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Weak discontinuity waves in materials 
with semi-empirical temperature scale 

W. KOSINSKI( *) and K. SAXTON (NEW ORLEANS) 

IN THIS PAPER, weak discontinuity waves are investigated for rigid and ela<;tic heat conductors. For 
rigid conductors, a weak wave is represented by a thermal wave which propagates with finite speed. 
A thermoelastic material admits two families of waves which transport both thermal and mechanical 
disturbances. In the case of a one-dimensional body, a differential equation is found to describe the 
evolution of the amplitude of the weak wave. It is shown that the amplitude in both rigid and elastic 
conductors can blow up in finite time which can lead to the formation of shocks. 

1. Introduction 

WE CONSIDER the problem of heat transported by conduction in rigid as well as in de­
formable bodies, in which heat pulses are transmitted by waves at finite speeds. 

The first theory of heat conduction with finite wave speed was proposed by CAITANEO 
[1,2] and VERNOTTE [3]. However, it seems that it was MAXWELL [4] who was the first 
to modify Fourier's law. Hence we refer to 

(1.1) TQ,t + q = -k\lt9 

as the M.C.V. (Maxwell-Cattaneo-Vernotte) equation. Here r > 0 is a suitable relax­
ation time, t9 denotes the absolute temperature, k is the conductivity and q the heat flux 

. vector. When r = 0, Eq. (1.1) reduces to Fourier's law. However, if no terms are omitted 
from Eq. ( 1.1) and the internal energy E is a function of t9, as for rigid solids, then the 
energy equation 

(1.2) poE, t + divq = 0 

combined with Eq. (1.1) leads to a telegraph equation 

(1.3) rpocvfJ,tt - kdfJ + poc\, fJ,t = 0, 

where cv represents the derivative of the energy with respect to t9, and is called the heat 
capacity, assumed to be constant in Eq. (1.3). 

The last equation is hyperbolic if k / ( r p0cv) = s2 is positive, and it transmits waves 
of temperature weak discontinuity at the speed s. (Here k has been assumed con­
stant.) 

Heat conduction with finite wave speed can be analyzed in the context of the the­
ory of materials with memory (e.g. GURTIN and PIPKIN [5]). One can use a different 
approach that consists in employing internal state variables in modelling the behavior 
of heat conducting bodies. This model is obtained by enriching the set of the inde­
pendent variables appearing in the constitutive equations by additional quantities called 
internal state variables. Suitable kinetic equations for the evolution of the internal state 

(*)The paper was completed when W. K. was an appointed Visiting Professor at Loyola University, New 
Orleans on leave from IFTR-PAS, Warszawa. 

http://rcin.org.pl



548 W. KOSINSKI AN D K. S A \:TON 

variables are then postulated. The additional equations are evolutionary first order dif­
ferential equations (e.g. KOSINSKI, PERZYNA [6], KOSINSKI [7], KOSINSKI, SZMIT [8], 
MIHAILESCU, SULICIU [9), MORRO [10]). Differential approaches have been used by 
MORRO, RUGGERI [11] and MOLLER [12]. To study the physical meaning of tempera­
ture waves and heat conduction, kinetic theory and the extended thermodynamics of 
LARECKI, PIEKARSKI [13] and PIEKARSKI [14], have been employed. The 'inertial' the­
ory of heat conduction with modified Onsager's symmetry relations was developed by 
KALISKI [15). 

In the present paper a different model is used; in the case of a rigid heat con­
ductor, the heat flux vector is given by a Fourier-type Jaw, in which the gradient of a 
semi-empirical temperature appears, instead of the absolute one. The concept of the 
semi-empirical temperature scale has been introduced by KOSINSKI [16), and the physical 
foundations of the new temperature scale have been given by CIMMELLI, KOSINSKI [17, 
18). . 

The case of a deformable continuum considered in this paper is restricted to a thermo­
elastic body. In that case, the final system of governing equations is hyperbolic under mild 
assumptions concerning the partial derivatives of the internal (or free) energy functions 
and the heat conductivity. 

One of the aims of this paper is to show that the propagation of the weak discon­
tinuity waves in both rigid and deformable cases is governed by a Bernoulli equation 
in which the nonlinear term may lead to the finite time breakdown and formation of 
shock waves. On the other hand, if the heat capacity (the specific heat) is a suit­
able power of the absolute temperature, then the nonlinearity in the amplitude equa­
tion will disappear and no singularity will form in the propagation of weak discontinuity 
waves. 

The organization of the paper is as follows: in Sect. 2 we shall derive the governing 
hyperbolic equations based on physical foundations. In Sect. 3, thermal waves are consid­
ered. Section 4 is devoted to the thermoelastic case, and in Sect. 5, concluding remarks 
are given. 

The present paper can be regarded as a continuation of the investigation of the pre­
vious two papers, KOSINSKI, SAXTON [ 19), where the finite time blow up of the ampli­
tude of one-dimensional temperature rate waves in a particular class of rigid and de­
formable conductors was investigated, and the paper CIMMELLI, KOSINSKI [20], where a 
local in time existence, uniqueness and continuous dependence result was obtained for sol­
utions of a Cauchy problem of a rigid heat conductor with the semi-empirical temperature 
scale. 

One of the open problems is the question of global existence. This problem will be 
discussed in further papers together with shock wave analysis. 

2. Rigid heat conductor with thermal relaxation 

The classical Fourier law relating the heat flux vector to the gradient of the absolute 
temperature does not allow for propagation of thermal waves. The first theory of heat 
conduction which admitted finite wave speeds was included in the Landau two-fluid model 
for helium II in 1940. 

Rigid heat conductors were discussed by CATTANEO [ 1, 2) and VERNOlTE [3]. In 
their derivation an extra term in the heat equation had appeared, which was proportional 
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to the time derivative of the heat flux. The proportionality constant (or coefficient) was 
called by them a thermal relaxation time. It seems, however, that it was MAXWELL [4] 
who obtained, for the first time, such a term in his derivation of an energy balance 
equation based on statistical arguments. However, he dropped this term after his deriva­
tion. 

The modifications of Cattaneo and Vernotte, as well as a particular case of that 
of Maxwell, can be summarized simply by the following so-called Maxwell-Cattaneo­
Vernotte equation, 

(2.1) rq + q = -k\lt?, 

where the superposed dot denotes the time derivative, q is the heat flux vector, \l'!J 
denotes the temperature gradient, while k and r are, in general, material functions, called 
the heat conduction coefficient and thermal relaxation time, respectively. In most known 
physical models, the value of r is very small, and varies in the range around l0-9 -

Io-n .., -I_ 

In the subsequent parts of the paper, another model will be explored with a Fourier­
type proportionality law. To this end, let us notice that the Fourier law, often written in 
the form 

(2.2) q = -k\it?' 

with the heat conductivity k depending in general on v, is a consequence of an averag­
ing procedure, performed at the macroscopic, or statistical level by CATTANEO [2]. The 
starting point of this procedure is a proportionality rule between the "protoplast" ij of the 
heat flux vector and the gradient of the kinetic energy of molecules G, 

(2.3) ij = -A"VG, 

where A is a constant. Since G, in that model, is proportional to the absolute temperature, 
i.e. G = mt'J, we can recover (2.2). 

The proportionally rule (2.3) is the first approximation in which one has assumed a 
constant, in time, value of G. A time-dependent function G requires a second approxi­
mation in which an extra term is added to the right side of Eq. (2.3), that is proportional 
to the second mixed derivative of G, namely, 

(2.4) ij = - A"VG + u\iG , 
where u = rA. 

If we define, formally, a new semi-empirical temperature scale as a solution of the 
kinetic equation 

(2.5) 
- ·- m 
m J3 = -(t?- {3) , 

T 

then the macroscopic counterpart of (2.4) will be a proportionality law (compare 
CIMMELLI and KOSINSKI [ 17]), 

(2.6) q = -k'\1;3, 

with ,8 given as a solution of Eq. (2.5) under the initial condition {3(0) = v(O), provided 
that at the initial time thermodynamic equilibrium was maintained. In the general case, 
however, ,8(0) = /30 , may differ from t9(0) = t?0 • 

The appearance of the coefficient m. in the kinetic equation (2.5) can be explained 
in terms of statistical mechanics arguments; here the product m;J can be regarded as 
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a non-equilibrium thermal energy(~) related linearly to the new semi-empirical tem­
perature j3 . Moreover, the presence of m(2) in Eq. (2.5) will be of a special im­
portance when a deformable continuum is discussed in Lagrangian and Eulerian se­
tups. 

For the purpose of this paper we assume a simplified version of Eq. (2.5) - m will be 
constant. First, we investigate the behavior of rigid conductors. The constitutive equations 
form a set of relations involving the following functions: the Helmholtz free energy lj; , 
specific entropy 17, and heat flux q, which are represented, in general, by functions of 
temperature 1J, and gradient of the new temperature \7 /3, 

(2.7) 

1/J = ·~ ( {), \7 j3) ' 

1] = 1J(t9, \7 j3 ) = - 7/-',!J (d, \7 !3 ) , 

q = -l.~ ( t1)\7j3. 

We assume that the free energy is given by 

(2.8) ~Z (u, \7 !3 ) = 4· 1 ( t? ) + To 1.:( 1J ) v f3 • \7 ;3 
2 pot? 

and that the internal energy c = 4• + 171J does not depend on \7 j3. Here T = To is a 
constant relaxation time. As a consequence of the second assumption, we obtain 

(2.9) 

and for the heat conductivity 

(2.10) 

where ko = k( t?o). 
The system of equations for a rigid conductor consists of Eq. (2.7) 1, the evolution 

equation for (J (2.5) (with m = canst), and the energy balance law: 

q = -k(t9)\7{3 I 

(2.11) 
. 1 

j3 = - ( t9 - f] ) , 
To 

poi + div q = 0 . 

Here p0 is a reference density, and we assume there to be no heat supply. Using 
Eqs. (2.8), (2.9) and (2.10), we obtain a second order partial differential equation for j3 

of the form 

(2.12) - poTod~cv ( t9 )f3 ,tt + 2koTot?\7,6 • \7.B,t + kot72 i1 {3 - po 1J ~c" ( t?)f3 ,t + 2kot9\7 j3 • v j3 = 0, 

where by Eq. (2.11) t7 = t7(j3, ,B,t ) = To f3.t + (3 , and cv (lJ) = {h],v > 0 is the specific heat 
at constant volume. 

By introducing new variables w and p through the equations 

(2.13) I~ = w fJ ,t , p=\7;3, 

(I) Formally, the relationships (2.4)-(2.6) are compatible with an extra term in Eq. (2.5), m 'T {J , which is 
negligible. 

(2) Notice that m has the dimension of the heat capacity. 
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Eq. (2.12) can be written as a quasi-linear system, 

(2.14) 

- C (/3. w)w ,1 + b( /3, lU. p) · vw + a.(/3 , tu)\7 · p + H(f], w, p) = 0, 

P,t- w = o, 
P,t - \lw = 0 . 

The coefficients in the above system (2.14) are 

(2 .15) 

where 

C(;J, w) = poTot?~cv(t?), 
b(,3, w, p) = 2koTot?p, 

a(p, w) = k0t?2
, 

H(;3, w, p) = 2kot?p • p- pot?~cv (t?)w, 

(2 .16) '1.'} = t1(;3, w) =Tow+ ,3, 

and we used the heat condictivity k( t?) given by Eq. (2.10). 
Nonzero eigenvalues ). for the system (2.14) satisfy a quadratic equation, 

C>.2 +>.b·n-a=O. 

551 

This system is hyperbolic; for k~o > 0, To > 0, cv > 0, all eigenvalues are real, and the 
corresponding set of five eigenvectors are linearly independent for all orientations of the 
wave normal n. This can be shown by following the same calculation as in the paper 
by KOSINSKI, SAXTON [19], although here some of the coefficients in Eqs. (2.14) are not 
constants but functions of J. w and p. 

In the next section thermal waves governed by the system (2.14) will be discussed. The 
question of how the present model is related to the classical one is, however, still open. 
To answer this question, let us consider the consequence of a vanishing thermal relaxation 
time To. 

The first consequence, given by Eq. (2.16), is that 

(2 .17) t? = /3, 

i.e. both scales coincide. Then, instead of Eq. (2.12), the equation in terms oft? can be 
written 

(2.18) 

which is the only equation remaining as a consequence of the balance energy equation 

(2.19) pot?~c v (t?)l? . t- \7 · (kot'J2vt9) = 0. 

Since the coefficient k0 is constant and Eq. (2.9) holds, we can rewrite the last equation 
as 

(2 .20) 

The cases of the free energy function -if• , and heat capacity cv, discussed later ( cf. 
Eqs. (3.14), (3.15)) lead to the following form of the internal energy function c-e), 

(2 .21) 

e) Note that , by Eq. (2.9), c ,IJ = cv. 
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and consequently to the following form of (2.20) 

{) -"~( l} 'i) ko , 1) f JPo ' 0 • v· ,t- 3.J('iJ· = 0. 

3. One-dimensional thermal waves 

In this section we will investigate the conditions which lead to the blow-up, in finite 
time, of the amplitude of thermal waves for one-dimensional rigid conductors. The system 
(2.14) reduces to 3 x 3, in terms of ,!3, w and p: 

- C(j3, w)w,1 + b(/3, w, p)w,x + a((3 , w )p,1. + H(j3, w, p) = 0 , 

(3.1) ,t3,t - w = 0 , 

P.t - w,.,, = 0 ' 

where coefficients are given by Eq. (2.15) with p now scalar-valued. 
We will call a one-dimensional smooth curve an acceleration wave having speed of 

propagation s, if across the curve /3, w , and p are continuous, but certain first derivatives 
are not. Namely, 

(3.2) ITw ,t ll f 0, ITP .tll f 0 

and since !3,t = w, 

(3.3) [ f3,tTI = o. 
As a result of Eqs. (3.2), (3.3), and the definition of the directional derivative along the 
curve: 

(3.4) 
8 (J () d 
- =- + s- =·-
6t at ax . dt 

there follows: 

also by Eq. (3.1)3, 

(3 .5) 
1 1 1 

[P.:v TI = --[P,t] = --[w,:rTI = ~[w.t]. 
S S S " . 

Evaluating the system (3.1) across the wave, and using Eqs. (3.4), (3.5), we obtain the 
quadratic equation for nonzero s: 

(3.6) c + /'i +&+s-a+ = 0 . 

Here we defined c+ = C(j3+,w+),b+ = b(f]+,w+,p+) ,a+ = a(j3+,w+), and p+ and w+ 
are the values of j3 and w, respectively, at the wave. 

If we assume additionally that the wave is propagating into a material which is in a 
state of rest, such that 

(3.7) f](a:,t) = {3+ = const ;f. 0, p(x,t) = p+ = 0, w(x,t) = w+ = 0 

in the region in front of the wave, then 

(3.8) 82 = ~ = a(f]+, 0) = ko(f3 + )2 

C+ C(f]+,O) porot?~cv ( ,tJ +) ' 

because, by Eq. (2.16), iJ+ = iJ(;J+, 0) = p+. 
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We define the amplitude of the acceleration wave by 

(3 .9) o(t) = [w ,tll(t). 

1 
Note that by Eq. (2.11)2, n = [w.tll = -[l? ,tll· 

To 

553 

The amplitude (..t (t) evolves in time along the characteristic accordingly to a first order 
ordinary differential equation. To derive this equation ( cf. KOSINSKI, SAXTON [19]), we 
differentiate the system (3.1) with respect tot, evaluate it at the wave by taking the values 
of the corresponding continuous coefficients at (,6+, 0, 0) ( cf. Eqs. (3.7)), and use the 
following relation for the constant speed s given (Eq. (3.8)): 

(3 .10) 

The equation obtained for o· is of Bernoulli type, 

(3.11) 
d 1 1 
-a-nTon"'+ -a= 0, 
dt 2To 

where 

2 ct {} 
(3 .12) n = f3+ - 2c't . 

Since (1/(2T0)) > 0, the solution n(t) of Eq. (3.11) has the property; a(t) -+ ±oo as 
t -+ t 1, t 1 finite time, if the initial condition o 0 = CI'(O) satisfies the inequality, 

(3.13) 

and the blow-up time t 1 can be calculated to be 

_ ? 
1 

2naoT1f t1 --To og . ., . 
2na0 T1t- 1 

It can be easily verified that t 1 is a decreasing function of To for fixed a 0• 

In the model presented, the heat conductivity can result in a mixture of stabilizing 
(due to diffusion) and destabilizing effects, for n ':f 0, on the behavior of the ampli­
tude n. This fact can lead to the formation of shocks. Although destabilization exists, 
it is not very strong, and depends on the order of the coefficient nT0 • If To is very 
small, then the stabilizing efiect is dominating. Consequently, if To -+ 0, then s2 -+ oo, 
t 1 --- •X i, and o(l) --r 0 as t --r •X •, which is the case corresponding to the classical Fourier 
law (2.2). 

For the special case of the specific heat cv, i.e. where 

( 19) 4 

(3 .14) c\i=co l?o 

then the amplitude decays along the wave, and blow-up does not occur, 

-.,-1-
o·(t) = aoe ~ro . 

The heat capacity represented by Eq. (3.14) is possible if the function 1/)('1.9) in the 
free energy function (2.8) together with (2.10), has a form 

(3 .15) 

where eo , e 1 , e2 are constants, and co = -20ez'l.9 ~. 
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4. Acceleration waves in thermoelastic materials 

We will consider constitutive equations for thermoelastic materials as represented by 
the following quantities: free energy ~· . Piola-Kirchhofi stress tensor 'C,, entropy ry, heat 
flux q, 

( 4.1) 

" 1 T() k( t1) 
·~ · = ~· (F , IJ , v f]) = 4· (F, ,·J) + -:-J - IJ v f] · V /3, 

- pov 

T~> = 'f,, (F , t'J) = po J, r(F. IJ . '\.' ;3) = po ·~· \· (F , t1) , 

17 = 1](F , t?, v ;J) = - ·0,v (F, t?, v /3) , 

q = -k( t'l)v;i , 

where F is the deformation gradient, and k(l'J) is given by Eq. (2.10) . 
The system of equations contains: the law of motion, compatibility condition, energy 

balance law, and the evolution equation for ;3, 

(4.2) 

pov.t - divT~> = 0 ~ 

F,t - grad v = 0 , 

(Jo th] ,,JtJ ,t + (Jo t'J f]y · F.t + div q = 0 ~ 

1 
B.t - -( t? - f] ) = 0, 

T() 

where v,t is the particle acceleration. 
Next, we write the system ( 4.2) in terms of new unknowns ,13, 1 = w and v (J = p . 

. I -1 d/fAipn -lplK G'l- 0 
v ,t -Po ."in M . K - ToPo W ,f{ - 7 - , 

F},. t - v~L = 0 , 

(4.3) ;3,t - w = 0 , 

w ,t- (rocv )- 1 t'JP/"· v~/\- (pocv)- 1k ,v p1
..-,w ,J.:.· - (poro c"·)- 1k8k p;i + H = 0 , 

PK ,t - W ,}\' = 0 , 

where we introduced the notation: 
;.)TI K 9"PI/\ 

4. /K AI = _u _~>._ piK = ~ 
" 

11 aFn ' (JiJ ' 
i\1 

(4.4) H(Fr1 .f]. w, pK) = r1)
1tc- (poro cv )- 1k ,vPKPK , 

Gl ( FJ\i , /~ ' w , p /\' ) = AI 1 pi K p 1\ 

and t? = r 0 w + (J . 
The system of differential equations ( 4.3) is quasilinear, of the form 

(4.5) U,t + S?,(U)U.l + D2(U)U ,2 + .03(U)U,3 + B(U) = 0 

where we write U,i = U,:r.,i = 1, 2, 3, 

u = [~] ' 

and Q i are square 17 x 17 matrices. 
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Let ~be a characteristic surface for Eqs. (4.3) (or Eqs. (4.5)), E: f(x , t) = 0, ,\the 
normal speed of propagation, and n the unit normal vector to ~: 

(4.6) ,\ ! ,t 
= -lvfl. 

The speed ,\ is a solution of 

(4 .7) det I.01n 1 + Dzn2 + fhn 3
- .XII = 0. 

Across the surface E l U is continuous, but its first derivatives are discontinuous, i.e. 

(4 .8) [U] = 0 I [U,t] f 0' [U,i ] f 0, i = 1, 2, 3. 

We have the compatibility relation 

(4 .9) [U,t] = -.\nK[U,K]. 

Equation ( 4.5) must hold on either side of E, thus after using Eq. ( 4.9), we get 

(4.10) (.OKnK- .\1)¢ = 0 , 

where ¢ = nK![U ,K] is the amplitude of the jump in the field U. 
Equation ( 4.7) for the system ( 4.3) has nine vanishing .\, the remaining ,\ different 

from zero can be obtained whenever the following new amplitudes are introduced, 

(4.11) 

and 

(4 .12) 1 = nK[w,A-] . 

As a result, Eq. ( 4.1 0) corresponding to system ( 4.3) evaluated at E, reduces to 

(4 .13) (Q- po.\2I)w + roZ/ = 0 1 .\
2pot7z · w + (k- .\2porocv- .\ror)~f = 0. 

Here Q is a symmetric acoustic tensor 

( 4.14) 

and for simplicity we introduced the following notation 

(4.15) r=k.u p·n, z=Pn . 

Amplitudes w and 1 are not zero if the corresponding determinant of Eqs. ( 4.13) is zero. 
This condition gives an 8th order polynomial in terms of.\: 

(4.16) (po.\ 2
)

4 r0 c, .· - (po.\2
)

3
{ rocv trQ + rot?z · z + k)} 

where 

+(p0 .\
2

)
2

{ r0 iJ(z · ztrQ- z • Qz) + k trQ- rocv llQ} 

-p0 .\
2 {r0 t9(Qz · Qz- trQ(z @ z) · Q- (z · z)llQ} + kdetQ 

-.\ro7·{-(po.\)3 + (po.\)2 trQ + po.\llQ + detQ} = 0, 

1 ~ ~ 
flQ = 2(trQ'"- (trQ)<-) . 

The coefficients in Eqs. ( 4.16) are evaluated atE, and since v, F , f3~ wand pare continuous 
across E, this implies that they are evaluated at v = v+, F = F+, w = w+, p = p+. If we 
assume ( cf. rigid conductor in Sect. 3) that in front of the wave the state "+" is defined 
as 

( 4.17) F(x ~ t) = F+ = (constant matrix) I {J(x , t) = ,8+ = const , 
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(4.17) v(x1 t) = v+ = 01 p(x1 t) = p+ = 0 1 
[cont.) 

w(x
1
i) = w+ = 0 

for points (x , t) in front of E 1 then this gives us a simplified version of Eq. ( 4.16), as by 
Eqs. (4.15) 

t = 1' + = 0 1 

and Eq. ( 4.16) can be written in the shorter form, 

(4.18) d4(po-\2)4 - d3(po-\2)3 + d2(po-X2f- dtpo-\2 +do= 0 . 

The coefficients do, d1 , d2, d3 1 d4, which come from Eq. (4.16), are all positive under 
the assumption that the acoustic tensor Q is positive definite, and cv > 0. Note that 
then II Q < 0. Although these are not sufficient conditions for the existence of real roots 
of Eq. ( 4.18), sufficient condition comes directly from single polynomial theory, as was 
shown by KOSINSKI, SZMIT [8]. 

In the last part of this section we concentrate on one-dimensional thermoelastic ma-
terial, whose behavior is described by Eq. ( 4.1). There we have five unknowns 
( v, F, {3, w, p ), and the basic system of equations can be written in the following form, 

V,t - TF(F, /3, w)F,x - B(F1 /3 1 w)tu ,;r - G(F, ;3, w , p) = 0 , 

F,t- V,:z· = 01 

(4.19) !3,t - tv = 0 , 

-C(F,j3 1 w)w,t + D(F, /3 1 tv )v ,;1: + b({J,w,p)w,x + a(/3 1 tv)P ,x + H(F 1 j3, p) = 0 , 

P,t- W,x = 0 , 

where the following new notation, more convenient for the one-dimensional case, was 
introduced, 

(4.20) 

TF(F, ;3 , w) = TF(F, t? ) = ·I/J ,1FF(F, t?) , 

B(F,;3,w) = roTo(F,t?) = ro·I/J,1F 0 (F,t?) , 

G(F, ;J , w,p) = T11(F, t?)p 1 

C(F, /3, w) = porot?~cv (F, t9) , 

D(F, /3, w) = pot?~t?T11 (F, t9), 

a(/31 w) = kot?2
, 

b({J , w, p) = 2korol3p 1 

H(F, /31 w, p) = 2kot?p2 - pot?~cv (F1 '!J)w 1 

'13 = t? (;3 , w) = Tow + j3 . 

As in the rigid conductor, we investigate an acceleration wave as a curve across which all 
unknown functions are continuous, but 

(4.22) ff V,t ] -:f 0 l ff F,t] -:f 0 1 [P ,t] -:f 0, [ !3,t] = 0. 

We have two amplitudes: 

(4.22) 

and 

(4.23) 

a(t) = [w,t ](t) 

8(t) = [v ,t ](t). 
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For .s being a speed of propagation of the acceleration wave, next follows, 

1 
(4 .24) [ v,.r] = [F,t]] = --h , 

s 

1 . . -1 
[F,.r ]] = ----,8 , · [w,.r] = [[p,t]] = -Cl', 

S '" S 

Evaluating the system across the wave, we find 

( 4.25) 

and the nonzero speeds satisfy the equation 

( 4.26) 

557 

The symbol"+", as previously, means the value of a function at the wave where w = w+, 
F = p+, ;3 = ;J+, p = p+, and if the wave is propagating into an undisturbed material 
such that Eq. ( 4.17) holds in the case of one dimension, then the fastest wave s = s1 will 
propagate into such a state. This means that s1 satisfies Eq. (4.26) with&+ = 0, 

2 ' 

(
a+ + B+D+) a+Tf] 
C+ +TF +~ -4c+ . ( 4.27) 1 [{ a.+ n+ n+ } sf = - - + r; + -- + 2 c+ · c+ 

We are making the assumption TJ. > 0, ct > 0. Equations ( 4.25) gives the relation 
between the amplitude a and o at the wave which is propagating with speed s1, 

B+ SJ a.+- c+sl 
8 =- a= la 

si- Tf D+s1 · 
( 4.28) 

The amplitude a or 8 evolves along the wave according to a first order differential equa­
tion, which can be derived by differentiation of Eq. ( 4.19) with respect to t, using the 
relations ( 4.24 ), and 

[ v ,tt] = 2 :~ 8 + sr[F,t:r] , 

d 2 
[w,tt] = 2 dt.o + sl[P,tx], 

1 d [ ] [p tt] = ---
1 

0'- St P t:r , 
' St ci ' 

( 4.29) 

1 d 
[ F tt] = ---d 0- St[F tx]. 

' SJ t ' 

As a result we obtain coupled equations for 8 and a. 

'PI + (st- TJ.)[F,,rt] + B+ St[P,tx] = 0, 

'P2- SJD+[F,xt] +(a+- c+si)[P,t:~:] = 0, 
( 4.30) 

where <p 1 and <p2 are functions of a, 8 and their derivatives. Since the coefficients in 
terms containing [P,tx] and [F,tx] satisfy Eqs. (4.25) (with &+ = 0, and s = si), as a 
consequence we have a linear relation between 'PI and <p2: 

( 4.31) 

where 
2 r+ B+ ( =-Sl- F = S} 

stD+ a+- c+st · 

http://rcin.org.pl



558 W. KOSHIISI\1 AND K. S~·noN 

Combining relations ( 4.28), ( 4.30) and ( 4.31 ), we obtain the desired equation for 8 (or o: ): 

d _, 
(4.32) -8 + ,,f}b'- + l~izb = 0 

dt 
and 

1 { + c·+ 2 
lvh = a - , 81 1' + s2B+(?D+ - t9 2B+- c +) ?( +r+ _ C'+ ~) .2D+ F,F 1 - ,w Po o ,F 

-a F , s l s l 

(4.33) - 3(a•- c•sf)B'j, +(sf- Tf)(4kuru.?•- sfc,:,)} , 
+( 2 ·r+) a. s l - F 0 Ah = > 

2ro(C+si- a+Tf) · 

Equation ( 4.32) has the same property as Eq. (3.11) for the rigid conductor, that is, 
the solution blows up in finite time t 1, if the initial conditio~ satisfies 

( 4.34) lvft8(0) + i\h < 0 . 

In contrast to the classical thermoelastic material of the Fourier law, there are two ac­
celeration waves, propagating in the positive direction. For the case of r0 _,. 0 , s 1 - oo, 
and the second wave s1 ---. s0 , where s~ = Tjt is the speed of propagation of acceleration 
wave in a classical thermoelastic material. 

For s2 = s0, the corresponding equation for the amplitude f, takes the form derived 
by DAFERMOS (21 ], 

5. Concluding remarks 

In the last section, the constitutive model of an elastic heat conductor allowed discus­
sion of coupled thermo-mechanical waves of weak discontinuity. These may grow without 
bound in finite time, provided their initial amplitude is sufficiently large, and possess ap­
propriate sign. This observation is rather obvious for nonlinear acoustic waves, which 
can transform into strong discontinuity waves. The influence of the thermal properties, 
however, may have a stabilizing effect on the acceleration wave propagation. This will 
be discussed in more detail in future work. Here, one should notice that the appropriate 
form of the specific heat function (cf. Eq. (3.14)) can make the amplitude equation linear: 

At the present state of the theory, the available experimental data can support a 
limited number of situations of physical interest, since the measurement of r at higher 
temperatures is restrictive. 
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