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Analysis of the fundamental equations describing thermoplastic 
flow process in solid body(*) 

P. PERZYNA and A. DRABIK (WARSZAWA) 

THE AIM of this paper is to investigate the influence of thermomechanical couplings and 
thermal softening effects on shear band localization during a dynamic deformation 
process. The structure of the system of equations describing the behaviour of a material 
is analyzed. This analysis gives the answer to the question what are the conditions for 
the material functions, thanks to which we obtain different type of the system of 
equations- hyperbolic or parabolic. Two thermodynamic descriptions of the material 
were compared: the first, by a material derivative, the second, by the Lie derivative. It 
was shown that covariance terms which appear in the equations after assuming the 
invariance under arbitrary spatial diffeomorphism, have a significant influence on the 
hyperbolicity conditions. Thus we must be very careful in choosing a proper description 
of the thermomechanical behaviour of a material. 

Celem pracy jest zbadanie wplywu termomechanicznych sprz~i:en i efekt6w termicznego 
oslabienia na lokalizacj~ wzdlui: pasm scinania podczas procesu dynamicznych defor­
macji. Zanalizowano struktur~ ukladu r6wnan opisuj~cych zachowanie si~ materialu. 
Analiza ta daje odpowiedz na pytanie jakie s~ warunki dla funkcji materialowych, dzi~ki 
kt6rym otrzymujemy r6ine typy ukladu r6wnail - hiperboliczny b~dz paraboliczny. 
Por6wnano dwa termodynamiczne opisy materialu, pierwszy za pomoc~ pochodnej 
materialnej, drugi za pomoc~ pochodnej Liego. Wykazano, i:e czlony kowariantne 
pojawiaj~ce si~ w r6wnaniach po zalozeniu niezmienniczoSci procesu wzgl~dem dowol­
nego dyfeomorfizmu maj~ istotny wplyw na warunek hiperbolicznosci ukladu r6wnan. 
Tak wi~c, sprawa wyboru wlasciwego opisu termomechanicznego zachowania si~ 
materialu jest niezmiernie wai:na. 

IJ,e.'lbiO pa60Tbl HB."UieTCH HCC.1eJ].OBaHHe BJ1HHHHH TepMOMeXaHH'feCKHX COnpSDKeHHH 
H J<f>cpeKTOB TepMH'fCCKOfO OC.1a6.1eHHH Ha JlOKa.'lH3al..lHIO BJJ.0•1h n0.10C CBHfa BO BpeMH 
npOI..lCCCa Jl.HHaMH'feCKHX JJ.e<JlopMal..lHH. AHa.'lH3HpyeTCH CTpyKTypa CHCTeMbl ypaB­
HCHHH, OUHCbiBaiOI.lmX nOBeJ].eHHe MaTepHa.1a. 3TOT aHa.'lH3 J].aCT OTBeT Ha BOnpOC, 
KaKHMH HB.1.IUOTCH yC.10BHH JIOKaJIH3al..lHH J].JUI MaTepuaJlbHbiX <JlyHKI..lHH, 6.'lafOJ].apH 
KOTOpbiM nony'faeM pa3H0f0 THna CHCTeMbl ypaBHeHHH - runep60.'lH'fCCKHll H.'IH 
napa6o~1H'fCCKHii. Tio.1y'fCHbl JJ..Ba TepMOJJ.HHaMH'fCCKHX OUHCaHHH MaTepa.'la, nepsoe 
npH nOMOIUH MaTepua.1bHOll npOH3BOJ].HOH, BTOpoe rrpH nOMOIUH npOH3BOJ].HOH JIH. 
TioKa3aHO, 'fTO KOBapuaHTHble 'f.'leHbl, nOHBJIHIOIUHeCH B ypaBHCHHHX noc.1e npHfUITHH 
HHBapHaHTHOCTH no OTHOlllCHHIO K npOH3B0•1hHOMY JJ.H<Jl<JleOMOp<JlH3My, HMeiOT 
cymecTBeHHoe B~1HHHHe Ha yc.1oBue runep6oJIH'fHOCTH cucreMbl ypaBHeHHi'L 11 TaK, 
BOnpOC Bb160pa npaBH.'lbHOfO TepMOMeXaHH'fCCKOfO OUHCaHHH nOBeJ].CHHH MaTepHaJ1a 
.SJ.B.;"UICTC.SJ. HCH3MCpHO Ba)I(HbiM. 

1. Introduction 

ExPERIMENTAL investigations of different types of materials have shown that in 
dynamic processes thermal effects play an important role in the initiation and 

(•) Paper presented at VII th French-Polish Symposium ,Recent trends in mechanics of 
elasto-plastic materials", Radziejowice, 2-7.VII, 1990. 
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formation of shear band localization. From the theoretical point of view, the 
criteria of localization can be found by analyzing the type of equations 
describing the thermomechnical process. These equations are formulated 
within the framework of the thermodynamic theory with internal state 
variables. The displacement and temperature fields are coupled and the 
transport of heat takes place with finite velocity. By introducing the Lie 
derivative to define all objective rates of stress, heat · Hux, temperature and 
velocity (MARSDEN and HuGHES [7]), the invariance under arbitrary spatial 
diffeomorphism was obtained. 

The main objective of this paper is to investigate the propagation of 
discontinuities of stress and temperature in an elastic-pla~tic material under 
dynamic loading. We derived the conditions under which the uncoupled 
mechanical and thermal wa vcs propagate and we also determined their 
velocities in two cases: first, in the material description, then, the same 
procedure was applied for the case of the Lie derivative. 

Constitutive equations for an elastic-plastic material in the thermodynamic 
theory were proposed by PERZYNA [9]. They are very general and they describe 
many different additional effects such as thermal softening, isotropic and 
kinematic hardening, the micro-damage process. 

This paper provides the first step and introduction for future investigations 
in this subject; this is why it contains some simplifications. Our analysis is 
restricted to the one-dimensional case and not all of the additional phenomena 
are taken into account. In the future we would like to extend the presented 
methods to other states and analyze the influence of such effects as porosity, 
kinematic hardening, etc. 

2. General description of thermomechanical couplings 

The thermomechanical state of the material particle for a given time t is 
described by the constitutive functions which characterize the mechanical and 
thermal properties of the material. 

We assume that this state is represented by a set of variables as fol­
lows: 

(2.2) s = (e, F, 9, Jl), 

where F denote the deformation gradient, e- Eulerian strain tensor, 9- the 
absolute temperature and Jl- a set of internal state variables which describe all 
dissipation effects occurring during the thermal process, the plastic flow 
phenomenon, isotropic and kinematic hardening and porosity. 

The response of the material for an intrinsic state is described by the 
following set of variables: 
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(2.2) { t, "', YJ, q}, 

where t denotes the Kirchhoff stress tensor, l/1 is the free energy function, '1 is 
the entropy and q the heat flux. It is postulated that there exists the free energy 
function and it has the form 

A 

(2.3) l/1 = l/1 (s). 

Thus stress, entropy and heat flux are determined by the free energy function 
which is a consequence of the second law of thermodynamics: 

A 

t = 't (e, F, 9, Jl) = p0 oel/JA(e, F, 9, Jl), 
'7 = '7 (e, F, 9, Jl) = - o9 l/1 (e,. F, 9, Jl), 
q = q (e, F, 9, Jl) = - p9op. l/1 (e, F, 9, Jl), 

q 

where /lq - thermal internal state variables. 
Let us discuss the general equations describing the thermomechanical 

process for an elastic-plastic solid, (see DuszEK, PERZYNA [3]) 
1. The energy balance equation which includes thermomechanical coup­

lings and dissipation effects 

(2.5) 

where 

iJ2~ . 
cit = - 9 092 specific heat, 

X = - (~~ - 9 :;tl' )m(s) describes dissipation effects, 

q> =f(t)- x, f(·) = l2, 
x =temperature dependent work-hardening-softening parameter, 
p __ 1_ oq> 

- 2J'Tz ot:' 

n = -
1
- oq> describes thermal softening of the material caused by the 

2J'Tz 09 increasing temperature, 
1 ox . h . I I . d r . H = h1 -

0 
, eP IS t e eqUiva ent p ashe e1ormat1on, 

2-y 312 eP 
1 

d = 2: [grad v +(grad v)T]. 

The cross-coupling effects are described in Eq. (2.5) by two terms. The first 
one, which has not dissipative character, evaluates the temperature dependence 
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of the stress tensor and . is proportional to atj a9: d. The second term, 
2 A 

proportional to :IJtfl m (s), is implied by the temperature denpendence of the 

generalized force conjugates to the internal state vector Jl. This one is very 
dissipative in its nature. 

2. The constitutive equation for the heat flux q 

(2.6) T4q + q = -kgrad9. 

where T denotes relaxation time, k is the coefficient of thermal conductivity 
(positive constant), 4q is the Lie derivative of the vector q with respect to the 
velocity field v and 

(2.7) 

Equation (2.6) provides the generalization for non-equilibrium states of the 
well-known Fourier law. It was postulated by CATTANEO [2] and MAXWELL [8] 
to correct unacceptable properties of the Fourier theory of diffusion of heat 
(Eq. (2.6) is called the Maxwell-Cattaneo relation). The classical theory rests 
upon the hypothesis that the flux of heat is proportional to the gradient of 
temperature. Thus the temperature distribution in the body is governed by 
a parabolic partial differential equation and the consequence of it is that the 
heat impulse given in the surface of the body is felt immediately in all parts of 
the body, no matter how distant they are from the source. The Max­
well-Cattaneo modification of Fourier's law changes the type of the heat 
conduction equation to hyperbolic and the finite speeds of waves are possible. 
It can be seen that for T= 0 it reduces to the classical theory. 

3. Constitutive equation for the Kirchhoff stress tensor: 

(2.8) 4t = !i' · d - z9, 

where 

(2.9) 

2 A 

!i'1h = - p0 :e~ the coefficient of thermal expansion, 

Lvt - Lie derivative of a tensor field t with respect to the velocity field v. 
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4. Equation of motion 

(2.10) . . (1 ) Po pv = dtv J -r and J = p. 

Generally, the presented system of equations consists of 13 equations with 13 
unknown variables, but to simplifty the calculations we analyze the 
one-dimensional case so the number of equations and unknown functions is 
reduced to four. Of course, this is not a sufficient analysis, but there are some 
cases when the three-dimensional state can be approximated by the results 
derived from the one-dimensional theory. 

3. Analysis of wave propagation - Material derivative formulation 

First, an analysis of the hiperbolicity of the system of Eqs. (2.5), (2.6), (2.8), 
(2.10) was made in the case when the covariance terms are neglected (that 
means for a material description). Thus the complete system of partial 
differential equations governing the one-dimensional thermomechanical pro­
cess is as follows: 

. oq ov 
Att + A28- ox+ AJ ox= 0, 

o9 
Tq + k ox + q = 0, 

(3.1) . ov 
i + z9 - !£ox = 0, 

or . 
PoV - ox - rC = 0, 

where 

px_P P'lY· p or C--op 
At = -H , A2 = -H - peP, A3 = - -

Po o9' ox' 

the Lagrangian derivative is denoted by a dot. 
To derive the conditions for the hyperbolicity of Eqs. (3.1), we have to find 

four real characteristic speeds and corresponding characteristic vectors which 
are linearly independent. In order to evaluate the characteristic values A., we 
make the following formal change of operators: 

(3.2) 

where .1 is a linear differential operator. 

http://rcin.org.pl



292 P. PERZYNA AND A. DRABIK 

After the transformation of the system (3.1), we obtain four algebraic 
equations with four unknowns (L1r, L1q, L19, L1v): 

A 1A. L1r + A 2 A. L19 + L1q- A 3L1v = 0, 

(3.3) 

k 1 
A. L1q -- L19 - - q = 0 

T T ' 
A. L1 r + A. z L19 + !L' L1 v = 0, 

p0 A. L1v + L1r + rC = 0. 

This system has non-zero solutions in the case when the determinant of the 
matrix formed by the coefficients standing with the unknowns is equal to zero. 
Its development gives the following characteristic polynomial of the fourth 
degree: 

The general solution of this equation has the form 

~JPo -A3z-Az!!' ± J( Az!!' +A3z- ~Po y- 4k: (A 1z- A 2) p~t 
(3.5Ui= + , 

- 2(A 1z - Az) Po 

where i = 1, 2, 3, 4, and for a given characteristic value correspond the following 
signs in the above relation A.1 = ( +, + ), A. 2 = ( +,- ), A. 3 = ( -, + ), l 3 = ( -,- ). 

The conditions for the existence of real solution are as follows: 

If these two conditions are fulfilled, we obtain four real characteristic 
speeds A. and the relating characteristic vectors which are linearly independent, so 
the system of equations is hyperbolic. In the elastic-plastic material governed by 
these equations there are four waves with real and symmetric velocities. 

Let us discuss some particular cases of the characteristic speeds. 
CASE 1 
There is no thermomechanical coupling in the material 

(3.7) 12- _ k_ 
AT-

TpcP' 
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(3.8) 
12 - !f' 
Am-

Po 

In this case we obtain two symmetric thermal waves and two symmetric 
mechanical waves with the speeds A.r and A.m which depend on the material 
constants. It is worth noting that when the relaxation time, which influences 
the speed of the thermal wave, is equal to zero (what means that the 
Maxwell-Cattaneo relation reduces to Fourier's law), the velocity of the 
propagation of thermal disturbance is infinite: 

(3.9) T--+ o~ A.}--+ oo. 

When the material has no thermomechanical coupling and is a non-conductor, 
and thus the coefficient of thermal conductivity k vanishes, then the speed of 
the thermal wave is equal to zero (A.r = 0). In this case there is only a pure 
mechanical wave and the thermal wave does not exist, but there is a static 
curve (i.e., a point in a one-dimensional case) of thermal jump. 

CAsE 2 (adiabatic process) 

We consider the adiabatic process with thermomechanical coupling. For 
this case there are only two symmetric coupled thermomechanical waves which 
propagate with the speed (called adiabatic): 

2 A2!f' + A3z 
Aa = . 

Po(A2- Atz) 
(3.10) 

4. Analysis of wave propagation - Lie derivative formulation 

In the next step we analyze the system of equations with the covariance 
terms which appear after applying the Lie derivative. This derivative enables to 
obtain the in variance of the equations under arbitrary spatial diffeomorphism. 

The one-dimensional form of the equations describing the thermomech­
anical process is the following: 

. . oq ov 
A 1 -r + A 2 9 - ~- + A3 -;- = 0, 

uX uX 

ov k a9 1 
4 - q ax + rox + r q = o, 

(4.1) . ov 
i + z9- (2-r + !f') ox= 0, 

. o-r C 0 Pon- - - 't = · ox 
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In order to fmd characteristic speeds, characteristic vectors and to evaluate 
the conditions for their existence, we apply the same procedure as previously. 
Without going into details, we present the characteristic polynomial for the 
characteristic value 1: 

The solution of this algebraic equation was found by the perturbation 
procedure with the assumption that the process considered is close to the 
adiabatic state (q = 0). The general solution of Eq. (4.2) has the form 

(4.3) 

where e = q, 1? is the solution of Eq. (4.2) in the case of the adiabatic process 
(e = q = 0) and the form of it is as follows: 

(4.4) 

A= [ A3z + A2(2t + 2')- Po~ J- 4Po ~(2t + .st')(A,z- A2). 

The term 1~ is obtained from the ratio of the polynomials G(1) and p' (1) taken 
at the point 1f where 

P(l) = (A,z-A2)p0 l 4 + [ AJz+A2(2t +2')- k~ } 2 + (2t +2')~. 
<4·5) G (1) = z1. 

The fmal form of the A.~ is as follows: 

(4.6) 

Using the expressions for 1? and 1~, we obtain the general solution of the 
perturbed characteristic polynomial: 

(4.7) 
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From the relation (4.7), it can be seen how the covariance terms in the system of 
equations influence the characteristic speeds. We obtained the additional term 
which depends on the heat flux q. The analysis of the obtained characteristic 
speeds made in the same cases as previously leads to the following results. 

CASE 1 
The thermomechanical couplings are neglected so there are still two 

symmetric mechanical waves and two non-symmetric thermal waves which 
propagate with the speeds 

(4.8) 

(4.9) 

For the relaxation time vanishing to 0, the velocity of thermal wave tends to 
infinity. 

CASE 2 (adiabatic process) 
The thermomechanical couplings exist but the conductivity of the material 

is equal to zero, so there are two symmetric coupled thermomechanical waves 
which propagate with the speeds 

(4.10) 
A.;= A3z + A 2 (2r + 2). 

Po(Az- Atz) 

5. Final comments 

We have compared two descriptions of the thermodynamic behaviour of 
a plastic material. The first one is concerned with the case when all objective 
rates of stress, temperature, heat flux and velocity are defined by the material 
derivative. In the second description it is replaced by the Lie derivative. We 
wanted to find the answer to the question how the additional terms which 
appear in the equations after applying the Lie derivative influence the 
hyperbolicity conditions derived for the system of equations and the propaga­
tion of waves in the material. The differences between the results obtined for 
each description are very significant. Let us restrict their discussion for the case 
when the thermomechanical couplings are neglected. For the material des­
cription, the speed of the thermal wave depends on the quantities describing 
the thermal properties of the material such as relaxation time, specific heat and 
the coefficient of thermal conductivity. The speed of the mechanical wave 
depends on the material density and the constants describing the plastic 
properties of the material. 
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Application of the Lie derivative influences the speed of the mechanical as 
well as thermal wave. For the mechanical wave, we obtained the additional 
term which depends on the actual stress r (see Eq. (4.8)). The wave is symetric. 
But the thermal wave, which has symmetry in the material description, is not 
symmetric in the Lie formulation. It has also the additional term which 
depends on the heat flux q. 

The introduction of the Lie derivative generalizes the descriptinn of the 
thermomechanical process but we have to realize that it changes the structure 
of the equations, what gives finaJJy different criteria for localization. 
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