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Thermodynamic reference model for elastic-plastic solids 
undergoing phase transformations(*) 

B. RANIECKI (WARSZAWA) and 0. BRUHNS (BOCHUM) 

A THERMODYNAMICAL framework for modeling the behaviour of elastic-plastic metallic 
solids under an ongoing phase transformation is provided. The material element is 
treated as multiphase multicomponent system being in constrained equilibrium. Its 
internal state is described by a set of intrinsic inelastic strains, weight fractions of all 
phases and parameters representing their chemical composition. The simple relation 
between total overall strain and intrinsic elastic strain is adopted, and each individual 
phase is regarded as an open elastic-ideal plastic subsystem. It is shown that 
transformation-induced intrinsic plasticity and strain-induced transformations can be 
regarded as thermodynamic cross-effects. The specific free energy of multicomponent 
single phase solid is derived using the observation that specific heat at fixed strain above 
the Debye temperature is sensibly constant for most metallic solids. The ideal metallic 
element considered here reduces to a mixture of ,ideal solid solutions" in the limit when 
strain effects are neglected. The effect of initial extra stresses due to phase formation on 
transformation-induced total strain is discussed. 

Zbudowano og6lne ramy termodynamicznej teorii cial spr~.iystoplastycznych ulegaj~­
cych przemianom w stanie stalym. Element materialny traktowany jest jako wielo­
fazowy wieloskladnikowy uklad termodynamiczny znajdujll-CY si~ w stanie zahamowanej 
r6wnowagi w kazdej chwili procesu. Jego stan termodynamiczny opisany jest przez 
zbi6r wewn~trznych niespr~zystych odksztalcen plastycznych faz, zbi6r udzial6w wago­
wych faz oraz zbi6r parametr6w reprezentuj'lcych chwilowy sklad chemiczny po­
szczeg61nych faz. Przyj~to prosty zwi'lzek pomi~dzy calkowitym globalnym odk.sztal­
ceniem makroelementu i wewn~trznymi odksztalceniami spr~zystymi faz. Fazy traktuje 
si~ jako jednorodne otwarte poduklady spr~zysto-idealnie plastyczne. Pok.azano, ze tzw. 
plastycznosc przemian fazowych oraz odksztalceniowe przemiany fazowe moi:na trak:­
towac jako termodynamiczne efekty krzyzowe. Wyk.orzystuj'lc wniosk.i plyn'lce z ldasy­
cznej teorii Debye'a podano cz~Sciowo wyspecyfikowan'l postac funk.cji energii swobod­
nej ciala wielofazowego. Rozwazany tu uklad termodynamiczny reduk.uje si~ do 
mieszaniny tzw. ,idealnych roztwor6w stalych" w granicy, gdy efek.ty nap~:leti 
scinaj'lcych S'l pomini~te. W pracy przedyskutowano tak.Ze wplyw roznicy poc~t­
kowych napr~zen wewn~trznych (napr~zen usrednionych po obszarach poszczeg6lnych 
faz) na zjawisko plastycznosci przemian fazowych. 

IJOCTpDeHhl o6mue paMKH TepMO,lUIHaMU'lecKOH TeOpHH ynpyrO-IL'IaCTH'lecrHX Te.JI, 
ITO.LVIe)l(aiUHX <J>a30BhlM npespameHU&M B TBep.C(OM COCTO&HHH. MaTepHa...'IbHhlii. lJle­
MeHT TpaKTyeTC& KaK MHOfO$a3H)'lO MHOfOKOMITOHeHTHyiO TepMO.C(HHaMH'IOCICyiO 
CHCTeMy, HaXO.LJ.&lll)'lOC& B COCTO&HHH 3aTOpMO)I(eHHOf0 paBHOBecH& B Ka)I(JU>lii MQ­
MeHT rrpouecca. Ee TepMO.C(HHaMH'feaKOe COCTO&HHe OITHCbiBaeTC& MHO:lll(eCTBOM BHyr­
peHHHX HeynpyrHX lL'IaCTU'feCKHX .LJ.e<J>OpMaUHH <J>a3, MHO)l(eCTBOM BCCOBbiX )''laCTHH 
<J>a3, a TaK)l(e MHO)J(eCTBOM napaMeTpOB, rrpe.C(CTaBJI&IOlUHX MfHOBeHHbiH XHMH'IOCIIJlii 
COCT as OT .C(eJihHhlX <J>a3. IJ pHH&T 0 rrpoCT oe COOT HOllleHHe MC)l(.Lcy ITOJIHOH rm">6am.uoii 
.LJ.e<J>opMauueii MaKp03J'IeMeHTa H BH)'TpeHHHMH ynpyrHMH .LJ.e<i>OpMauHJIMH ~- <ll3.3LI 
TpaKT)'IOTC& KaK O.C(HOpO.C(Hhle OTKpbiTble yrrpyrO-H.C(eaJihHO UJiaCTH'ICCICHe DO.Q.CHc­
TeMbl. IlOKa.JaHO, 'iTO T.Ha3. ITJiaCTH'fHOCTh <J>a30BhlX rrpespameHHii H .LJ.eci»Op-

(•) Paper presented at Vllth French-Polish Symposium "Recent trends in mechanics of 
elasto-plastic materials", Radziejowice, 2-7.VII.1990. 
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344 B. RANIECKI AND 0. BRUHNS 

MaJ.UIOHHhle 4laJOBble npeBpallleHH.H MO'liCHO TpaKTOBaTb KaK TepMOJJ;HHaMIPieCKBe 
nepeKpeCTHhle 3<f$eKTbl. HcnoJih3Y.H cJie.U.CTBH.H BbiTeKalOlllHe H3 KJiaCCH'IecKOH 
TeOpHH ~e6a.H, npHBe,lJ,eH 'laCTH'IHO CDeUH<!»HIUIPOBaHHbiH BH,!J, <!»YHKJ.UIH CB060,!J,HOH 
:meprHH MHoro<!»aJHoro TeJia. PaccMaTpnaaeMa.H J.U.ech TepMOAHHaMH'Iectea.H cncTeMa 
CBOAJ{TC.H K CMeCH T.HaJ. ,H,lJ,ea..'lbHbiX TBep,li,biX paCTBOpOB" B npe,ll,eJie, KOr,ll,a 
npeHe6peraeTC.H 3<f$eKTaMH aanpJnteeHHii c.u.anra B pa6oTe o6cy'lK.u.eao TaK'llCe BJIH.H­
HHe pa3HHUbl Ha'laJihHbiX BHyTpeHHHX Hanp.H'lKeHHH (aanp.H'llCeHHH ycpe,ll,HeHHbiX DO 
06JiaCT.HX 4»a3) Ha .HBJieHHe D.'IaCTH'IHOCTH <!»aJOBbiX npeapameHHii. 

List of most important symbols -

M, M K.• M", M~ fixed total mass of macroelement, mass of component K, mass of phase 
ex and mass of component K in phase ~ 

V. V" volume of macroelement and volume of a phase ex, 
p, p" mean mass densities of the macroelement and the phase ex, 

c", v", x~ mass and volume fractions of the phase ex, and mass fraction of the 
component K in the phase ex, 

n, r number of phases and number of components, 
~". S" total free energy and total entropy of single-phase macro-element 

(phase ex), 
E: thermodynamic elastic strain tensor of homogeneous single-phase 

element (phase ex), 
T. T0 thermodynamic temperature and reference temperature, 
i.., a,. Kirchhoff and Cauchy's stress tensors of homogeneous single-phase 

element, 
J.l~, fi~ common and generalized chemical potentials of the component K in 

the phase ex, 

</>, u, s 

c •• c: 
L, L,. 

L0
, L~ 

f., f.,. 
M,M,. 

p, po 
P ... p~ 
a:,., <X,. 

a:, <X 
t, «r, t,., «r,. 

fi, ¢ s, E, T 

q, D, JV, J~O) 

b~, h,. 

specific internal energy and specific entropy of the phase ex at natural 
state, and entropy of mixing of single-phase ex, 
overall specific free energy, internal energy and entropy of multi phase 
multicomponent element, 
specific heats: overall and of the phase ex at constant elastic strain, 
isothermal elastic stiffnesses: overall and of the phase ex, 
isothermal elastic stiffnesses at T = T0, 

elastic thermal softening: overall and of the phase ex, 
isothermal elastic compliances: overall and of the phase ex, 
tensor of overall elastic thermal stresses and its value at a:: = 0, 
tensor of elastic therma:l stresses of the phase ex and its value at a:: = 0, 
tangent and secant (engineering) thermal expansion of the phase ex, 
overall tangent and engineering thermal expansion, 
Kirchoff and Cauchy's stress tensors: overall and intrinsic in the phase 
ex, 
local fields: mass density, specific free energy, specific entropy, strain 
and Cauchy's stress, 
overall strain and intrinsic inelastic strain in the phase ex, 
intrinsic plastic strain rate and transformation plasticity strain rate of 
the phase ~ 
overall: permanent strain, inelastic strain rate and transformation 
plasticity strain rate, 
rate of: heat supply, energy dissipation, actual and reversible work, 
metallography and inelastic internal parameters, 
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Notation 

1. Introduction 

F yield function of the phase ex, 
Ag, A.. Lagrange's multipliers. 

A·B --+ A 11 B11, 

AB --+ AIJu Bu or A 11 ~. 
A® B --+ A 1B1 (dyadic product), 

1 fourth order unit tensor (symmetric), 
A -l inverse of A, 

A transpose of A. 

345 

WHEN A SMALL PIECE of a metallic solid undergoes structural transformations 
it changes its physical properties, its shape and its volume. It is observed that 
volumetric changes are dominant if the external loads are not applied. 
However, the resulting deviatoric strains are of the same order when 
transformations proceed under applied stress, even if the stress is much smaller 
than the yield limit of the weakest phase. This distortional strain effect has been 
termed an overall ,transformation-induced plasticity" (TRIP). It has been 
confirmed experimentally by many researchers (see e.g., [ 1, 6, 25]) and it is 
associated with nucleation and growth transformations (e.g., austentite--+ pe­
arlite in steels) and athermal transformations (e.g., austenite--+ martensite). It is 
well known that volumetric and distortional strain effects accompanying phase 
transformations, together with ordinary thermal contraction (expansion) and 
plastic straining, are main and equally important sources of transient and 
residual stresses that occur in solid elements in the course of heat-treatment 
operations, welding, or chilling of castings. Therefore, during last 3 decades 
much attention has been devoted to modeling of the material behaviour under 
ongoing or finished phase transformations that are caused by variable 
thermo-mechanical loading (see e.g., [2, 12, 14, 15, 23, 29] and [30, 31]), and 
INOUE [26] has proposed to call this domain ,metallo-thermo-mechanics". 
The full set of constitutive equations of this domain consists of: 

kinetic equations for representative metallography parameters, including 
weight (or volume) fractions of structural constituents (kinetics laws of phase 
transformations): 

kinetic equations for hardening parameters; 
rate equations for total strain (or stress) containing the usual term of 

thermo-elasto-plasticity and a term representing strain effects associated with 
phase transformations; 

rate equation for temperature. 
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All equations are coupled since, e.g., stress influences the transformation 
kinetics, temperature depends on heat of phase formations and strain-rate 
depends on changes in the amount of phases ([20--21]). When plastic strains 
caused by mechanical means are large, this set of equations should also 
incorporate an effect known as ,strain-induced phase transformations" (see e.g., 
[ 16, 17, 24]). The modeling is additionally impeded by the fact that the 
constitutive equations are supposed to be valid for a large temperature range 
(e.g. from austenitizing temperature down to room temperature). 

In this paper we present the thermodynamical foundations for metallo­
-thermomechanics. An ,ideal" metallic element is regarded as closed mul­
tiphase, multicomponent system being in constrained equilibrium at every 
instant during thermomechanical loading. Individual phases are treated as 
open elastic-ideal plastic subsystems (Sect. 3). Since we believe that differences 
between overall stresses and mean stresses acting over the colony of all 
individual phases are instrumental in explanation of TRIP, we suppose that the 
internal state of a macro-element can be described by the set of intrinsic elastic 
strains - each representing the mean elastic strain of some phase, and the set 
of dependent metallography parameters: weight fractions of all phases and 
parameters representing their instantaneous chemical compositions (which can 
vary during diffusive phase transformation). The reference mode] is charac­
terized by a simple linear relation between the overall strain and intrinsic 
elastic phase strains (Sect. 3.2). The possible way of a generalization that does 
not include this simplification is also discussed. In Sect. 2 the specific free 
energy function of an ideal single phase elastic-perfectly plastic metallic <;lcment 
is derived under the assumption that specific heat at constant elastic strains is 
independent of elastic strain and temperature what is acceptable at a tem­
perature range above the usual Debye temperature. The present work 
complemets works of GIUSTI [19] and INOUE and WANG [21] where uniform 
stress assumptions were adopted and possible variations of the chemical 
composition of individual phases were neglected. Finally, in Subsect. 3.8, the 
effect of initial extra-stress due to phase formation on transformation induced 
total strain is discussed. 

2. Thermostatics of elastic-ideal-plastic single phase, homogeneous element 

2.1. State equations 

i) Single-phase multicomponcnt element of the total mass Ar~ and volume 
ya we shall treat as homogeneous, chemically inert, open thermodynamical 
system ([3, 7] and [13]). Following the concepts of classical thermodynamics 
we shall single out the following variables of constrained equilibrium: 
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a) Extensive variables 

(2.1) 

(2.2) 

4' 11 - the total free energy of the single-phase metallic element of 
mass Ma., 

Mx - masses of the individual components constituting the single 
phase (K = 1, ... , r), 

E: - six variables representing the tensor of thermodynamic 
elastic strain, 

where £! is te elastic strain of the phase a. defmed beneath. 

b) Intensive variables 

(2.3) 

Jlx - chemical potential of the component K, 
T - thermodynamic temperature, and 

Kirchhoff stress tensor. Here Ci11 is the usual Cauchy stress tensor and p11 is the 
density of single-phase solid. 

The Greek index ct indicates the property of a phase. Since in this section we 
deal with single phase solid, it simply replaces ,the name" of a phase (it is not 
a free index). The elastic strain tensor £: is assumed to be infmitesimal and it is 
defined operationally in the same manner as in the classical theory of plasticity: 
suppose that at generic instant t of homogeneous process of constrained 
equilibrium (configuration K(t) - Fig. 1) all forces acting on macroelement 

r --, 
I I 

J K0 (t) / 
I I ,_ ___ _J 

FIG. 1. 
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are released and its temperature is reduced to certain reference temperature T0 , 

keeping the masses Mic of all components fixed. At the termination of this 
conceptual process an element will be in a new, so-called ,natural state" of 
constrained equilibrium, and it will adopt the new configuration K 0 (t). The 
symmetric tensor variable that describe the shape of the element in con­
figuration K with respect to its shape in K 0 is called the elastic strain tensor 
(Fig. 1). 

ii) Here we neglect the free energy locked in the alloy element due to 
possible development of micro-stresses, defects creation etc., which (at small 
strains) is normally a small fraction of the total plastic work done on the 
element. This is one of the main simplifications that is employed when using 
so-called elastic-ideal plastic models. In other words, we assume that the 
difference of free energy at two different natural states is merely due to the 
formation of additional mass of a single phase solid (different Mic). Thus, the 
total free energy of a single phase solid is assumed to be the function of T, 
E: and Mic (K = l, ... ,r) alone 

(2.4) 

Accordingly we stipulate the Gibb's fundamental equation of state m the 
form 

r 

(2.5) dlPa. = - Sa.dT + ta. ·dE:+ I JlicdMic, 
K=l 

where Sa. is the total entropy of a metallic element. The corresponding ther­
mal equations of state are 

(2.6) 

and Jlic represents the change in the total free energy when the mass Mic of 
component K is dissolved in phase a of the solid under constant E: and T. 

Since 4J a.' E:, Mic are the extensive properties, the function 4J a. must be 
homogeneous function of order one with respect to E~ and Mic. Hence 

r 

4Ja. = ta.. E~ + I JlK Mic, 
K=l 

(2.7) 
r 

Sa. dT+ E:. dta. + L Mic dJ1ic = 0. 
K=l 

Equations (2.7)1, and (2.7h are called Euler relation and Gibbs-Duhem 
relation, respectively (see e.g., [3]), and the latter implies that there exists at 
least one scalar relationship between intensive quantities T, ta. and 11! what is 
the direct consequence of the homogeneity property of the function <P a.· 
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iii) Introduce the specific free energy cf>rz of single phase metallic element, 
cf>« = tfJjMrz. Dividing (2.7) by Mrz one obtains 

(2.8) 
r 

SZ. dT + £: · dtrz + I XK dJLK = 0, 
K=l 

which are the Euler and Gibbs-Duhem relations written in the specific free 
energy representation, respectively. Likewise, calculating total differential dcf>rz 
(Eq. (2.8)1) and using (2.8h one arrives at the Gibb's fundamental equation 
expressed in terms of specific free energy 

r 

(2.9) dcf>rz = - SZ.dT + tcz · d£! + I Jl.K dxK. 
K=l 

Here SZ. = SZ/Mrz and xi.:= MK/Mrz are specific entropy and mass fraction of the 
component K (K = l. .. ,r) in single phase alloy, respectively, so that 

r 

(2.10) I xi:= 1. 
K=l 

Suppose that the specific free energy cf>rz has been experimentally determined as 
an arbitrary function (i.e., not necessary homogeneous) of variables T, £: and 
xi:. Then the total free energy <Prz is also specified due to simple substitution 

(2.11) 

It is a homogeneous function of order one with respect to E!, Mi.:, on account 
(of 2.1). The inverse procedure is obvious because of the homogeneity prop~rty 
of the function 4J rz• 

In what follows we shall be concerned with the specific free energy 
representation. Because x'k are not independent and they have to satisfy the 
constraint relation (2.10), we shall use the technique of Lagrange's multipliers 
to derive thermal equations of state. From Eq. (2.9) it follows that 

(2.12) 

and 

(2.13) 
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where the expression for the Lagrange's multiplier J1.a. is calculated from (2.8) 1. 

Equation (2.13) enables to calculate the chemical potentials J.J.x when intensive 
variables fx are prescribed. This connection can also be found by direct 
calculation of partial derivatives of Eq. (2.11) with respect to M'K. Since 

r 

L J.J.a. dx'K = 0 the work of the thermodynamical force J1.a. does not contribute 
K= l 
to the free energy. The affinities associated with fK and J1.x are, of course, the 
same since J1.x - J.J.i = fK - fj for K # J. 

2.2. The free energy of single phase solid at temperature range above the Debye temperature 

i) Above the Debye temperature the specific heat at constant volume for 
many metal components are practically constant. It is, therefore, plausible to 
stipulate that in this temperature range the specific heat c~ at constant elastic 
strain of single phase solid will be the function of the composition x'K alone. 

(2.14) K= 1, ... ,r. 

Since 

T = T0 and E! = 0 

according to the definitions of specific heat and the tensor of elastic strain, the 
free energy function must have the form 

(2.16) ¢a.= c~ (xx) (T- T0)- c~ (xx) Tin ; - (T- T0 ) s~ (E!, xA:) 
0 

+ ¢~ (E:, xA:)- Tta. (xx) + J a. (xA:), 

where 

(2.17) ~=0, for E! = 0. 

The specific entropy is of the form 

(2.18) 

Thus, the term ~ represents the entropy change due to elastic straining of 
single-phase ex at temperature T0 , whereas fa. (xi:) describes the entropy at 
T= T0 = 0 and E! = 0 (i.e., at natural state) which also includes so-called 
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entropy of mixing. The function c/>~ (t::, xi:) describes the increase of the specific 
free energy due to elastic straining of a single phase alloy at T= T0 • It can thus 
be termed its elastic potential energy at T= TQ. The function i1 rz (xx) and the 
term i1 rz (xi:) - T0 §rz (xi.:) represent the specific Internal energy and specific free 
energy of a solid at natural state (T = T0 , trz = 0, t:: = 0), respectively. 

Denote by ~rz the tensor of elastic thermal stresses expressed in units of 
work per unit of mass per ° K (energetic elastic thermal stresses), and by Lrz the 
tensor of isothermal elastic stiffness expressed in terms of units of work per unit 
of mass (energetic elastic stiffness) 

(2.19) 

It is seen that Eq. (2.14) implies that elastic stiffness tensor of a solid may be at 
most linear function of the temperature, whereas the elastic thermal stresses are 
independent of the temperature and are merely the functions of t:! and the 
instantaneous chemical composition of single-phase metallic element. 

The elastic behaviour of most of metallic solids may be approximated with 
rather good accuracy by linear relationship between trz and t:! at every T. 
Taking this for granted, the tensor Lrz may be presented in the form 

(2.20) 

Comparing Eqs. (2.19h and (2.20) and using Eq. (2.19) 1 we get 

(2.21) a2 .~ L- ,//. 1 e -L e RO ( rz) e at::2 = rz --+ ·'t = 2 Erz • rz Erz + l'rz X K • Erz, 

(2.22) 

on account of Eq. (2.17). Hence 

(2.23) 

where~~ is the thermal stress at£:= 0. Thus, we arrive at the conclusion that 
due to Eq. (2.20) and (2.14), the tensor of elastic thermal stresses may be at most 
linear function of £:. 

The specific free energy function now takes the final form 

(2.24) l/>rz ::: ~ t:! · Lrz t:! - (T- T0 ) ~~ (xi:) · t:! + c~ (xx) (T- T0) 

- c~ (xi:) T In ;; - T Jrz (xi:) + Jrz (xi:). 
0 
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On account of Eq. (2.24), the two basic thermal equations of state are 

(2.25) 

The two assumptions, (2.14) and linearity of til-+ E: relation, are sufficient to 
specify the basic thermodynamical potential in terms of its natural variables 
with accuracy to two arbitrary functions of the chemical composition of 
single-phase solid element. However, the main importance of the above 
discussion for the engineering practice is as follows: 

In the analysis of stresses occuring in single phase alloy during chilling 
process associated with large temperature drop (above the Debye temperature), 
one can assume definite temperature-dependence of all thermoelastic properties 
what considerably reduces the number of constants to be known when 
formulating the boundary-value problem. Since the thermal expansion tensor is 
more frequently used than p, we shall now discuss the implications of the two 
main assumptions with reference to this quantity. 

Denote by Mil (T, xi:) the tensor of isothermal elastic compliances of the 
single-phase solid 

(2.26) 

where 1 is the fourth-rank unit tensor, and write the inverse Hooke's law in the 
form, 

(2.27) 

where 

(2.28) 

is so-called secant (engineering) thermal expansion tensor defined in the chosen 
natural state. It is seen that temperature-dependence of !XIl is the same as the 
temperature-dependence of inverse tensor to Lll, which itself is linear function 
of T. In thermodynamics one employs the tangent thermal expansion tensor tXIl 

defined by 

(2.29) 

Combining Eqs. (2.23), (2.27) and (2.29) one can easily express tXIl in terms of til, 
T and xi:, 
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(2.30) 

where C~~ is the thermal expansion tensor at stress-free state. It is seen that the 
main two assumptions imply at most linear dependence of tangent thermal 
expansion tensor on the stresses. Equations (2.28) and (2.30) imply again the 
definite temperature-dependence of C~~. Using (2.29) one can express pain terms 
of tcx, T and xi:, 

(2.31) 

For further reference we shall also derive the internal energy u« = cp« + Ts«, 

u« = ~ex (xi:) + u~ (T, e:, xi:), 
(2.32) 

This function is obviously not a thermodynamical potential since the natural 
variables for u« are i", e: and xi:. Note that u« (T, e:, xi:) i~ independent of 
entropy of mixing. 

ii) We shall now briefly discuss the invariance property of the presented 
equations when the the reference temperature T0 is changed into 

(2.33) 

Denote by "prime" all quantities associated with new reference temperature T'0• 

Relations between elastic strains defined with reference to different tempera­
tures are 

(2.34) e:' = £! - Ae!, Ae: = A TMcx (T0, xi:) p~ = A Ta.cx (T0, xi:). 

All thermodynamic properties (i.e., those quantities that are derivatives of free 
energy function with respect to its natural variables) are, of course, invariant 
under trensformation (2.33) 

(2.35) L~ = L(X) M;, = Mcx, i:cx = Lex, P~ = f'cx, ~ = Clcx. 

The transformations rules for other quantities are 

P~' = L~ M (T0, xi:), Lo, _ Lo _ ATT 
ex - ex .u .Liz' 

(2.36) t-'(x~) = !•+ C:ln (~) + .f,(Lit!,xB. J'~(~) = J'. + r4 (T0 , Lit!,~~ 
~ = Ma (T0, xi:) L~ iXcx. 
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To prove the last relation note that Eq. (2.36)1 is valid for arbitrary couple T0 

and T0• It can also be shown that the difference between the thermal strains 
measured with respect to different reference temperature is constant, 

(T- T0)~ex- (T- To)~~= JE!. 

Moreover, the free energy, being itself invariant, preserves its mathematical form, 
i.e., unprimed quantities occurring in (2.24) can be replaced by the primed one. 

If T 0 is the temperature at which the phase is formed then ~ and ;ex can be 
presented in the form ex 

(2.37) 

r 

~ex= L xKU~, 
K=1 

r 

S•ex -- s*ex1 + s*exo, *ex ~ ex *ex ( ex) S 1 = £..- XK S K XJ, 
K=1 

r 

:~ = L xK~K' 
K=1 

• • where s ~ = 0 whenever .xK = 1 (xj = 0 for J =:/:, K), and xx s ~ -+ 0 when xx -+ 0 
(K = 1, ... ,r). 

The term ;~ represents entropy of mixing, [13], i.e., the entropy associated 
with the formation of single phase alloy, which most commonly is the solid 
solution, and u~ and ~K are constants. The entropy of mixing has a well­
-supported basis in the statistical thermodynamics. For the phases that are 
"nonideal solutions" it is customary to stipulate the function l1c in the form, [ 4], 

(2.38) 

where R is the universal gas constant, rK = 1/mK, mK is the molar mass of the 
component K, and Yx is the activity coefficient of the component K in the single 
phase ex. The latter coefficient may be a function of composition xx such that 
Yx = 1, whenever .xK = 1. It can be deduced from the equilibrium diagram for 
the particular alloy. 

3. Thermodynamics of elastic-plastic multicomponent multiphase metallic element 

3.1. Constraint equations. Mean strain and mean stress 

i) Consider a multiphase, multicomponent (r-components) metallic element 
(of total fixed mass M) that at generic instant t during thermo-mechanical 
process of deformation, associated with the internal diffusion of some com­
ponents and phase changes, possesses n phases and occupies the volume V(t) 
(Fig. 2). The element is assumed to be enclosed by a diathermal wall 
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impermeable to the matter. Its instantaneous temperature is T(t), whereas its 
chemical composition CK = MK/M (MK - total mass of the component 
K; K = 1, ... ,r) is fixed. However, the individual phases are treated as open 
subsystems to the flow of the matter, and their chemical compositions 
xK = MK (t)/Ma. (t) are varying in time. Here MK (t) (ex = 1, ... , n, K = 1, ... , r) is the 
instantaneous mass of the component K in the phase ex and Ma.(t) the total 

r 

mass of this phase Ma. = I MK. We employ the following notation: the Greek 
K=1 

indices indicate the property or quantity that refer to the phase. When the 
specific number of this index needs to be prescribed, it will be enclosed by 
brackets. Likewise, the indices denoted by Latin letters will indicate the 
property of the component. However, the concrete value of this index will not 
be placed into brackets. For example, the symbol x~2 > denotes the weight 
fraction of the component no. 1 in the phase no. 2. 

Introduce the symbols p(t), pa.(t), va.(t) and ca.(t) to denote mean mass density 
of the element, mean mass density of the phase ex, volume, and mass fractions of 
the phase ex, respectively, i.e., p = M/V, pa. = Ma.(t)/V(t), va. = V'(t)/V(t) and 
ca.= Ma./M, where va.(t) is the instantaneous total volume occupied by the 
phase ex. 

Note that 

n r 

I ca.(t) xK (t) = CK, I xK (t) = 1, 
a=1 K=l 

(3.1) 
n r 

I (xKdca. + ca.dxK) = 0, I dxK = 0, 
a=1 K=1 

r n 

and since I CK = 1, from Eq. (3.1) 1 it follows that I ca.= 1. 
K=l a= 1 
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Hence in the set(~, cj containing n(r + 1) variables there are only r(n- 1) 
variables independent. Equations (3.1)1 constitute the constraints for the 
variables that represent the chemical composition of individual phases and the 
weight fractions of the phases in the heterogeneous metallic element. 

ii) Let p (y, t) be the local mass density distribution within the element, 
where y is the local position vector. From the defrnition of the mean mass 
density it follows that 

(3.2) p = .t p" v•, p = V~t) v{/ (y,t) dV, p" = ~(t) ~ {JdV. 

Likewise, the mean specific volume of macro-element and mean specific 
volumes of phase colonies are interrelated by 

II 

(3.3) 1/p = L c«fp«. 
«= 1 

The connection between v«, c« and ratios of mean mass densities of all phases 
follows from 

(3.4) 

and Eq. (3.3) or (3.2)1. 

Introduce the matrix 

(3.5) 
pa. 

la.p = 1 - P' ex, fJ = l, ... ,n. 
p 

For some solids it is plausible to assume that all lap are small quantities. In this 
case, the ratio p''l p can be evaluated from 

(3.6) 

which is accurate to the first order in lpa.· We note in passing that, to the same 
accuracy, lpa is skew-symmetric (lap= - lpa) and has at most n- 1 independent 
elements since lap= la1 - lp1 + O(lla.pl 2

) for fixed y. As a consequence 

i.e., in the first approximation ca. can be identified with va.. 
iii) Let U(y,t) and 2Eii = (oU Joyi + oU/oyi) denote the local fields of 

displacements and infrnitesimal strains, respectively, and let T be the instan-
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taneous local field of Cauchy stresses that satisfy the equilibrium equations. 
The volume average strain (overall strain) is defined as 

(3.7) 

where vis the outward unit vector normal to the surface A of the macroelement 
(Fig. 2), and £ex are the volume mean strains in the phases a= 1, ... ,n. 

(3.8) 

The mass average strain f(t) is 

(3.9) 

where 

(3.1 0) 
1 

fa= Afx(t) }a p(y,t) E(y,t)dV 

is the mass mean strain in the phase ct... Note that when the upper bounds 
aa ~ 11 - p/ P11 1 estimating the deviation of the local mass density p(y, t) (y E VU:) 
from the mean values p 11 (ct.. = 1, ... ,n) are small quantities, then 

(3.11) 

and, if additionally l11p are small, then also £ ~ f. 
The overall Kirchhoff stress is defined as mass average of local Kirchhoff 

stress i.e., 

(3.12) 
1 1 

t = 
2

Af J (t®y + y®t) dA = M J T(y,t) dV 
A Y(t) 

so that 

(3.13) 

where t = Tv is the vector of surface tractions and tcx is mass mean Kirchhoff 
stress in the phase ex. It can easily be shown that volume averages of Cauchy 
stresses a and acx are related to t and tcx by 

n 

(3.14) pt = a, pcxtcx = aa (a = L v11crJ. 
a= 1 
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The overall specific free energy and specific entropy are defined as mass 
averages of the corresponding local fields ~ (y, t) and s (y, t) 

(3.15) 

where 

are mean specific free energy and entropy of the phase a, respectively. 

3.2. Assemblage relations. Kinematical reference model 

i) Restrict attention to a slow uniform straining process during which at the 
outer surface of an alloy element the displacement U is prescribed in the form 

T 
U = t 0 (t) y, where t 0 = t 0 is independent of the surface particle, and heat 
exchange is sufficiently slow such that the local temperature distribution is 
close to its average value at every moment. According to Eq. (3.7)1 , the 
prescribed function £0 (t) is equal to the mean strain in the element£ (t) = E

0 (t). 
The local field equations should include the diffussion process of some 
components, formation of new phases, including the martensitic-type phases, 
plasticity, elasticity, as well as they should take into account the discontinuities 
of the thermo-mechanical properties at the movable phase boundaries. The 
solution to such high-complexity problem has not been found, so far. 
Therefore, at this stage of development of the theory, it is necessary to adopt 
certain model assumptions. These concern the relations that can possibly exist 
between mean strains Ell in the individual phases, mean total strain E and 
temperature difference T- T0 where T0 is the initial temperature. We suppose 
that a set of small numbers Yfllp can be distinguished that are all of the order of 
the differences between the mean thermal expansion coefficients of individual 
phases, so that the temperature dependence of Ell can be expressed in terms of 
YfllfJ (T- T0) which are also small quantities. Then, since E is small, one can 
expand such unknown relation into the Taylor series with respect to E and 
Yfll/J (T- T0). 

(3.16) 

where All, Bll and residual strain E~1 are all independent of E and temperature. 
Neglecting the last term occurring in (3.16), they will be referred to as "assem-
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blage relations". The assemblage tensors Acx, Bcx and £~1 may depend on 
metallography parameters; we denote by bK, such as xK, ccx, mean grain size of 
the colony of phases (1. (in terms of which one can express the mean grain size of 
all phases), and parameters representing the shape and distributions of grains 
(e.g., continuity parameters, mean free distances between the discontinous 
phases etc.) as discussed by TOMOTA and TAMURA [18]. The tensor £~1 may 
also depend on microshears in all active slip systems of all phases, and on all 
phase microstrains that can occur at all phase boundaries. The micro-shears 
and phase microstrains will probably have negligible influence on Acx and Bcx 
since these two tensors modify significantly only overall thermoelastic proper­
ties of an element. 

Since Eq. (3.16) must be consistent with Eq. (3.7h, the tensors Acx, Bcx and 
£~1 should satisfy the conditions: 

n 

(3.17) L Vcx£~1 = 0, 
cx=1 

where volume fractions vex are functions of mass fractions of all phases given by 
Eq. (3.4). In particular 

(3.18) 

ii) The partial elastic strain E~ in the phase (1. can be imagined as a mean 
elastic strain that could be measured after a thought process of cutting of 
all particles of the phase colony 'Y. out from a multiphase element and reduc­
ing their temperature to T0 • We shall define the second residual strain £~2 

by 

(3.19) ~e = ~ _ ~r2 
Lex Lex Lex. 

The tensor £~2 represents plastic microshears in the slip systems of the colony of 
the phase (1. alone, and it also includes the permanent microstrains that can 
occur at the boundaries of (1.-phase colony when small amount of the parent 
phase is transformed into the 'Y.-phase. 

Combirting Eqs. (3.16) and (3.19), t:he assemblage relations can be expressed 
in terms of £~ 

(3.20) 

where E~r = £~2 - £~1 is the measure of the intrinsic inelastic strain in the phase 
a due to the thermo-mechanical interactions with other phases and due to 
phase transformations. 
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Note that E:r doesn't need to satisfy the conditions (3.17h. 
iii) It is believed that the assemblage tensors Aa and Ba could be determined 

in the course of systematic experimental program. One can distinguish the 
"kinematical reference model" for which 

(3.21) 

holds, and all constitutive functions are determined on the basis of available 
experimental data concerning the properties of individual phases. The possible 
difference between predictions of the kinematical reference model and ex­
perimental results obtained for multiphase alloy could subsequently be used to 
construct the higher priority model for which assumption (3.21) does not hold. 
Note that Eqs. (3.21) does not imply E = Ea. 

In what follows we shall be concerned only with the kinematical reference 
model. The possible generalization of this model that can also include other 
specified metallography parameters, e.g., mean grain size of the colony of the 
phase ex, may be performed along the same line of reasoning, provided that the 
evolution law for such parameters are experimentally established. 

3.3. Free energy and thermoelasticity tensors 

i) According to Eq. (3.15)1 and the assumption (3.21), the overall specific 
free energy of a multiphase element can be regarded as a function of T, E, 

metallography internal parameters bx = {xi:, ca}, and inelasticity internal 
parameters, which we denote by ha = {E:r} (ex= 1, .. ,n, K = 1, ... ,r) 

n 

(3.22) ¢ (T, E, bx, hJ = L cP ¢P (T, Ep, x~), 
P=1 

where ¢P has already been specified by Eq. (2.24), and E! is the simple function 
of E and E:r given by Eq. (3.21)3. More generally, one could add to ¢ so called 
configurational free energy that depends on ca. Here, however this energy will 
be neglected. We sha.II now use the general thermodynamic framework 
developed by RICE [8], HILL and RICE [9], and RICE [10] with slight 
modifications following from the fact that bx are dependent variables that have 
to satisfy constraint relations (3.1). It is convenient to use the technique of 
Lagrange's multipliers and to employ the function ~ defined by 

which assumes the same values as¢ since the last two terms vanish, on account 
of Eq. (3.1). Here A a and AK are appropriate Lagrange multipliers. All variables 
will now be mathematically treated as independent. 

Bearing in mind (3.13) 1 and (3.15h we adopt the following Gibbs 
fundamental equation of state 
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(3.24) 
n n n,r 

dW0
) = t. dr.- I Cata. dr.~f + I rdca +I ]K.dxK., 

a= 1 a= 1 a,K 

where, dW0
> represents the increment of work in the conceptual reversible 

process, at each stage of which an element is in a state of constrained 
equilibrium, s is the specific entropy of an element, and tis an Qverall (average) 
Kirchhoff stress tensor. Note again that d~ = d(/>, whenever state variable 
xA: and ca satisfy the constraint relations (3.1) 1. 

The thermal equations of state following from (3.24) are 

(3.25) 

a acjJa 
-s = -

iJT' 
iJcjJ n a 

t =-a = I c ta, 
f. a= 1 

1a a~ ,~.a ~ a 
J = « = .., + ~ Ax Xx, 

iJc K=l 

1a ol/J ara Aa A a 
j K = iJ a = C J K + + xC ' 

Xx 

Here ta is an intrinsic KirchhofT stress in the phase rJ.. Likewise, ~ is an intrinsic 
specific entropy of the phase rJ.. For the considered kinematical reference model 
ta and sa have the special form (2.25), where r.! = f. - r.~r, and 

(3.26) 

ii) Since c/Ja is independent of ca, the kinematical reference model predicts 
the Voigt estimates for overall thermo-elastic properties of the multiphase 
metallic element: 

the overall specific heat cr (cf. Eqs. (2.14), (2.15)) 

(3.27) OS ~ IX IX(~) 
c, = Tar= Cl~1 c c, .A.x, 

the tensor of overall (energetic) isothermal elastic stiffness (cf. Eqs. (2.19), 
(2.20)) 

(3.28) 
n n 

Lo -- '\' caLao (xax), L- '\' aL- ( a) ~ = ~ C a Xx' 
a= 1 a=1 
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(3.24) 
n n n,r 

dW0
) = t. dr.- I Cata. dr.~f + I rdca +I ]K.dxK., 

a= 1 a= 1 a,K 

where, dW0
> represents the increment of work in the conceptual reversible 

process, at each stage of which an element is in a state of constrained 
equilibrium, s is the specific entropy of an element, and tis an overall (average) 
Kirchhoff stress tensor. Note again that d~ = d(/>, whenever state variable 
xA: and ca satisfy the constraint relations (3.1) 1. 

The thermal equations of state following from (3.24) are 

(3.25) 

1a a~ ,~.a ~ a 
J = « = .., + ~ Ax Xx, 

OC K=1 

1a oc/J ara Aa A a 
) K = ~ a = C J K + + KC ' 

uXx 

Here ta is an intrinsic KirchhofT stress in the phase rx.. Likewise, ~ is an intrinsic 
specific entropy of the phase rx.. For the considered kinematical reference model 
ta and sa have the special form (2.25), where r.! =f. - r.~r, and 

(3.26) 

ii) Since f/Ja is independent of ca, the kinematical reference model predicts 
the Voigt estimates for overall thermo-elastic properties of the multiphase 
metallic element: 

the overall specific heat c£ (cf. Eqs. (2.14), (2.15)) 

(3.27) OS ~ IX IX(~) 
c, = Tar= ~~~1 c c, .JI.x, 

the tensor of overall (energetic) isothermal elastic stiffness (cf. Eqs. (2.19), 
(2.20)) 

(3.28) 
n n 

Lo -- '\' caLao (xax), L- '\' aL- ( a) ~ = ~ C a Xx' 
a= 1 a=1 
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3.4. Rate form of the thermal equations of state 

The rate form of the two basic thermal equations of internal state of 
individual phases can be obtained by calculating the time derivative of Eq. 
(2.25), or directly by using the definitions of La, c~ and ~' 

(3.33) 

where 

1-1 
! 

3-1 
! 

r 

Ts-a. = TPa · (t- t~r) + c~t + T I sA:xA:, 

i 
1-2 

i 
2-2 

K=l 

i 
3-2 

a- a~ of!: 
S K = OXx = - 0 T. 

The individual terms represent the following intrinsic effects: 

1 - 1 __. intrinisc elasticity, 
2 - 1 __. elastic intrinsic thermal stresses, 
3- 1 __. inelastic intrinsic stresses due to combined plastic and internal 

matter flows, 
1 - 2 __. heat of elastic strain, 
2- 2 __. heat capacity, 
3- 2 __. reversible intrinsic heat of single phase formation. 

The corresponding rate equation for multiphase solid may be written in the 
similar form 

n 

(3.34) i = I (cata + caiJ = u- ~ T- iPr. 
a= 1 

The first two terms represent the usual overall thermo-elastic stress in­
crement, whereas the last term- the overall stress increment due to the plastic 
flow and all solid-solid phase transformations that take place within the 
element, 

n n,r 

(3.35) iPr = I (caLat~r- catJ- I car!: .X!:. 
o:=l a,K 
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Likewise, 

n n r 

(3.36) T s = el!t + T I e~~P~~ · (£ - t~r) + T I [S'c~~ + e~~ I sx ~!:]. 
11=1 11=1 K=l 

The interpretation of individual terms is analogous to Eq. (3.33). 
One can also introduce the notion of overall inelastic strain rate £Pr in 

analogous way as it is done in thermo-plasticity, [8, 22], (cf. Eq. (3.22)) 

(3.37) ..f f "'f ~ 0£ (T, t, bA:. hJ b" ~ 0£ h. 
~p = Mt = i..J II K + i..J - II 

tz,K obx tz= 1 oh~~ 
n n r 

= L e"M(L~~t~r)- L [e"~~Mt11 + e11 L MtA:xA:J 
tz=l tz=l K=l 

so that 

(3.38) 

Here M = L -t is the overall (energetic) isothermal elastic compliance tensor, 
and (X= MP is the overall tangent thermal expansion tensor. 

Again £Pf results from both plastic flow and phase transformations. The last 
term occuring in Eq. (3.37) is of the order o elastic strains. It constitutes a part 
of overall "transformation plasticity strain rate". Note, that £Pr =I- t~r. 

3.5. Unconstrained equilibrium with respect to the internal Dow of matter 

We shall now examine the properties of the discussed kinematical reference 
model at the unconstrained equilibrium with respect to the internal flow of 
matter at T =canst and £! = canst (tX = 1, ... ,n). 

At equilibrium ] 11 and ]A: must all vanish 

(3.39) 

Using the above set of n (r + 1) Eqs. (3.25h,4 and (3.1), it is not difficult to 
express the equilibrium values of Lagrange's multipliers Ax and A11 in terms of 
equilibrium compositions xA: of all phases and equilibrium amounts c11 of the 
phases 

r 

(3.40) A~~= e~~ [c/>~~- L JKxA:], 
K=l 

r 

(3.41) -Ax = .fK + c/>
11 

- I fj xj = ,u!: + t 11 • £!, 
J=l 
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where£!=£- E~r and J.lx is the usual chemical potential defmed by Eq. (2.13). 
The set of n (r + 1) Eqs. (3.40) - (3.41) is, of course, equivalent to Eq. (3.39). 
The mathematical aspect that we shall discuss here is the following: suppose 
that £- E~r and T are fixed. We check if the set of algebraic equations 
consisting of n (r + 1) + n + r Eq s. (3.40) - (3.41) and (3.1) 1 enables to find 
equilibrium values of n (r + 1) + n + r unknown A«, AK, xK. and c«. We do not 
employ special symbols for equilibrium values, believing that this will not 
confuse the issue. 

Let us note that the for the considered kinematical reference model AK is 
independent of c« since q,cx has this property, and that the set of n · r Eqs. (3.41) 
may be replaced by the following equivalent set of n · r equations 

n 

(3.42) - AK · n = I (pic + tcx • £!), 
cx=l 

The Eqs. (3.43) constitute generalization of the well known equilibrium 
conditions ([7, 13]). At unconstrained equilibrium the generalized chemical 
potential ilK = J.l.x + tcx • £! of every component must be the same in each phase. 

Note (cf. Eq. (2.5)) that ilK represents the change in the total free energy 
when the mass MK. of component K is dissolved in the phase ex under constant 
£! and T. 

To find equilibrium composition xK. and equilibrium amounts of phases 
c« one can now use the set of n · r + n Eqs. (3.43) and (3.1), since AK and A« can 
subsequently be calculated from Eqs. (3.42) and (3.40), i.e. the initial set of 
equations have been solved with respect to AK and A«. 

Because of the fact that the subset of (n - 1) r Eqs. (3.43) is independent of 
c«, we have now to consider separately two cases: 

i) v = n- r ~ 0. When the number of phases is not greater than the nun1ber 
of components, the unconstrained equilibrium chemical compositions of aH 
phases xK. and the equilibrium weight fractions c« of the phases, may 
unambiguously be determined from the set of Eqs. (3.43) and (3.1). Thus, the 
so-called "lever rule" applied frequently in metallurgy may be meaningful only 
in this case. 

ii) v = n- r > 0. In this case, the subset of(n -1)r + n Eqs. (3.1)2 and (3.43), 
containing only the variables xK. (c« are not present there), has more equations 
than unknown variables. Consequently, the physically meaningful equilibrium 
compositions xK. of the phases can be found only when v-functional relation­
ships between Eqs. (3.43) exist. In effect, equilibrium compositions of the 
phases can be determined if there exist v relationship between T and tcx (or 
£-£~f) 
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(L) 

(3.44) 1J' (T, 'tcx) = 0, L= 1, ... , v. 

Supposing that the intensive state variables satisfy Eqs. (3.44), the equilibrium 
compositions ~ can be found, and one can try to determine the amount of 
phases c! from the remaining equations. However, we have now r-independent 
Eq. (3.1)1 for n > r unknowns c!. Hence, when the number of phases is greater 
than the number of components, the equilibrium amount of phases can not be 
determined uniquely-equilibrium amounts of v phases can be arbitrary, in­
dependently of the chemical composition of an alloy element. 

The above conclusions constitute the generalization of the well-known 
Duhem theorem of classical thermodynamics [13]. It should be once more 
emphasized, that these conclusions may not be valid if any of the assamblage 
tensors discussed in Sect. 3.2 would be different from Eq. (3.21) and be 
c!-dependent. In that case, it is quite probable, that equilibrium conditions will 
be sufficient to determine all n(r + 1) variables ~' c!. 

When an alloy element contains a phase that does not satisfy equilibrium 
conditions, it can be said to be in metastable or constrained equilibrium with 
respect to the flow of matter. The typical examples are diffusionless martensitic 
phase for which xl = Cx (ex = 1- parent phase, ex = 2- martensite, K = 1, ... ,r). 

Let us fmally note, that the number of ftxed parameters .::, T, is greater than 
the number of phases. Therefore, any generalization of the well-known Gibb's 
phase rule must lead to the conclusion that the number of solid phases in 
a metallic element is unlimited. 

3.6. Rate of dWlipation. Equation for temperature 

Consider the frrst law of thermodynamics that, for the alloy element under 
constrained equilibrium, can be written as follows: 

(3.45) u = 4 + w, w = 't • i:, 

where 4 is the rate of heat supply per unit of mass by an ideal surrounding. 
Taking into account that cjJ = u - r.~, and combining Eqs. (3.45) with Eq. (3.24), 
one obtains the following form for the entropy production in the course of 
process connecting the constrained equilibrium states, 

(3.46) 4 1 • • drfO) s - - = - D = (W - ", )/T, 
T T 

where D is the rate of energy dissipation that can not be negative 

(3.47) D = .tJ·~. · t~' -/"c .. - vt.JK~ l;;. o 
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on account of the second law of thermodynamics. Here we have again 
introduced the undetermined Lagrange's multipliers A« and Ax in order that 
the corresponding affinities - f« and - f'K could be regarded as independent. 
Their connections to t~>« is given by Eqs. (3.25h,4 • The multipliers A« and Ax 
can be regarded as dissipationless thermodynamical forces since 

11, r 

(3.48) L [Ax(~CZ + .i~c«) +A«~]= 0 
«,X 

on account of rate constraint relations (cf. Eq. (3.lh) 
Combining Eqs. (3.46)1 - (3.41) with Eq. (3.36) one obtains the rate equation 

for the temperature. It can be written in the form 

(3.49) 

where 

" 11 _ n,r 

(3.50) Qe = - T L c«p(l · (£- tr), Q1 = - T[ L szez + Ic«s~~J, 
«=1 «=1 ~X 

" " (3.51) Jj = ~ c«t . £Pr .. -l.J (I (1, -b1 =I [c(lf/>(1 + I en .xu. 
«=1 « X=1 

Here Qe and -Q1 represent the overall reversible heat of internal elastic straini'lg 
of ~U phases and reversible heat of formations of the phases, respectively, 
whereas D.. is the overall mechanical work dissipation, and D 1 is the 
irreversible heat of formation of the phases. 

Combining Q1 and D 1 one gets the net rate of latent heat of phase 
formation 

(3.52) 

where 

(3.53) 

" n1 + Q1 =- I (u01c01 + c~~~,, 
«=1 

r ~ « r 11 _ ~ uU ~ 
U = i.J -AX 

X=1 axx 
and u« is defmed by Eq. (2.32). 

It is perhaps worthwhile to emphasize, that the heat of entropy of mixing 
does not enter Eq. (3.49) since u« is independent of I« (cf. Eq. (2.32)). It 
exemplifies the fact that any configurational entropy (i.e., free energy term that 
is the linear function of temperature with coefficients depending only on 
metallography parameters) has no influence on the temperature changes of the 
system. 
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3.7. Equations of internal flows - kinetic relations 

i) Equations for entropy productions (3.46) - (3.47) immediately suggest 
a reasonable choice of the set irreversible forces 

(3.54) 

where the affinities fa. and fx (defJlled by Eq. (3.25h,3) depend on the 
undetermined Lagrange multipliers that have to be calculated with the aid of 
the rate constraint relations (3.1h. The affinities JK can also be expressed in 
terms of generalized chemical potentials (see Sect. 3.5) 

(3.55) 

where ie are other dissipationless Lagrange multipliers. 
The thermodynamic rates associated with the irreversible forces (3.54) are 

(3.56) • - { ·pf •a. •a.} y- Ea., C, XK • 

To complete the set of all constitutive equations that would enable to describe 
the evolution of all constrained state variables, when E(t) and T(t) are 
prescribed, one needs 6 · n + n (r + 1) relationships between irreversible forces 
(3.54) and thermodynamical rates (3.56). They will be referred to as the kinetic 
relations. 

The kinetic relations couple the kinetic equations of formal theory of phase 
transformations (cf., e.g., [5]) with the rate equations of the intrinsic plastic 
flow. The cross-effects will be termed "transformation induced intrinsic 
plasticity" and "strain induced transformations", where the latter can usually 
be detected under large plastic deformations of some alloys. The available 
experimental data concern mainly simple uniaxial stress states and still much of 
experimental work has to be done (at the border of mechanics and metallog­
raphy) to deduce meaningful kinetic relations. Here we shall try provisionally 
to formulate them in a general "mixed" form to encompass preliminary 
proposals of some researches ([11, 16, 17, 24, 30, 31]). The formulation 
concerns only monotone phase transformations of the diffusional type. 

The generalized internal plastic flow rule at the ~resence of solid phase 
transformations can be written in the form 

(3.57) 

where t: represents the usual plastic flow within the whole colony of the phase 
ex. In the first instant this flow will be regarded to be rate-independent and 
ideal-plastic. In general t: could depend on all intrinsic stresses tp 

(fJ = 1, ... ex ... n) present in all phases. To simplify the issue we assume that the 
yield condition of the phase ex depends merely on intrinsic stress ta. acting 
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in this phase. Thus, we neglect all possible couplings between rate-independent 
ideal plastic flows in different phases. Let 

(3.58) F {t11, st) = 1, st = { T, c11 , xx}, f1 = 1, ... ,a, ... ,n, K = 1, ... ,r 

be the yield condition of the phase a, where the yield function F can be scaled 
so that it is homogeneous of order one, and F (0, st) < 1. Here we have 
restricted the dependence of Fa. on state variables to the independent variables 
indicated in the "sf'. Whenever F < 1, the local plastic strain must vanish 
t: = 0, and when ta. and "sf' are such that F = 1, the local ideal plastic flow 
rule has the classical form 

(3.59) 

where the symbol () denotes the Macauley function, (z) = z when z > 0 and 
(z) = 0 otherwise. The undetermined multiplier A.a. must be non-negative to 
satisfy Eq. (3.47) when all ca.= 0 and x~ = 0 ({1 = 1, ... ,a, ... ,n). It should be 
determined with the aid of local consistency relation pa. = 0. 

The second tensor i::f occurring in Eq. (3.57) describes thermodynamic cross 
effect-transformation induced intrinsic plasticity. To encompass the frequent 
practice we shall express it in terms of c-a. and ix (instead of/a. and]K) assuming, 
in the first instant, that the relationship is linear 

(3.60) i:tp- ~ [(PeP+ ~ (K xPJ a. - £.... a. L... a.p K • 
P=l K=l 

In general I~ and la.) can be functions of all state variables. 
The kinetic equations of internal flow of matter within the multiphase 

element we adopt in the form 

(3.61) 

t' = J
1 

[ xp]P + xt (XpK Jll + J.PxaJJ • FP J. 

X~= JJCt x~u~)+ X~p]P + ).PX1· Fpl 
The first two terms occurring in Eqs. (3.61) represent kinetic law of phase 
transformations. The last terms describe the possible other thermodyna­
mic effect-strain induced phase transformations. The phenomenological func­
tions occurring in Eqs. (3.61) should be deduced from available experin1ental 
data concerning these phenomena what is still a labour task that requires 
separate treatment. To this end the results of so-called formal theory 
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of phase transformations (CHRISTIAN [5]) may be used. Since the strain­
-induced phase transformations are usually detected at large overall plastic 
deformations, we shall further assume that ~P ~ 0, X"/ = 0. 

ii) For fixed state one can, at least formally, determine ca. and Xj from Eqs. 
(3.61) and £~ from Eq. (3.60). Suppose that overall strain rate £ and 
temperature rate tare prescribed. To ftnd the explicit relation between£~ and 
(£, t) substitute Eqs. (3.32)1, (3.59) into the local consistency equation pa. = 0 
(F' = 1) and solve the obtained equation with respect to A.a.. The eventual result 
is (F' = 1) 

(3.62) Ha. A.a. = (P ·La.£ + (F]. - F' · PJ t- P · La.t:! 
r n 

+ ~ (ti:· P + Fi:) xi:+ ~ rpcP), 
K=l P=l 

where 

(3.63) 

Using Eq. (3.62) one can at each step calculate £P, £Pt, ta., q and overall 
stress-rate t through Eqs. (3.59), (3.57), (3.33), (3.49) and (3.34), respectively. 
The set of rate equations for all variables is completed. When q instead of 
t is prescribed or when additionally strain-induced plasticity effect should 
be included, (Xa.p 'I= 0 or/and Xj.P 'I= 0), the procedure of calculation of A.a. must 
be repeated in the similar manner as it was done above. However, the 
application of the presented thermodynamical reference model requires careful 
estimation of the initial value of intrinsic stress, say t81, that develop in the new 
phase (say ex = (i)) at the very beginning of its formation, (say at time t = t? 
when c<i) ~ 0) from the parent phase ex= (i- 1). This stress does not need to 
coincide neither with the instantaneous overall stress t(tf) nor with the 
instantaneous intrinsic stress of the parent phase t(l-l) (tf). Equivalently one 
can try to estimate the initial "phase distortion" of the new phase. Its 
connection to tri) is 

(3.64) £m(t?)- [M(li1 

c«La.£r)J _ 0 
a.=l t-t, 

= M(tf)t(t?)- M(l)(tf)t81 + [T(tf)- T0] [ci(t?)- Ci<i)(tf)J 

on account of Eq. (3.32). The left-hand side of Eq. (3.64) represents the extra 
distortion of the new phase measured with respect to inelastic strain of the 
macro-element at early stage of nucleation of the phase. For ideal-plastic phases 
the initial value of usual plastic strain in the phase (z) may be assumed to be 
ne~igible (£(.1(tf) = 0). Any choice of t81 or extra stress, ..dt<l) = t(i-l)(tf)- t81 
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constitutes significant hypothesis which can be verified, for instance, by 
trial and error when comparing the experimental data with the theoretical 
one. 

3.8. Oo overall trarwformatioo induced plasticity 

A part of overall inelastic strain rate i"r which represents the overall 
transformation plasticity effect may be defmed as (see Eq. (3.37)) 

where iP is the virtual thermo-plastic strain rate that would have occurred had 
the phase transformation process been instantaneously stopped. The peculiari­
ty of i 1P is that its deviatoric part being negligible fort = 0 becomes significant 
for some non-zero stresses that are much smaller than the yield limit of weakest 
phase (cf., e.g., GAUTIER et al. [25]). Therefore, the spherical part of i 1P is 
sometimes termed "metallurgical" strain rate ([30, 31] to emphasize the fact 
that this part is not representative for experimentally observed transformation 
plasticity effect. 

Consider 3-axial resemblance of typical uniaxial experimental program 
concerning isothermal (T= T0 ) decomposition of parent phase (a= 1) into new 
harder phase (a= 2) under constant overall stress t = t• (so-called static 
conditions) applied before the beginning of the transformation, say at time 
t < t~, where t~ is the time when transformation starts. Assume that yield 
functions p<«> are independent of c« and xR:, and that all phases have common 
elastic moduli. Moreover, applied stress t* is small such that p<t> (t.) < 1 
and F< 2> (t.) < 1. Let the initial intrinsic stress in the new phase be 
t<2> (t~) = t• - Lit., what implies that the initial phase distortion (cf. Eq. (3.64)) 
is 

(3.65) 

since eff> vanishes for t < t~. After completion of the phase transformation, 
say at time t2, c<2> = 1, and elastic strain of the new phase e(2> (t2) must be 
the same as elastic strain of the parent phase e(1> (t~) = Mt• before trans­
formation because of the elastic moduli of both phases coincide. Hence, the 
total strain "amplitude" L1E1p, total heat absorbed by an environment L1 Q, 
and the total energy dissipation L1D due to phase transformation are, 
respectively, 
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t~ 

Lb:tp = £ (t2) - Mt * = MAt* + At~~>; At~~> = J i:~~> dt, 

(3.66) AQ = t• · Attp - t• · (~<2> - ~u>) T0 + t1u>- 11<2>, 
AD= t• · AEtp - (cp<;>- cp~>) ~ 0 

t~ 

provided that no plastic flow occurs in the new phase (i:f2> = 0). Here, 
cp~> = t1a.- T0 Ja. are the free energies of both phases (tx = 1, 2) at T= T0 and 
t(a.> = 0, and the meaning of other symbols are explained in Sect. 2 (cf. Eq. 
(2.37)). 

It is seen that free energy of macro-element can only decrease when t• = 0, 
and the total work expanded by t* i= 0 during phase transformation need not 
be positive since, in general, cp~> > cp<;>. The possible plastic flow in the parent 
phase has no influence on final total strain AEtp· However, it affects Etp - c<2> 
curve at time t < t2. To discuss this effect assume that M and i::f (tx = 1,2) are 
isotropic tensors, and pU> is independent of hydrostatic pressure. Denote by 
"prime" the deviatoric parts of appropriate tensors, and note that Eqs. (3.32) 
and (3.65) imply tu> = t~ + c<2> At~ as long as the weaker phase is deformed 
elastically. Thus, the plastic flow in the parent phase occurs provided that 
pU> (t~ + At~) > 1. This can be interpreted as "lowering" of the current yield 
point of metallic element in certain directions. Some experimental observations 
([30, 31]) suggest that At;P is colinear with t~. Therefore, it is expedient to 
assume linear relation between t~ and At~ 

where t7 can depend on the initial pressure in the new phase. In this case the 
critical amount of new phase c~> for which the plastic flow in the parent phase 
starts is 

and, it can be shown that the plastic straining is proportional, such that 
relation between t;P and c<2> is 

t' = _!!_ m(c<2>) t' tp 2G *' 

m c<2>) = o ' 
{ 

c<2> when c<2> < c <2> 
( ' 1 - c0 <

2> (1 - c<2>)j c<2> otherwise, 

where G is the elastic shear modulus. 
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This qualitatively agrees with that what is observed during uniaxial tension 
tests. The normalized function m for different c0 is shown in Fig. 3. The thick 
solid line shown in this figure represent the experimental data collected by 
LEBLOND et al. [30, 31] for the bainitic transformation in A.533 steel. The 
discrepancy seems to be acceptable for Cb2> ~ 0.15. Using GREENWO­

OD- JOHNSON formula [6] for total strain amplitude, the parameter rJ can be 
expressed in terms of yield limit Y at simple tension of weaker phase (parent 
phase) and the volume dilatation L1J1V associated with the phase transition, 
Yf = 5GL1J1(2 YV). For austenite-pearlite transformation L1l1V = 3.6 · to- 3 

(GAUTIER et al., 1987). Taking G/Y = 600, one gets rJ = 5.4. Hence, plastic flow 
in austenite occurs when F * > 0.16. The average stress deviator in the pearlite 
colony at the early stage of transition is 't(2> (t~) = - 4.4 't~. At the termination 
of the phase transition it relaxes to 't~. 

0.4 0.6 0.8 1.0 c(2) 

FIG. 3. 

4. Discussion 

Application of method of thermodynamics when modelling the behaviour 
of elastic-plastic alloys under ongoing solid-solid phase transformations 
requires use of a concept that links the external state variable (overall strain or 
overall stress) with intrinsic deformation-type variables or intrinsic force-type 
variables. Six simple assemblage relations (3.21) adopted in this paper connect 
overall strain with intrinsic elastic strains of individual phases. This enables to 
estimate the evolution of mean stresses acting over the colony of individual 
phases - the factor that seems instrumental in explanation of TRIP. However, 
the instantaneous intrinsic stress levels depend on the initial stress acting in the 
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new phase at the beginning of its formation. The required impicit relation, between 
extra stress L1t(i) = t(i- 1) (t?)- t? (cf. Sect. 3.7) in the new phase, and intrinsic stress 
in parent phase t(i- 1) (t?), at the beginning of nucleation of new phase, constitutes 
inherent part pf the presented reference model, and it does not belong to the group 
of thermodynamical equations of internal flows. In fact, this relation should 
represent specific micro-physical mechanism of formation of new phase in stressed 
environment The evolution of the extra stress when phase transformation 
proceeds depend much on the specific form of kinetic laws (3.62) for t~, and when 
no plastic flow in the parent and new phases occur and group of phenomenologi­
cal tensors lp is skewsymmetric (lp = - ~) then extra-stress is kept approximately 
constant provided that 1!11 = 0. This specific case should be carefully investigated in 
further studies. Tensors lp can possibly depend also on t(l- 1> (tf). It is shown in this 
paper that even if effect of transformation induced intrinsic plasticity is neglected, 
the presented model predicts the accumulation of total strain in a way that 
qualitatively agrees with observations made during uniaxial experiments. It is 
perhaps worthwhile to emphasize that the presented framework includes in the 
limit, when elastic strains in all phases vanish, thermodynamics of solid solutions 
that constitutes the theoretical background for constructions of well-known 
equilibrium diagrams. It is belived that the presented general framework will help 
to systematize research in metallo-thermo-mechanics. Implication of inequality 
(3.47) should be investigated after specification of all constitutive tensors in every 
individual situation. The important factors that should be accounted for in further 
generalization of the model are: 

Strain hardening. This requires, among others, specifications of the stored 
internal energy u: and stored entropy !0 in terms of the appropriate internal 
variables describing the hardening. The constitutive equations of mechanical 
behavior that account for the isotropic hardening and accord with the present 
theoretical framework under assumption (3.6) and ~P = 0, may be found in 
RANIECKI [23]. 

Strain-tate effects. Here one can attempt to cast recent achievements in 
formulation of unified creep-plasticity models (cf., e.g., KRIEG et al. [28], 
KORHONEN et al. [27]). 

Other metallographic parameters, e.g., mean grain sizes of individual 
phases. 

Thermodynamics of continuous solids whose "physical point" is elementary 
system discussed here, can be developed by using appropriate balance laws and 
the classical principle of local state. 
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