus ofier a 
typical picture of several of the mechanisms operating in turbulent convection. The second 
statement is that well defined structures and characteristic wavelengths are exhibited by 
turbulent convection even in the range of asymptotically high Rayleigh and Reynolds 
numbers. In this respect thermal convection defies the common notion that turbulence 
becomes a purely stochastic phenomenon in the limit of high Reynolds numbers. The best 
evidence in support of this statement comes from the observations of convection structures 
is strata-cumulus cloud layers, from mesoscale convection as visualized by satellite pictures 
(see Fig. 1, for example) or from the observation of the granulation and supergranulation 
at the surface of the sun. We shall return to the question of the coexistence of small scale 
chaotic media with large steady structures in the concluding remarks. 

FIG. 1. Mesoscale convection over the South Atlantic (from BRIMACOMBE [6]). 

2. Steady convection rolls 

We consider a horizontal fluid layer of height d with no-slip boundaries on which the 
temperatures T1 and T2 are prescribed with the higher value T2 on the bottom boundary. 
A sketch of the geometrical configuration is shown in Fig. 2. Using d as length scale, d2 / K 

as time scale, where K is the thermal diffusivity and T2 - T1 as scale of the temperature, 
the equation of motion for the velocity vector u and the heat equation for the deviation 
() from the static solution of pure conduction can be written in the form 

V'2u+RBk-V'1r= (u·V'u+ !u)P-1
, 

(2.1) \7u = 0, 
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(2.1) 
[cont.] 

2 8 
V' B + k • u = u • V'B + -B 8t , 

567 

where k is unit vector in the vertical direction, and the Rayleigh number R and the Prandtl 
number P are defined by 

R = rg(Tz - TI)d3
, p = ~. 

1\,l/ "' 

FtG. 2. Geometrical configuration of the convection layer. 

Here we have denoted the thermal expansivity by r, the acceleration of gravity by g and 
the kinematic viscosity by v. The boundary conditions of the problem we are considering 
are given by 

(2.2) u = (} = 0, at 
1 

z = ±2. 
We use a Cartesian system of coordinates with z-coordinate in the vertical direction and 
consider two-dimensional solutions since those are the only ones which are stable at 
Rayleigh numbers close to the critical value for onset of convection (SCHLOTER et a/., 
1965). 

The deviation (} of the temperature from the distribution in the state of pure conduction 
will be used in the following as the representative dependent variable of the convection 
flow. Using the x-coordinate in the direction of the axis of the rolls we can write the 
solution for (} in the form 

(2.3) B = Lbm0 COSmaysinmr (z + D . 
n1,n 

Anticipating that the solutions of interest possess a vertical plane of symmetry, we have 
located the origin on the intersection between such a plane and the median plane of the 
layer. Since we have assumed a Boussinesq fluid and symmetric boundary conditions we 
find that the convection rolls bifurcating from the static solution of the problem at the 
critical Rayleigh number Rc satisfy the additional symmetry property 

(2.4) B(y, z) = -B (~- y, -z) . 

According to this property all coefficients bmn with odd m + n vanish in the representation 
(2.3). Solutions of the form (2.3) can be obtained for a wide range of the R- a - P 
parameter space, R is the Rayleigh number and P is the Prandtl number. We refer to 
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BUSSE (2], CLEVER and BUSSE (7, 8], BUSSE and CLEVER (4] and BOLTON, BUSSE and 
CLEVER (1]. 

An important consideration in the numerical computations of solutions of the form 
(2.3) is the truncation of the infinite sums. We have generally used the truncation condi­
tion, that all coefficients and corresponding equations with 

(2.5) n + m > Nr 

are neglected. In the computations of the three-dimensional solutions discussed in Sects. 
4 and 5 the left-hand side must be replaced by n + m +I. By changing Nr in steps of two, 
quality of the numerical approximations can be compared. Nr is regarded as sufficiently 
large when no significant changes in sensitive physical properties such as the convective 
heat transport are noticed after a replacement of Nr by Nr + 2. 

3. Instabilities of convection rolls 

General three-dimensional infinitesimal disturbances of the steady solution given by 
Eqs. (2.1) can be written in the form 

0 = I:>mn exp{imay + idy + ibx + ut} sin n1r ( z + ~) , 
tn,n 

(3.1) 

where Floquet's theorem has been used. Because of property (2.4) the general distur­
bances of the form (3.1) separate into two classes. Those of class E have vanishing 
coefficients bmn for odd n + m, while the coefficients of class 0 vanish for even n + m. 
It turns out that the real part of the growth-rate u often reaches a maximum for d = 0 
in which case an additional symmetry appears. The disturbances can be separated in this 
case into those that are symmetric in y and those that are antisymmetric. We shall denote 
the former subclass by C (for cosine) and the latter subclass by S (for sine). All types of 
disturbances that have been determined as instabilities of the steady roll solution (2.3) are 
listed in Table 1. As is evident from this table, most of the instabilities of convection rolls 
can be distinguished by their symmetry property if the symmetry in time is also included. 
But the knot- and the crossroll-instabilities have the same symmetry properties and can 
be distinguished as two separate maxima of the growth-rate u as a function of b when 
instabilities listed in Table 1 are shown in Fig. 3. For details of the analysis we refer to 

Table 1. Properties or instabilities or convection rolls in a layer with rigid boundaries. The quantity 211" In is 
a measure or the circulation time in rolls. 

Instability Symmetry class b d O'j Symbol 

cross-roll oc > ac 0 () CR 
knot oc < ac () () KN 
dual-blob oc < ac () .2!1 DB 
zig-zag ES < ac () () zz 
oscillatory ES < ac () .n OS 

single-blob EC > ac () .n SB 
skewed-varicose E ~ ac ~ ac () SV 
Eckhaus E () ~ ac () EC 
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the above-mentioned papers in which the stability diagrams have been obtained for spe­
cial values of the Prandtl number. Using those results and a few diagrams of stability 
boundaries for f1Xed values of a and R surfaces drawn in Fig. 3 have been obtained by 
interpolation. 

FIG. 3. Region of stable roll solution in the R-ex- ?-parameter space. 
The stability region is bounded by several surfaces corresponding to the instabilities listed in Table 1. 

4. Three-dimensional solutions in the form of knot convection 

Except for the Eckhaus instability all instabilities of Table 1 lead to three-dimensional 
forms of convection. In all cases with d = 0 the resulting convection flow assumes a 
regular pattern at least in the ideal case of uniformly excited disturbances. In the case 
of the skewed varicose instability it is not clear whether it can lead to a spatially periodic 
pattern of convection. If such a pattern exist it is likely to be unstable. 

The simplest form of three-dimensional convection bifurcating from two-dimensional 
rolls is bimodal convection. This form of convection predominates in high Prandtl num­
ber fluids at Rayleigh numbers above 2 • 104• For experimental and theoretical studies of 
this form of convection we refer to BUSSE and WHITEHEAD (5], WHITEHEAD and CHEN 
(15] and FRICK eta/ (13]. In terms of symmetry properties the transition to steady knot 
convection induced by the knot instability is analogous to the transition to bimodal con­
vection; the actual appearance of the two types of three-dimensional convection is quite 
different, however. In Fig. 4 a typical example of knot convection is shown. The concen­
tration of the rising and falling fluid into thin plumes is a characteristic feature of knot 
convection and is responsible for its name since the plumes become visible as "knots" 
is the shadow-graph observations (BUSSE and CLEVER (4]). The collection of fluid from 
the hot and cold thermal boundary layer into up- and down-drafts tends to improve the 
heat transport. Because of the high momentum with which those plumes impinge on the 
opposite boundary, steep temperature gradients are created which result in an effective 
he~t transport. At higher Rayleigh number spoke-like structures corresponding to fluid 
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FIG. 4. Steady knot convection with Otz = 1.7, Oty = 2.5 for P = 2.5 and different values of R, 
1.5 · 104 (middle row) and lOS (lower row).The isotherms in the plane z = 0 are shown 

on the left side and 8(8- 0 /8 z at z = -0.5 is shown on the right hand side, 
where 0 is the horizontally averaged component of 8. 

breaking away from the thermal boundary layers become noticeable around the stems of 
the plumes. These spokes in~icate that knot-convection is a representative example of 
spoke pattern convection which is the ubiquitous form of convection observed in exper­
iments with fluids of moderate Prandtl numbers for Rayleigh numbers from a few times 
104 up to 107• 

In the experimentally realized spoke pattern convection the spokes are strongly time­
dependent and the origin of this time-dependence can be traced to hot or cold blobs 
of fluids circulating around with the convection velocity. This kind of time dependence 
originates from the blob instabilities listed in Table 1. Since they occur in the same general 
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FIG. 5. Oscillatory knot convection at R = 4 · 104, P = 2.5 with cxy = 2.0, ex:& = 1.4. The upper and 
middle rows show values of constant uz in the planes z = -0.3 and z = 0, respectively. The lower row shows 

1/2 

the vertical average of the temperature J Odz. In each row pictures are separated by !J..t = 0.05 in time. 
-1/2 

The total time span covers nearly one period, T = 0.085. The instability of the steady knot solution 
which has given rise to the oscillatory knot convection shown in this figure is of the EC S-type. 

(571) 
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parameter regime as the knot instability, it is not surprising that they reappear as insta­
bilities of steady knot convection once the latter form of convection has been established. 
Conversely, the characteristic features of knot convection will appear when the transition 
from rolls to standing blob oscillations has occurred first. But this latter case can not be 
investigated as easily since the blob instabilities break two symmetries at once, namely 
the invariances with respect to translation along the axis of the rolls and with respect to 
translation in time. 

Since steady knot convection can be described by an expression for () of the form 

(4.1) 0 = L btmn cos/a,xcosmayysinmr ( z + ~) , 
l ,m ,n 

where non-vanishing coefficients b1mn are obtained only for even I + m + n, the general 
disturbances of the form 

(4.2) 0 = L btmn exp{ila.x + idx + imayy + iby + ut} sin mr ( z + D 
l,rn,n 

separate in two classes, those with non-vanishing coefficients b1mn for even I + m + n and 
those with odd I+ m + n. In the special case b = d = 0 additional symmetries with respect 
to the x- and y-dependences of the disturbances are realized and eight different types of 
instabilities can be distinguished, 

(4.3) ECC, ESC, ECS, ESS, OCC, OSC, OCS, OSS. 

The notation used is analogous to that introduced in Table 1 in that the first C or S denotes 
symmetry or antisymmetry in x while the last letter does the same with respect to the y­
dependence. According to experimental observations the most important instabilities do 
indeed correspond to case b = d = 0 and the computations of CLEVER and BussE [10] 
have thus been restricted to this case. A special property of the istabilities with C S or SC 
in Eq. (3.3) is that they include a mean flow component which is symmetric with respect 
to the median plane z = 0 in the case of the class E and antisymmetric in the case of 
class 0. Such the property is not realized for the istabilities of Table 1 since those occur 
all for finite values b or d. Instabilities corresponding to every subset listed in Eq. (3.3) 
seem to occur in the case of knot convection depending on the parameters ax, ay, and P. 
The mechanism of instability is similar to the dual blob instability of Table 1 in all cases 
and only phase relationships differ somewhat for the different cases (3.3). An example of 
oscillatory knot convection induced by the ECS instability is shown in Fig. 5. 

5. Travelling wave convection 

Symmetric traveling wave convection is realized through the Hopf bifurcation from 
steady rolls in form of the oscillatory instability. In the frame of reference moving with 
wavespeed c the solution describing travelling wave convection becomes steady, 

(5.1) () = L {blmn coslax(x- ct) + b~tnn sin lax(x- ct)} { c?smayy} sin n1r (z + -
2
1

) , 
lmn smmayy 

where the upper function in the wavy bracket applies for even I and the lower function 
corresponds to odd I. As in the case of rolls the coefficients b1mn and b1mn are non­
vanishing only for even m + n. A typical example of finite amplitude travelling wave 
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FIG. 6. Travelling wave convection with o-.x = 2.2, o:y = 2.6 for P = 0.1, R = 3500. Lines of constant vertical 
1/2 

velocity in the planes z = 0 (upper left) and z = 0.3 (upper right) and lines of constant J Odz (lower left) 
-1/2 

and of constant 1/J at z = 0 (lower right) are shown. The waves travel towards the right. 

convection is shown in Fig. 6. It is worth noting that a symmetric mean flow along the 
x-direction is associated with the travelling wave and that it is proportional to the square 
of the wave amplitude as long as the latter is sufficiently small. While the mean flow 
is almost negligible at the Prandtl number of air, it can become quite important in low 
Prandtl number convection (CLEVER and BUSSE [10]). In the analysis of the stability 
of symmetric travelling wave convection, symmetry properties can be used again if the 
analysis is restricted to disturbances fitting the same horizontal periodicity interval as 
the travelling wave solution. Four classes of disturbances can be distinguished when the 
representation 
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(5.2) () = L [(blmn COS lc:t:x(x - ct) 

+b1mn sinlax(x- ct)] { sinmayy} sinn1r (z + -
2
1

) eat 
cosmayy 

l,m,n 

for the disturbance temperature field is assumed. The summation over m, n can be ex­
tended over either non-negative integers with even m + n or those with odd m + n, and 
the upper function in the wavy bracket can be chosen for odd I and the lower function for 
even I as in the case of the symmetric travelling wave solution, or the choice can be made 
the other way around. In the analysis of CLEVER and BUSSE [9, 11] it is found that only 
disturbances exhibiting the symmetry opposite to that of symmetric traveling wave con­
vection in both respects give rise to grow-rates u with positive real parts in the parameter 
regime that has been investigated. For Prandtl numbers of the order unity these distur­
bances lead to asymmetric travelling wave convection while for small Prandtl numbers of 
the order 0.1 or smaller a transition to standing oscillations takes place. Experimental 
observations for the latter phenomenon do not seem to be available yet, however. 

6. Concluding remarks 

As thermal convection evolves from simple rolls towards more complex patterns, vari­
ous degrees of freedom of motion become occupied such as vertical vorticity, time depen­
dence and mean flow components of motion all of which vanish for rolls. The new degrees 
of freedom are introduced by a variety of instabilities which break one or more of the 
remaining symmetries of the convection flow. At moderate and high Prandtl numbers the 
thermal boundary layers play a crucial role in the mechanisms of instability while for low 
Prandtl number fluids the momentum advection terms exert a dominant influence. The 
horizontally periodic convection flows reviewed in this paper represent idealized solutions 
that can be realized in laboratory experiments with controlled initial conditions. These 
solutions retain a maximum of symmetries at each step of the evolution of nonlinear 
convection and thereby they permit a separation of different mechanisms of instability. 
In experimental situations where initial conditions are not prepared appropriately, sym­
metries are realized only approximately and thus most of the transitions correspond to 
imperfect bifurcations. In some instances small asymmetries can play an important role 
in triggering transitions. The transition to time-dependent convection in high Prandtl 
number fluids is an example for this effect as is discussed in BussE (3). Nevertheless, 
the analysis of strictly periodic patterns must precede systematic attempts to understand 
transitions in more general patterns. 

The coexistence of the small scale oscillatory motion and the large scale stationary 
convection pattern seen in the Fig. 5 for oscillatory knot convection is also typical for 
experimental observations of spoke pattern convection (BussE (3]). In movies that have 
been made by the first author a stationary network of large scale square cells (with sides 
of approximately 10 d) remains visible up to Rayleigh numbers of several millions. The 
corners of these cells represent the plumes towards which the thermals erupting from 
the thermal boundary layers are collected and by which they are carried to the opposite 
boundary. To some extent the sides of the square cell participate in this process in that 
they represent sheets of rising and falling fluid in competition with the much stronger 
plumes at the corners. Descending and rising large scale motions are 90° out of phase 
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such that the cold plumes are located at the center between four hot plumes. In all 
qualitative aspects spoke pattern thus resembles the oscillatory knot convection as shown 
in Fig 5 except that through the difference in the x- and y-dependence the origin from 
the convection rolls is still visible in those pictures. 

The most impressive aspect of turbulent spoke pattern convection is the way in which 
the steady large scale cellular network organizes the small scale chaotic motions emerging 
from the unstable thermal boundaries. In this respect the laboratory experiment resembles 
the large scale convection cells in planetary and stellar convection zones with their often 
well defined wavelength. The processes that determine these wavelength are not known 
and represent a fascinating topic of research. 

The research reported in this paper has been supported by the Atmospheric Sciences 
Section of the U.S. National Science Foundation. 
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