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On the second-order work in plasticity (*)

H. PETRYK (WARSZAWA)

THE cLASSICAL concept of the second-order work of deformation is extended to indirect
strain paths whose complexity is preserved as their length tends to zero. Explicit
expressions valid for arbitrarily circuitous paths are derived for elastic-plastic materials
with a discrete set of internal plastic deformation mechanisms which obey the normality
and symmetry postulates. Classical elastoplastic solids are included as a special case.
For a general time-independent and incrementally nonlinear material, a constitutive
inequality is formulated in terms of the second-order work corresponding to direct and
certain indirect paths leading to the same final strain increment. It is shown that
fundamental qualitative properties of a macroscopic constitutive law can be deduced
from a second-order work inequality established or postulated at a micro-level.

Klasyczne pojgcie pracy drugiego rzedu rozszerzone na Sciezki nieproporcjonalnego
odksztalcania, ktérych zlozono$¢ pozostaje zachowana gdy ich diugos¢ dazy do zera.
Dla materialow sprezysto-plastycznych z dyskretnym zbiorem wewngtrznych mechaniz-
mow deformacji plastycznych spemiajacych postulaty stowarzyszonosci i symetrii,
wyprowadzono jawne wyrazcnia na prace drugiego rzedu stuszne dla dowolnie
skomplikowanych drég odksztalcenia. Klasyczne materialy sprezysto-plastyczne
uwzgledniono jako szczegdlny przypadek. Dla ogolnego, przyrostowo-nieliniowego
materiatu niewrazliwego na zmiany skali czasu sformutowano nieréwno$¢ konstytutyw-
nga, porownujac pracg drugiego rzedu dla prostych i pewnych zlozonych drog prowadza-
cych do tego samego odksztalcenia koncowego. Pokazano, ze podstawowe cechy
jakosciowe makroskopowego zwigzku konstytutywnego mozna wyprowadzi¢ z takiej
nieréwnosci obowigzujacej lub postulowanej na poziomie mikroskopowym.

KaaccHyeckoe MOHATHE paGoTH BTOPOro MOPSAKA PACIUHPEHO HA MNYTH HEMPO-
NOPUHOHAILHOIO AePOPMHPOBAHHSA, CJIOKHOCTh KOTOPHIX COXPaHSETCH, KOrAa HX
JUIHHA CTPEMHMTCH K Hy:U0. J[18 yNpyro-[iacTHYECKHX MATEpPHMAasIoB C JMCKPETHEIM
MHOXECT BOM BHYT PEHHHX MEXaHH3MOB IL1ACTMHECKOH nedopMauuHu, yIOBJIETBOPS-
FOLLMX [TOCT y/1aTaM ACCOLMHPOBAHHA M CHMMET PHH, BbIBEACHb! ABHBIE BHIPAXEHHS UL
paboThl BTOPOro mopsiaxa cnpabef/MBbIe Ui POH3BOJILHO CJAOXKHBIX myTeil aedop-
MHpoBaHKA. KnaccHyeckHe ynpyro-1v1acT M4eCKue MAaTepHasbl YYTEeHbl KaK 4acTHbii
cayqail. Jas obuero, HeMHEHHOrO B NPUPOCTaxX MATEPHAsa HEYYBCT BUTEILHOrO Ha
M3MEHEHHS LUKaJbl BpeMeHH, ChOpPMY/IHPOBAHO ONPEAE/ISIOLIEe HEPABEHCTBO, CpPaB-
HuBas paboThLl BTOPOro MNOpsaKa UL MPOCTHIX M HEKOTOPBIX CJAOKHBIX MyTeii,
NpHBOJALIMX K ITOil caMoii koseuHoii medpopmaunu. [TokaszaHo, 4TO OCHOBHBHIE
Ka4YSCTBEHHBIE CBOIICT BA MaKpOCKOMMYECKOr0 OMpPEeAe TsIOLIEr0 COOT HOLUEHHS MOXHO
BBIBECTH M3 TAKOIO XK€ CAMOr0 HEPABEHCT Ba, KOT Opoe O0S3KIBAET HIIH MOCT YIHPYETCH
HA MHKPOCKOMHYECKOM YPOBHE.

1. Introduction
THE SECOND-ORDER WORK of deformation is a classical concept in the theory
of plasticity. In the so-called small strain theory, or more precisely, when

(*) Paper presented at VIIth French—Polish Symposium "Recent trends in mechanics of
elasto-plastic materials”, Radziejowice, 2—7.VI1.1990.



378 H. PETRYK

geometry changes are disregarded, the second-order work per unit volume
during proportional application of a small increment d¢;; in strain components
1 1
2 2
where dg;; are the respective small increments of the stress components; the
summation convention is used for repeated subscripts. That expression plays
a fundamental role in DRUCKER'S [2, 3] definition of work-hardening,
interpreted as a postulate of stability of the material in a restricted sense.
A similar expression, integrated over the body volume, appears in HILL'S [4, 5]
condition for stability of equilibrium of an inelastic continuous body under
dead loading, with geometry changes taken into account. In the most concise
form of Hill's condition, the second-order work is written down precisely in
terms of increments of the nominal stress and deformation gradient. It is
nowadays well known that the actual changes in geometry of the material
element generally make the value of an expression of the type: (stress
increment X strain increment) sensitive to the choice of stress and strain
measures, even if the measures are restricted to be work-conjugate. That effect
can be of the same order of magnitude as the expression value itself,
irrespective of whether the strains theselves are ,,small” or not. However, we
will be primarily concerned here with the comparison of the second-order work
corresponding to distinct routes leading to the same final strain, and the
conclusions drawn from such a comparison will be shown to be measure-
-invariant.

The principal difference between the present analysis and the classical
approach is that the work of deformation is evaluated here not only along
direct paths of proportional straining, but also along more complicated
paths whose total length remains small. The ,second-order” term can be
specified by scaling down a given path in strain space such that its length tends
to zero while its complexity is preserved. The idea of examining
a path-dependent second-order work in inelastic solids appears to be not
explored in the literature, especially for a general, incrementally nonlinear
material response, e.g. at a yield-surface vertex whose formation is predicted by
micromechanical theories of plasticity [7]. Te present discussion is a con-
tinuation of the analysis made in the previous paper by the author [18] where
certain qualitative properties of elastic-plastic models of metal crystals or
polycrystals were also investigated but without reference to the work of
deformation. It will be shown below that the comparison of the second-order
work on direct and certain indirect paths leading to the same final increment of
strain yields a new and more physical formulation of the constitutive inequality
derived in [18]. Since the inequality has far-reaching implications for con-
stitutive modeling as well as e.g. for the bifurcation theory, this result is of more
than academic interest. Validity of the constitutive inequality was recently

is, by definition, equal to = éo;; d¢;; (or - 0 - ¢ in the symbolic notation),
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examined in [16] for solids characterized by existence of a thermodynamic
potential and by the maximum dissipation principle.

In Sect. 2 the concept of the second-order work is introduced for a general
class of deformation paths and an arbitrary material. In Sect. 3 explicit
expressions for the second-order work are derived for elastic-plastic materials
with a discrete set of internal plastic deformation mechanisms (e.g. single
crystals deformed by multisilip) which obey the normality and symmetry
postulates. A general connection between the constitutive inequality mentioned
above and a second-order work inequality is established in Sect. 4. Certain
illustrative examples are presented in the last section.

2. The second-order work

As a starting point, an infinitesimal increment of the work of deformation
under current tractions on the material element is expressed in the form [9, 10,
11]

(2.1) dw = t;;de;; = t-de per unit reference volume,

where de is an infinitesimal increment of an arbitrarily chosen strain measure
e of Lagrangian type and t is the conjugate stress; for simplicity, the tensor
components are taken on a fixed rectangular basis. The reference configuration
is arbitrary but fixed, so that a finite work increment per unit reference volume
is obtained by integration of Eq. (2.1) along a given directed continuous line
(path) in the strain space, provided the (path-dependent) stress variations along
the path are defined, at least in principle. We shall examine arbitrarily
circuitous but piecewise smooth strain paths £, leading from a given initial
strain € to a neighboring final strain & = & + €. A path 2 is parameterized by
the length variable 0 ={|de|, where |de| = (de,; de;)"/*. The symbols (—), (=)
and () over a quantity denote its initial and final values on a path 2 and their
difference, respectively; by definition, § = 0 and § = . One could employ the
usual prefix & instead of the symbol (") to indicate a small increment, but it
seems preferable to use another symbol for increments which need not be
reached on a direct path.

We introduce a natural assumption (which, however, excludes rigid-plastic
solids) that a stress increment along any strain path is (at the most) of order of
the path length increment, viz.

(2.2) |t@,) — t(6,) <C|0,—0,| along any path 2,

where C is a constant number, the same for all paths.

Contrary to a typical asymptotic expansion along a given path, we do not
require a strain path to be fixed as & — € and 0 —» 0. Paths under consideration
may thus differ substantially from a smooth arc no matter how small
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0 is. Nevertheless, integration of Eq. (2.1) followed by substitution of (2.2) and
by the limit transition still yields the standard first-order formula

(2.3) b=T¢+o(0)

which remains valid for any sequence of paths 2 whose length | 0 tends to zero.
Here and in the following the classical order symbol 0 (0 ") is used for
indicating a scalar quantity ¢ of order higher than 0", i.e. such that 5/0" -0 as
§—0. We may rewrite (2.3) as

2.4) & =18+ 4,0+ o(0?).

The quantity 4,w, if defined, is of order 02 (or vanishes) on account of Eq. (2.2)
and is thus called the second-order work. Henceforth the convention is
introduced that all equations or inequalities involving 4,® are valid to that
order only, ie. can be violated by terms of order 0(02) For incrementally
nonlinear and path-dependent solids, the actual expression for 4, may depend
on the class of paths 2 which are taken into account as the path length 0 tends
to zero. Typically, 4, will involve & and t as well as other characteristics of the
considered paths; examples will be discussed in the subsequent sections.
On integrating Eq. (2.1) along a path 2 and rearranging, we obtain

] )
2.9) O=T¢&+[e}(0) (j i (s) ds) do
0 0
' 9
=18+ 11-@ + [ €0 (j{,,(s — 4,10} ds)d()
2 0 0

(]
+ (1,/0) j ei; (0) — &,;/0} 0 do,

where a prime denotes differentiation by the function argument along a fixed
path. A special but important case arises when 4, w is evaluated for a class
9 of direct paths along which, by definition, increments of the derivatives (with
respect to the path length) of strain and stress are, at the most, of order of the
path length increment(!), viz.

le’(()z) — € (01)| < C ‘02 — 0

(2.6)
[t0) -1 ©) < C,|0,—

along any path € 2, where C, and C, are posmve constants, the same for all
paths from 2.(*) No matter how a path from @ varies as 0 — 0, the expressions

(") Validity of Eq. (2.7) can bc proved under a weaker assumption, namely, that
|e'(0) — € (0)] = 0(0°) and |t'(0) — t'(0)]=0(0°) for all paths from 2.

(3 It is clear that Eq. (2.6) can be violated for a sequence of smooth paths, e.g. if their
"curvature” tends to infinity.
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in curly brackets in Eq. (2.5) are of order b, by the Taylor formula, and the
integrals over [0, 6] are of order 6°. By comparison with Eq. (2.4) we arrive at
the result that within a class 2 of direct paths, the second-order work is defined
by the familiar formula

(2.7) 4,0 =

it is recalled that & and t are the final increments of stress and strain reached
along a variable path. If a path is fixed when 0 — 0 then Eq. (2.7) reduces to
the ,trapezoid rule of quadrature” [10, 11]; cf. also [17].

The above considerations might seem to be elementary, in view of
simplicity of the formulae. However, this is not quite so since a nonstandard
limit transition for both the variable path and its length is performed.
A detailed specification of the assumptions was thus necessary.

Following HILL [9, 11], we discuss now briefly the question of transfor-
mation to another work-conjugate pair of stress and strain measures, say
(t*, e*), where e* is a sufficiently smooth and invertible function of e alone
(possibly associated with another reference configuration). Components of
a strain increment defined by geometric variables transform according to the
standard formula

" aei‘}) 1 ( el ) . o
2.8 =|—)é + = -) é,é,, + o ().
( ) ij (aekl A kl 2 aem aepq » ki “pq (‘ | )

The total work per unit mass must be invariant, so that @ transforms to
@* = (p*/p) ® and

oel\ .. .

(2.9) e ) 11 = (0*/p) tys

x
where p and p* stand for the material density in the respective reference
configurations. On substituting Eqgs. (2.8) and (2.9) in Eq. (2.4) it can be seen
that decomposition of the work into the first- and second-order terms is itself
not an invariant concept. Explicitly, the second-order work per unit mass is not
measure-invariant but transforms according to the formula

1 1 | %eX \ . .
(2.10) ]F Aza)"' = ; 4,0 — -2? f,-*j (aeﬂa:‘m)‘ €41 €pgs
this is a straightforward extension of the transformation formula obtained by
HiLL [11] for an expression of the type (2.7) above. In particular, it follows that
the sign of 4, can depend on a subjective choice of the strain measure.
However, it still makes sense to compare the second-order work on different
routes leading to the same strain increment since the contributions from the
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last expression in Eq. (2.10) then cancel and the conclusions are measure
invariant.

3. Elastic-plastic materials with a discrete set of internal plastic deformation
mechanisms

3.1. Constitutive framework

In this Section we assume the known ,,normality structure” of constitutive
rate equations for crystals deformed plastically by multislip, or more generally,
for solids with a finite number N of internal mechanisms of rate-independent
inelastic deformation. The constitutive framework for such materials at finite
strain was given by HILL and RICE [12] and SEWELL [19], generalizing earlier
theories of KOITER [13], MANDEL [14] and HILL [6]. Within that framework,
we adopt here the set of assumptions as in [18], viz.

(3.1) =20, fx<0, feyx =0 (no sum),
(3.2) Ax = Ofx/0e,

(33) {=E-&— dgip

(3.4) Je = Ag & = gr¥s,

3-5) Eyu = Ewp

(3.6) 9k = 9rxs

where a dot over a symbol denotes the right-hand rate of change with respect to
a time-like parameter .

The reader is referred to the papers cited above for a detailed charac-
terization of the above assumptions. Briefly, upper case lower indices varying
from 1 to N refer to quantities related to a specific plastic deformation
mechanism; the summation convention is adopted here for those indices except
when an indication ,,no sum” appears. y, denotes a scalar measure of the rate
of activity of the K-th mechanism and f} is the respective smooth yield function
(in strain space), functionally dependent on the deformation history. For
instance, in crystals 7, may stand for the rate of shearing on K-th slip system,
with fy = 1y — 1%, where 1.is the generalized resolved shear stress on that
system and t§ is its critical value. If fy = O then Eq. (3.1) implies fx < 0 and
fx¥x = 0 (no sum) while L, defined by Eq. (3.2) represents a normal to the
K-th yield surface in strain space, directed outward from the elastic domain. In
short, we may say that Eqs. (3.1) = (3.6) characterize elastic-plastic solids
obeying the postulates of normality (cf. Eq. (3.3)) and symmetry (cf. Egs. (3.5)
and (3.6)). The form of evolution equations for elastic moduli E;,, parameters
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gxr and Ay need not be specified here; it is only assumed that the rates of change
of these quantities along a strain path are bounded provided é and j, are
bounded.

Since the matrix (gx,) is not required to be positive definite, y¢(f) need not
be uniquely determined from the above equations even if é(t) is given [12]; in
such cases a path £ is understood as a path in strain space specified jointly
with some . (t) compatible with Eqgs. (3.1) + (3.6) at every instant. To satisfy
Eq. (2.2), we assume that all ; are bounded by

(3.7 ik < C, e

where C, is a positive constant. This is a weaker restriction than positive
definiteness of (gg,); for instance, Eq. (3.7) is implied by gg; > 0 with strict
inequality for L = K. In particular, Eq. (3.7) ensures that no internal plastic
rearrangement in the material is possible if ¢ = 0.

From Eq. (3.7) and the assumption on bounded rates of Ay, E;j;, and gy, it
follows that increments of these quantities along a strain path are of order of
the path length increment; this property will be essential below.

»

3.2. The second-order work

For a material element as specified above, consider a class of arbitrarily
circuitous strain paths . We may identify ¢ with the path length variable 0 and
replace the time derivative symbol () by a prime; a parameter yy (0) is formally
defined as a time integral of ¢ with an initial value y;(0) = 0. On substituting
(3.3) and (3.5) into the former work expression in (2.5) and taking into account
that variations of E;;, of order 0 cannot affect the first- and second-order
terms, we obtain

[ 0
(38) & =Tt-é+-éE-&— | e, (0) (I (hg)i; ) ¥k () ds) do + o(0%).
0 0

S

Similarly, by using Eq. (3.7) it can be shown that variations of A, and ¢, along
2 may be disregarded in Eq. (3.8), to terms of second-order in 0. Substitution of
Eq. (3.4) into Eq. (3.8) thus yields

A A IA ™ A a - 7
(3.9) b=té+seEe- § (e 0) + Gx7L(0)7£(0)d0 + 0(D?).
0
On integrating Eq. (3.9) by parts with the use of Egs. (3.1), and (3.6), we obtain
A A 1 A BN A 1 = A A T A 2
(3.10) a’=t'e+ie'E'e“ing)’x}’L—fx}'x'l'O(a %

where yg = (5) = 0. From Egq. (3.1), it follows that for 0 sufficiently small we
have $; = O unless K € 4, where the set 4 = {K:f; = 0} contains N indices of



384 H. PETRYK

the so-called potentially active mechanisms at the initial state of all paths
2 under consideration. The summation in Eq. (3.10) needs thus to be carried
out only for K, Le A, and the final value f,K in Eq. (3.10) can be replaced
by the respective increment f. Henceforth (gg,) with K, Le 4 will denote the
(N x N) submatrix of (gg;) which corresponds to the potentially active systems
at 0=0.

By comparing Eq. (3.10) with Eq. (2.4), we arrive at the following
result:

For a material characterized by Egs. (3.1) <+ (3.7) and for arbitrary strain
paths 2, the second-order work is given by

(.11) dyo =8 -E-& — = gep ¥ I — Jx Ixe

NIi—*
NI’—-

Although the underlying constitutive framework is well-known, this formula
and its consequences discussed below appear to be new.

Since variations of Az and gy, along any 2 are of order 0, Eq. (3.4)
implies

(3.12) fe = Rg & — GgLhy + 0(0),

no matter how the path £ varies as 0-0; validity of the analogous first-order
formula for the stress increment t obtained from Eq. (3.3) is also evident. On
substituting those formulae into Eq. (3.11), we obtain alternative expressions
for 4, w, viz.

A A

(3.13) 4,0 = Gxe FxhL — x Mg &,

B[ =
o>
B | =

1 N 1 5% ..
(3-14) o =18 - ifx'}’x,

o)

equivalent to each other (to sccond order terms in 0).

The formula (3.13) shows limited path-independence of the second-order
work for the materials under consideration: only the final increments of e and
7k are relevant, and not how they are reached. From Eq. (3.14) we obtain that
in a general case the expression in Eq. (2.7) is mcorrect for indirect paths (e.g. if
a zigzag path is scaled down proportlonally as 0 — 0) and underestimates the
actual second-order work. For, if ; > 0 for 0 arbitrarily small then, as
remarked above, we must have fy = 0 which in turn implies fx < 0 on
account of Eq. (3.1),; the latter term in Eq. (3.14) is thus non-negative. In
particular, the second-order work on closed paths (¢ = 0) is non-negative for
the considered materials.
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33. Lower bound to the second-order work

Consider now the difference between the second-order work on arbitrary
paths Z and on direct paths from 2 which lead to the same final strain
increment. Quantities associated with direct paths are distinguished by
a superscript (D); variations of the derivatives ef}(0) and yZ'(0) along a direct
paths are taken to be, at the most, of order 0° to satisfy Eq. (2.6). Since for
direct paths we readily have 0° < 0 and f2 $2 = 0 (both valid at least to order
0%), from Egs. (3.13) and (3.11) with & = & we obtain

1 - A A A u A 1 - A A
(3.15) 4,0 — 4,0° = 5 9xe Y — 9x Ay €+ 5 9xL P2 32,

By using Eqs. (3.6) and (3.12), we can rearrange this as follows

1., ADr . .
(3.16) 4,0 — 4,0° = 5 9x Ok — R Gy — D) — R

The latter term is nonnegative by the same argument as above, and the former
will be nonnegative if the submatrix (gy,) is positive definite or at least positive
semidefinite, We have thus proved the following theorem:

THEOREM 1. For a material characterized by Egs. (3.1) = (3.7) and among all
paths P initiated at a given state and leading to the same final strain, the
second-order work is minimized on direct paths, viz.

(3.17) d,0 2 d,0° if & =¢
provided that
(3.18) gxraxa, = 0 for all a.

It is recalled that by the convention introduced in Sect. 2, the inequality
{3.17) concerns the second-order terms only. More precisely, (3.17) is understo-
od to hold in the limit as 0 — 0 when both sides of the inequality are divided
beforehand by 02

If the submatrix (gg;) which corresponds to the potentially active mech-
anisms at 0 = 0 is positive definite (i.e (3.18) holds with strict inequality unless
all ag are zero) then (3.7) need not be assumed separately. For, that submatrix is
then also positive definite for 0 sufficiently small, by the continuity argument. y,
is then uniquely defined by ¢ [12] and (3.7) is ensured along any 2 for sufficiently
small 0. In that case, by using (3.12) and rearranging, (3.11) can be transformed to

1., =; . 1__ = = __ - -
(3.19) Azw=§e'L°'e (3 Eg lKLfoLs P=E-j 1x1, Mg ®hy,
where gx/! denote elements of the (N x N) matrix inverse to (gg,) and L, are

the so-called ,,total loading” moduli which coincide with the tangent moduli
along a deformation path associated with y; > 0 for all K € 4.
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The inequality (3.17) derived above is of interest for the theory of stability of
equilibrium. For, as pointed out by HILL [4, 5], to prove sufficiency of his
stability condition one needs a lower bound to the deformation work done on
arbitrarily circuitous paths in a neighborhood of the equilibrium state (see also
[15]). Te above theorem indicates a fairly wide class of solids for which such
a bound to the second-order work is available.

4. The constitutive inequality

4.1. Preliminaries

It has been shown in [18] that, under the constitutive assumptions
(3.1) + (3.6) adopted at a micro-level of a heterogeneous aggregate (cf. [10]), the
inequality

4.1) fe*-dt > [t* - de

holds for all segments of every piecewise smooth path & of macroscopically
uniform strain e(t) and the associated macroscopic stress path t(t), while the
starred rates correspond to a macroscopically uniform virtual deformation
mode which may vary arbitrarily along the path. It is understood that at each
instant t* is related to é*, similarly as dt to de, by the currently valid
incremental constitutive law which varies along the considered path in
a manner unaffected in any way by the starred mode.
Let a (macroscopic) incremental constitutive law for a time-independent
solid at a given state be written down symbolically as
. . .. on
t =mn() =L(E)-e, = %
4.2)
(or  t;=m;;(€) = Ly;,(&)éy, Ly, = 0n,;/0¢,).

The constitutive function n is single-valued, continuous and positively homo-
geneous of degree one; the instantaneous ,stiffness” moduli L, can depend in
a piecewise-smooth but possibly discontinuous manner on the strain-rate
direction. The function n itself varies along a strain path with possible
discontinuous changes at a discrete set of points (e.g. at an unloading point).
However, it is natural to assume that the tangent moduli, which relate the
actual infinitesimal forward increments of stress and strain along a given path,
vary along any path in a right-hand continuous manner whenever they are
well defined. The above assumptions are treated as a part of the constitutive
law (4.2). It can be seen that the assumptions are not physically restrictive
so that a very general class of time-independent solids is considered here.
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For our present purposes we shall introduce in subsection 4.2 an additional
regularity assumption (4.6) which is likewise plausible.

The inequality (4.1) may be used as a micromechanically-based restriction
on a phenomenological constitutive law (4.2), and has then far-reaching
implications [18]. It has been shown that (4.1) implies the symmetry property
L = Ly;; and hence existence of a strain-rate potential W such that

. oW ) 1, )
4.3) t = T W) = Ee 1 (e).

Under a reasonable continuity . restriction imposed on the so-called unloading
cone, (4.1) has been shown to imply also the (generalized) normality flow rule.
Another consequence of (4.1) is that at a regular point on a strain path (at
which, by definition, the actual- stress and strain rates, say (t°, &%), and the
constitutive function 3 do not change discontinuously), we have

(4.4) °-é* —*-¢° >0 for every é*,

where t* = n (é*). The inequality (4.4), which has the interpretation that no
abrupt unloading at a micro-level is associated with the actual deformation
mode, has been discussed in [18] with particular reference to the question of
uniqueness of a solution to the first-order rate boundary value problem. It has
been shown that (4.4) provides justification for determining the primary
bifurcation point on a regular deformation path from the linearized bifurcation
problem formulated for the tangent moduli, although the actual relationship
(4.2) may be highly nonlinear and even need not be specified.

4.2. The second-order work for direct and certain indirect paths

Consider a regular point P on a given piecewise smooth strain path & as an
initial point of a class of short strain paths 2 discussed in Sect. 2. Two
particular families of paths 2 are considered (Fig. 1). The first family
9 contains straight (direct) paths %” leading from P to a point Q chosen
arbitrarily in a neighborhood of P in the strain space. The paths from the
second family # lead from P to the same final strain at Q but on a special
indirect route P — R — Q where a straight(®) segment &* : R — Q is prece-
ded by a smooth segment &° : P — R of the path &. Of course, the 2 — &
since the segment &° may be of zero length. The final increments of strain and
conjugate stress (evaluated at a fixed reference configuration) on the segments
PP, #° and £* are denoted by (&%) (€°1°) and (&*t*), respectively.

(%) Straight segments P - Q and R — Q can be replaced by smoothly curved segments
satisfying (2.6),, with no influence on the following considerations; that change is generated e.g. by
transformation to another strain measure.
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FiG. 1. Schematic representation of indirect strain paths from the family 4.

A time-like parameter ¢ is indetified with the path length variable 0; the total
length of a path from the family # is denoted by 0 while 0” stands for the
length of a segment 2. In the limit as § — 0, the points Q and R are taken to
approach P in such a manner that the quotients /0, &°/02, é*/0P and 0/0°
tend to well-defined limits &, «é®, fé* and « + f, respectively, where a > 0,
f>0, o+ f>1, and |é|=|e°|=|é*|=1. It is evident that the above
construction can be performed for any choice of é or é* provided that

{4.5) é = aél + pé*.
We introduce now the assumption that for 0 sufficiently small we have
4.6) |v(0,)—¢(0)|<C,|0,—0,| along each of &P, #°, F* separately,

where C, is a positive constant, the same for all such segments (cf. (2.6),).(4)
It follows that those segments constitute direct paths to which the formula
(2.4) with 4,0 given by (2.7) can separately be applied. By adding the work
expressions for the segments %° and &* and taking into account that
the initial stress for a segment #* differs from the stress T at P by t° we

obtain
@47 o=t + %fo‘”o + (£ +t%-8* 4+ -;—l*-é“ 4 0(0%) for Pea.

(4 This may be regarded as a natural regularity restriction on (4.2), related also to smoothness
of the path & in vicinity of P. If P were not a regular point on & then validity of (4.6) could be
questioned for the segments %* whose initial state would approach a singular point.
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The second-order work on paths from the family # thus reads

4.8 Azwa=%f°'é°+t°'é*+%f* - 8%,

while the second-order work -on direct paths from 92 is 4,0° = % t? - & By

using the assumed smoothness properties of the segments, the second-order
work formulae can be expressed in terms of the limit strain-rates é, ¢° and é*
and the respective stress-rates t, i and t* related by (4.2) at the initial points of
the segments &2, &° and ¥*, respectively. We obtain

(4.9) 4,0° = % t-e0P?

4.10) 4,0° = (%az {080 + B0 &% + % i t*-é-) @2,

for paths from the families 2 and @, respectively. By the definition of a regular
point on a path &, we have

(d.11) £ = nR (&%) = 7iy; (%) + 0 (0°)

so that both the expressions (4.9) and (4.10) can be evaluated to second order
by using the constitutive rate equation (4.2) with the function n =# taken
precisely at the point P (q® denotes # at a point R). The assumption that P is
a regular point is essential here and not only formal; for instance, if P were
a corner point on a strain path then (4.11) would not be true in general.

4.3. The second-order work inequality

We can now formulate and prove our basic result.

THEOREM 2. Under the regularity assumption (4.6 ) imposed on a constitutive
law (4.2), the following two conditions are equivalent:

(i) The inequality (4.1) holds for all segments of every piecewise smooth
strain path &;

(ii) At any regular point P on every piecewise smooth strain path & and
among all indirect paths P € & initiated at P and leading to the same firal strain,
the second-order work is minimized on direct paths, viz.

4.12) 4,0 > 4,0

The proof of Theorem 2 is given in Appendix.
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If the constitutive inequality (4.1) is assumed or derived from the given
constitutive relations then Theorem 2 provides interpretation for (4.1) in terms
of the second-order work(®). Conversely, the second-order work inequality
(4.12) can be adopted as a postulate (which has a physical meaning) or verified
for some materials, and then (4.1) with all its implications demostrated in [18]
and briefly recapitulated in the Subsect. 4.1 are obtained as a consequence. This
is an attractive way of deriving such qualitative properties of a constitutive law
as symmetry of instantaneous stiffness moduli, the normality flow rule or the
inequality (4.4). Moreover, the inequality (4.1) transmits from a micro-level to
the macro-level of constitutive description for a heterogeneous continuum [10,
18]. It follows that the fundamental qualitative properties of a macroscopic
constitutive law (4.2) can be deduced from the second-order work inequality (4.12)
established or postulated at a micro-level.

The inequalities (4.1) and (4.12) hold for an elastic-plastic material (e.g.
a model of a metal crystal deformed by mutislip) with a discrete set of internal
plastic deformation mechanisms characterized by (3.1) = (3.6) if the submatrix
(Gxr) for potentially active systems at any P is positive definite(). In fact,
a stronger property has been proved in Sect. 3 for such materials (cf. (3.17)) that
the second-order work is minimized on direct paths among all indirect paths
which lead to the same strain increment. As a particular case, (4.1) and (4.12)
hold for the classical elastoplastic solids, discussed below.

5. Ilustrations

5.1. Classical elastoplasticity

Consider a particular case of the material described by the constitutive
relations (3.1) = (3.6) when only one internal mechanism of plastic deformation
is distinguished, i.e. when N = 1 so that all upper case lower indices can simply
be omitted (so that (3.6) is trivial). Moreover, assume that the elastic moduli
tensor E is invertible (if regarded as a linear operator in the space of symmetric
tensors) and that g > 0. Then the classical elastoplasticity equations (extended
to finite strain) for a material with a smooth yield surface and the normality
flow rule are recovered, viz. (cf. [4, 8])

(5) One can compare the above interpretation with that for (4.4) obtained in terms of the work
done on a virtual cycle of strain [10].

(%) In [18] it has been shown that the assumption of a positive definite submatrix (g, ) is not
needed for validity of (4.1). However, it is this condition which ensures that the constitutive relation
(4.2) corresponding to the assumptions (3.1) = (3.6) is single-valued [12]; the latter property has
been used in the proof of Theorem 2. Note also that the transmissibility of the inequality (4.1)
between micro- and macro-levels need not imply the same for the property (4.12); for, uniqueness of
the response of a heterogeneous material may be lost after transition to another scale of observation.
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(5.1 e=¢e +¢&°, e=M-t, e =yofdt,
where

. f@ryg if f=0 and &-A>0,
(5:2) v= {0 elsewhere,

(5.3) M = E_l, M"j“ = Mklijl aﬂat = )\-'M.

We need not make any distinction here between “softening” and “hardening”
which themselves are not measure-invariant concepts [8]. If the “hardening”
parameter h =g — AL-M-\ is positive then the loading condition at f=0
reduces to the more familiar condition &-(8f/at) > 0.

€

F1G. 2. Decomposition of an arbitrarily circuitous strain path 2 for a classical elastic-plastic
material.

Consider a point P on the current yield surface and a class of strain paths
# of final length 0, initiated at that point (Fig. 2). Let us discuss first a path 2F
such that its final point R lies on the final yield surface; respective increments
are distinguished by a superscript (R). From (5.2) it can be deduced that (3.7) is
satisfied and that the final increment of y along 2R is given by the following
first-order formula

A

(5.4) R = &R-5/7 + o(D®)

for arbitrarily circuitous paths 2K, corresponding possibly to temporary
unloading. Since f" =0, from (3.14) or (3.11) we find that
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(5.5) Aot = tR-eR = Z@R-1r-&®,  Lfy = Eju — Aij /g,

B =
B

where Lf;,; are the (elastic-plastic) moduli from the loading branch. This means
that within the class of paths terminating on the yield surface, the second-order
work is path-independent.

Generally, any path 2 can be decomposed into two segments: a segment
2R just discussed followed by a purely elastic segment R — Q (Fig. 2); one of
those segments may be absent. From (5.5) and in analogy to (4.8), the
second-order work for arbitrary paths 2 is expressed by the formula

1 1 -
(5.6) 4,0 = zt“-é“ +iR@—-ed+ E(é — &) E- (& — &R,
which can be rearranged as follows:

- 1 _
R R R

B | r—

57 4d,0=
g %> — €N~

This formula can be understood in the following asymptotic sense. As the total
length 0 of a path P— R — Q tends to zero, let the points R and Q lie on and
inside the final yield surface, respectively, and approach a fixed initial point
P in such a way that the triangles PQR are similar to each other without
rotation (Fig. 2). Then the work of deformation on the path P> R — Q is
expressed with accuracy to second-order terms by the formula (2.4) with 4,0
given by (5.7).

From (2.7) and the constitutive assumptions it follows that the second-order
work on a direct path resulting in a final strain increment € is expressed by

L. = - r o if é&1=0
D — T A' .A i _ _ ]
(5.8) 4,w" = > é-L-e, L [E if 87<0.
If & in (5.7) and (5.8) is the same then
~(@—-2e®Nryg I érx=0,
(5.9) 4,0 — 4,0° =< ¢ .
Eg(«;“)l—(é-x)iﬂ if e i1<g0.

Since § has been assumed positive and $® is nonnegative, it is clear that the
above second-order work difference is always nonnegative. This conclusion
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provides an illustration to Theorem 1 proved in Sect. 3 under more general
assumptions. In a particular case when #* coincides with a smooth segment
#° of a loading path, this demonstrates validity of the inequality (4.12) for the
classical elastic-plastic solids. From Theorem 2 from the preceding section it
follows that the inequality (4.1) holds for those materials; this result is a special
case (for N = 1) of that obtained in [18] for the materials obeying (3.1) = (3.6)
with N arbitrary.

5.2. Two mechanisms of plastic deformation

Suppose now that the yield surface is not everywhere smooth and discuss
the second-order work for strain paths initiated at a peint P which lies on an
edge formed by intersection of two smooth yield-surface sections (Fig. 3).

F1G. 3. Four ranges of the incremental constitutive response of a material with two mechanisms of
plastic deformation.

Formation of such an edge corresponds to simultaneous activation of two
different mechanisms of plastic deformation, as e.g. in the double-slip model of
a single crystal discussed by ASARO [1]. The material response in vicinity of the
corner point P is assumed to obey the relations (3.1) + (3.6) with N = 2 under
the additional restriction that

(5.10) (gx1) is positive definite.

This ensures that the actual rate form of the constitutive law can be written
down as (4.2) with a single-valued function n(); the function n(*) need not
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be invertible unless the matrix of “hardening” coeflicients hgx;, = ggr —
— L, - M - Ag is positive definite [12, 11].

The strain-rate space is decomposed into four wedge-shaped sectors
corresponding to (7, = 0, %, = 0), (5, > 0,7, = 0), (5, = 0,3, > 0) or (5, >0,
9, > 0) as illustrated in the figure. The normals 1%, 15 to hyperplanes bounding
the “total loading” (7, > 0, y, > 0) sector at the point P generally do not
coincide with the yield-surface normals A,, X, but from the compatibility
conditions f, =0, f, =0 are found to be

(5.11) M=x —% §12/G22, Mo=2Ay— Ly §21/G11

By using (3.11) and applying a similar argument as in the Subsect. 5.1, it is
not difficult to show that within the class of paths P - R which terminate at
the actual (shifted) corner point on the yield surface, the second-order work is
path-independent and reads

1
G.12) AR =ZtReR=

) L, D=E-g @1

[\ A

note that symmetry and invertibility of (gg;) are essential in obtaining this
result. LYy, are the “total loading” moduli which coincide with the tangent
moduli along a deformation path associated with y, > 0, y, > 0.

For other paths # we can directly apply any of the formulae (3.11),
(3.13), (3.14), (3.19). For instance, within the class of paths P+ R —>Q
terminating on the yield-surface section corresponding to f; = 0 (Fig. 3), we
have the formula

g_lzzf% if f1 =0.

BN | —

e'I%-e +

N —

(5.14) dy0 =

By the theorem proved in Sect. 3, this expression is not smaller in value (to
second order) than the expression in (2.7) evaluated for direct paths which lead
to the same strain increment & (but to another value of f,). This can be seen
directly from (5.14) if &0 falls (in the limit as 0 —0) into the sector
corresponding to (y, >0, $, > 0) or to (, =0, y, = 0). Finally, it may be
remarked that the symmetry conditions (3.5) and (3.6) as well as the normality
rule implied by (3.3) are necessary for the second-order work to be always
minimized on direct paths. For, these conditions are necessary for existence of
a potential (4.3) which, in turn, is a consequence of (4.12) as follows from
a corollary of Theorem 2.
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Appendix

Proof of Theorem 2

Suppose first that (4.1) is satisfield for all segments of every piecewise
smooth path &. Then, as shown in [18], the constitutive rate equation (4.2)
admits a potential (4.3) and the inequality (4.4) holds at every regular point
P on &. Let a regular point P on a path & and the strain-rate é be fixed. (fé*)
and (fBi*) can then be found from (4.5) and from the homogeneous equation (4.2)
as functions of a so that 4,w® becomes a function of « and 0® only. From
(4.10), (4.5), (4.3), (4.12) and the chain rule of differentation, we obtain

(A1) (8/00)d 08 = (260 + ai®+(— &%) + B0+ &* + (—&%)-Ti(Be%) (07)>
=f @& - i+&) (07

From (A.1), (4.4) and B > 0 it follows that the second-order work 4,w® does
not decrease with increasing « when é and 0® are prescribed. This implies (4.12)
for any « > 0 on account of é* = ¢ and 4,w® = 4,0” at « = 0. Since the path
&, the point P and the strain-rate & can be chosen arbitrarily, we have shown
that (i) implies (ii) as stated in the theorem.

Conversely, suppose that (4.12) holds at every regular point P on & We
shall prove the following lemma: (4.3) is necessary for (4.12) to be valid for
f arbitrarily small. Let the point P and é* be fixed, and denote p = &°+ &*. Since
(4.5) implies that 1 =a? + B2 + 2a B p, it follows that o becomes a well-defined
function of B (for 8 < 1) such that « — 1 and dx/df — —p as B decreases to
zero. From (4.5) we can thus determine é as a function of f, so that 4,w® and
4,0" become, after substituting (4.2) with n = 1, functions of f and 7@” only.
From (4.9), (4.5), (4.3), (4.12) and the chain rule of differentiation, we obtain

0 | R— . . ’ . .
ap Azw”|p=o+ =3 (€1 (—pe® +é*) + t°'(-pe°+ &) (072

= (_pfl' + ( lij ékl o tu eu (DD)Z

provided the moduli LYy, = (27,,/0¢,)(€°) which satisly i} = Ll ép are
well-defined. Similarly, from (4.10) we obtain

5, 0, 30 s
Fﬁ ZwB |ﬁ o+ = ( ptu el] + tge:;)(OD)z'

Since for B =0 we have 4,0w® = 4,0, for (4.12) to be valid for arbitrarily
small f it is necessary that

d 1
Fﬁ(dzms — AZCL)D)\.B=0+ = i(fg — ‘ue“)e“ (OD)2
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This holds for arbitrary é* if and only if the expression vanishes identically, i.e.
i = LYy;é0. By the assumed right-hand continuity of the tangent moduli
along a path, the latter equality must be valid, by the limit transition, also at
a singular point on & provided the tangent moduli at such a singular point are
themselves well-defined. Since the path & is arbitrary, the right-hand rate of
strain at a singular point is also arbitrary; it follows that (4.12) implies

iu = Ly (€) ey

whenever the moduli Ly;;(é) are well-defined. As shown in [18], this does not
contradict (4.2) if and only if L;j, = Lgy; so that the incremental constitutive
law can be written down in a potential form (4.3). The lemma has been proved.

Now, let a regular point P be fixed simultaneously with the strain-rate é.
Existence of a potential (4.3) just proved implies, as shown above, validity of
the formula (A.1). From 4,0® = 4,0” at a = 0 and from (4.12) it follows that
the expression in (A.1) must be nonnegative at « = 0*; this is nothing else than
(4.4) with é* = é. Hence, (4.4) is valid at any regular point, and thus at almost
every point on &. By integrating (4.4) along a piecewise smooth path & we
obtain (4.1) since (4.4) can be violated cnly at a discrete set of singular points
on & which make no contribution to the integral. We have thus shown that (ii)
implies (i) which completes the proof of Theorem 2.
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