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Analysis of the fundamental equations describing thermoplastic
flow process in solid body(*)

P. PERZYNA and A. DRABIK (WARSZAWA)

THE AIM of this paper is to investigate the influence of thermomechanical couplings and
thermal softening effects on shear band localization during a dynamic deformation
process. The structure of the system of equations describing the behaviour of a material
is analyzed. This analysis gives the answer to the question what are the conditions for
the material functions, thanks to which we obtain different type of the system of
equations — hyperbolic or parabolic. Two thermodynamic descriptions of the material
were compared: the first, by a material derivative, the second, by the Lie derivative. It
was shown that covariance terms which appear in the equations after assuming the
invariance under arbitrary spatial diffeomorphism, have a significant influence on the
hyperbolicity conditions. Thus we must be very careful in choosing a proper description
of the thermomechanical behaviour of a material.

Celem pracy jest zbadanie wplywu termomechanicznych sprzg¢zen i efektow termicznego
oslabienia na lokalizacj¢ wzdiuz pasm $cinania podczas procesu dynamicznych defor-
macji. Zanalizowano strukture ukladu rownan opisujacych zachowanie si¢ materiatu.
Analiza ta daje odpowiedz na pytanie jakie sa warunki dla funkcji materialowych, dzigki
ktérym otrzymujemy rozne typy ukladu réwnan — hiperboliczny badz paraboliczny.
Porownano dwa termodynamiczne opisy materialu, pierwszy za pomocg pochodnej
materialnej, drugi za pomoca pochodnej Liego. Wykazano, ze czlony kowariantne
pojawiajace si¢ w rownaniach po zalozeniu niezmienniczosci procesu wzglgdem dowol-
nego dyfeomorfizmu maja istotny wplyw na warunek hiperbolicznosci ukladu rownan.
Tak wigc, sprawa wyboru wiasciwego opisu termomechanicznego zachowania sig
materiatu jest niezmiernie wazna.

Ileabto pabOThI ABASETCS HCCICOBAHUE BIHSAHHA TEPMOMEXaHHYECKHX COMPSDKCHHI
1 3}dekT 0B TepMHUecKoro oc.1ab.1eHHA Ha JIOKATH3aLHIO BJ0/1b [10;10C CBUIA BO BpeMsl
nporecca AuHaMuYeckux aedopmanuii. AHAIM3MpyeTCs CTPYKTYpPa CHCTEMbl ypaB-
HEHHMII, ONMUCHIBAIOLIMX MOBeJleHHe MaTepHaia. ITOT aHAJIM3 AAeT OTBET Ha BOMPOC,
KAKMMH HB.IAIOTCS YCJIOBHMS JIOKAJIM3AUMM U1 MaTepHaibHbiX (yHkuuii, 61aronaps
KOTOPhIM MO/1y4aeM Pa3HOrO THMA CHUCTEMbI ypaBHeHHil — runep6osuyeckuil WM
napaboamyeckuii. Iloayyens! aBa TepMOAMHAMHYECKHX OMMCAHMS MATEPA’1a, MEPBOE
IpU [OMOLLM MaTepPHA 1LHOIL POH3BOJHO, BTOPOE NPH NOMOILM Npou3BoaHoi JIu.
IToka3aHo, YTO KOBAPHAHT HbIE YJICHBI, MOSBJISIOIIMECS B YPABHEHHUSX [10C.IE NPUHST Hs
HHBAPHAHT HOCTHM [0 OTHOIUCHUIO K MNPOM3BOILHOMY audpdeomopduimy, umeror
CYILECT BEHHOE BJIMSIHHE HA YCIOBHE IMNepOOIMYHOCTH CHCTEeMbI ypaBHenuil. M Tak,
BOINPOC BLIGOPA MPaBHIBHOLO TEPMOMEXAHWYECKOT O OMHCAHHSA MOBEJCHHSA MATEpUaia
SIBJISIETCS HEH3MEPHO BaHBIM.

1. Introduction

ExPERIMENTAL investigations of different types of materials have shown that in
dynamic processes thermal effects play an important role in the initiation and

(*) Paper presented at VII th French-Polish Symposium ,Recent trends in mechanics of
elasto-plastic materials”, Radziejowice, 2—7.VII, 1990.
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formation of shear band localization. From the theoretical point of view, the
criteria of localization can be found by analyzing the type of equations
describing the thermomechnical process. These equations are formulated
within the framework of the thermodynamic theory with internal state
variables. The displacement and temperature fields are coupled and the
transport of heat takes place with finite velocity. By introducing the Lie
derivative to define all objective rates of stress, heat flux, temperature and
velocity (MarspeN and HucHES [7]), the invariance under arbitrary spatial
diffeomorphism was obtained.

The main objective of this paper is to investigate the propagation of
discontinuities of stress and temperature in an elastic-plastic material under
dynamic loading. We derived the conditions under which the uncoupled
mechanical and thermal waves propagate and we also determined their
velocities in two cases: first, in the material description, then, the same
procedure was applied for the case of the Lie derivative.

Constitutive equations for an elastic-plastic material in the thermodynamic
theory were proposed by Perzyna [9]. They are very general and they describe
many different additional effects such as thermal softening, isotropic and
kinematic hardcning, the micro-damage process.

This paper provides the first step and introduction for future investigations
in this subject; this is why it contains some simplifications. Our analysis is
restricted to the one-dimensional case and not all of the additional phenomena
are taken into account. In the future we would like to extend the presented
methods to other states and analyze the influence of such effects as porosity,
kinematic hardening, etc.

2. General description of thermomechanical couplings

The thermomechanical state of the material particle for a given time ¢ is
described by the constitutive functions which characterize the mechanical and
thermal propertics of the material.

We assume that this state is represented by a set of variables as fol-
lows:

(2.2) s=(, F, 3, p),

where F denote the deformation gradient, e — Eulerian strain tensor, 3 — the
absolute temperature and p— a set of internal state variables which describe all
dissipation effects occurring during the thermal process, the plastic flow
phenomenon, isotropic and kinematic hardening and porosity.

The response of the material for an intrinsic state is described by the
following set of variables:
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2.2) {t. v, n, q},

where t denotes the Kirchhoff stress tensor, i is the free energy function, 7 is
the entropy and q the heat flux. It is postulated that there exists the free energy
function and it has the form

(2.3) =)

Thus stress, entropy and heat flux are determined by the free energy function
which is a consequence of the second law of thermodynamics:

t=1(e, F, 9, p) = pod.tie, F, 8, p),
n=nle, F, 9, p)= -0,y (e, F, 9, p),
q=qe F, 3, p)=—p30,¥( F, 3, p),

where pu, — thermal internal state variables.

Let us discuss the general equations describing the thermomechanical
process for an elastic-plastic solid, (see Duszek, PErzyna [3])

1. The energy balance equation which includes thermomechanical coup-
lings and dissipation effects

= i POty Lp
(2.5) pcyd = d1vq+9p0 59.d+px(H[P.t+n9]>,
where
.
c,=—9 %s—lg specific heat,
A 2 A
1= —(?ﬁ -9 aa—“;%)m(s) describes dissipation effects,

0 =10) =% f(:)=Ta, _ _
» = temperature dependent work-hardening-softening parameter,
1 do

Es
a—(‘p describes thermal softening of the material caused by the

2J increasing temperature,
1 ox

T2 /3, 0¢

¢? is the equivalent plastic deformation,

1
=5 [grad v + (grad v)"].

The cross-coupling effects are described in Eq. (2.5) by two terms. The first
one, which has not dissipative character, evaluates the temperature dependence
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of the stress tensor and is proportional to 0t/09:d. The second term,
2
090p
generalized force conjugates to the internal state vector p. This one is very
dissipative in its nature.
2. The constitutive equation for the heat flux q

proportional to m(s), is implied by the temperature denpendence of the

(2.6) TL,q + q= —kgradd.

where T denotes relaxation time, k is the coefficient of thermal conductivity
(positive constant), L.q is the Lie derivative of the vector q with respect to the
velocity field v and

_(9¢"  o¢" , 00"
2.7) L'q‘(a: tol “Tae)t

Equation (2.6) provides the generalization for non-equilibrium states of the
well-known Fourier law. It was postulated by CaTTANEO [2] and MAXWELL [8]
to correct unacceptable properties of the Fourier theory of diffusion of heat
(Eq. (2.6) is called the Maxwell-Cattaneo relation). The classical theory rests
upon the hypothesis that the flux of heat is proportional to the gradient of
temperature. Thus the temperature distribution in the body is governed by
a parabolic partial differential equation and the consequence of it is that the
heat impulse given in the surface of the body is felt immediately in all parts of
the body, no matter how distant they are from the source. The Max-
well-Cattaneo modification of Fourier’s law changes the type of the heat
conduction equation to hyperbolic and the finite speeds of waves are possible.
It can be seen that for T=0 it reduces to the classical theory.
3. Constitutive equation for the Kirchhofl stress tensor:

(2.8) Li=% d—219,

where
¥ = 1’+—l - PP i gpe l.?"'-P(P- +1-P)
= I T+ 1

1 -1l
z=[1+ﬁ.€f’e-PP:| I:ane'P+.9,mhj|,
. 0N
29)  Z*=poya:

A

2

5
th _
L= —Pogeas

L.t — Lie derivative of a tensor field = with respect to the velocity field v.

the coeflicient of thermal expansion,
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4. Equation of motion
(2.10) iy ) and 3= P
! 7 2"

Generally, the presented system of equations consists of 13 equations with 13
unknown variables, but to simplifty the calculations we analyze the
one-dimensional case so the number of equations and unknown functions is
reduced to four. Of course, this is not a sufficient analysis, but there are some
cases when the three-dimensional state can be approximated by the results
derived from the one-dimensional theory.

3. Analysis of wave propagation — Material derivative formulation

First, an analysis of the hiperbolicity of the system of Egs. (2.5), (2.6), (2.8),
(2.10) was made in the case when the covariance terms are neglected (that
means for a material description). Thus the complete system of partial
differential equations governing the one-dimensional thermomechanical pro-
cess is as follows:

ov
A1T+A29—"—+A3ax 0
a9
Tq‘+k—+q=0,
Gl r+z|9 .ng—v 0,

ot
| R = O
Pol i C F
where

pxP pAT
H' M=g T AT

p O _op

g, = 0008 = ox

the Lagrangian derivative is denoted by a dot.

To derive the conditions for the hyperbolicity of Eqgs. (3.1), we have to find
four real characteristic speeds and corresponding characteristic vectors which
are linearly independent. In order to evaluate the characteristic values A, we
make the following formal change of operators:

0, — — A4,

ax—FA,

(3.2)

where 4 is a linear differential operator.
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After the transformation of the system (3.1), we obtain four algebraic
equations with four unknowns (4t, 4dq, 49, 4v):

AjA At + A4 A3 + Aq — A34v =0,
k 1

Aq— - 43 —=-q=0

Adq -7 71=0

Adt+Az243+ L Av =0,

pod dv + At + 1C = 0.

(3.3)

This system has non-zero solutions in the case when the determinant of the
matrix formed by the coefficients standing with the unknowns is equal to zero.
Its development gives the following characteristic polynomial of the fourth
degree:

k

k
G4)  (Aiz— Ag)pod* + (A,,Sf T po) L

The general solution of this equation has the form

k 7 kK \2 4k |
TOO —Az—A, 2+ Ay X +Asz— ?Fpo = _,I:"(Axl—Az)Po
e e e e S

‘ 2(Az — A,) po
where i = 1, 2, 3, 4, and for a given characteristic value correspond the following

signs in the above relation 4, = (+, +), A2 =(+, =), A3 =(—, +), 43 = (—, —).
The conditions for the existence of real solution are as follows:

k \* 4k&
(Az-gf + Ayz - }Po) - —T(A1Z — A3)po >0,

(3.6)

k k 4k
[}po — A3Z—A2$i\/|:A2$+A32 == }po]z— —T(Alz—A;_) po} (A12~A2)>0.

If these two conditions are fulfilled, we obtain four real characteristic
speeds A and the relating characteristic vectors which are linearly independent, so
the system of equations is hyperbolic. In the elastic-plastic material governed by
these equations there are four waves with real and symmetric velocities.

Let us discuss some particular cases of the characteristic speeds.

Case 1

There is no thermomechanical coupling in the material

k
X)) B =

Tpc,’
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(3.8) A==

In this case we obtain two symmetric thermal waves and two symmetric
mechanical waves with the speeds Ay and A, which depend on the material
constants. It is worth noting that when the relaxation time, which influences
the speed of the thermal wave, is equal to zero (what means that the
Maxwell-Cattanco relation reduces to Fourier’s law), the velocity of the
propagation of thermal disturbance is infinite:

(3.9) T— 0= A} — .

When the material has no thermomechanical coupling and is a non-conductor,
and thus the coefficient of thermal conductivity k vanishes, then the speed of
the thermal wave is equal to zero (17 = 0). In this case there is only a pure
mechanical wave and the thermal wave does not exist, but there is a static
curve (i.e., a point in a onc-dimensional case) of thermal jump.

Case 2 (adiabatic process)

We consider the adiabatic process with thermomechanical coupling. For
this case there are only two symmetric coupled thermomechanical waves which
propagatc with the speed (called adiabatic):

2 Azg + A3Z

1 SPNVREVIEY

4. Analysis of wave propagation — Lie derivative formulation

In the next step we analyze the system of equations with the covariance
terms which appear after applying the Lie derivative. This derivative enables to
obtain the invariance of the equations under arbitrary spatial diffecomorphism.

The one-dimensional form of the equations describing the thermomech-
anical process is the following:

S, 0

A1f+A29"‘q+A3‘_U=O,
Ox Ox

= "o TTI™™

(41) i+-pi+ P,
ox

. Ot
pol == = 1C=0.
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In order to find characteristic speeds, characteristic vectors and to evaluate
the conditions for their existence, we apply the same procedure as previously.
Without going into details, we present the characteristic polynomial for the
characteristic value A:

k k
(42) (AIZ—Az)pold"i" |:A3Z+ A2 (21.' ‘i‘.g’) — Po TI‘] /12'{" qu + }'(21.' + 2) =

The solution of this algebraic equation was found by the perturbation
procedure with the assumption that the process considered is close to the
adiabatic state (g = 0). The general solution of Eq. (4.2) has the form

where ¢ = g, A? is the solution of Eq. (4.2) in the case of the adiabatic process
(=g =0) and the form of it is as follows:

k
por— Asz — Az (2t + £)] & N/

=t ,
2(Az — Ar)po

4.4)
k k
A= [Aaz + 4,2t + 2) —POT]Z—4P0T(ZT + £)(4,z — 43).

The term A} is obtained from the ratio of the polynomials G(1) and P’ (1) taken
at the point 1{ where

k
P(}-) = (Alz—Az)pol4 + I:A32+A2(21' +3’) i Egg:l/lz + (21' +.g’)i_‘,
4 6wy =z1
The final form of the A is as follows:

LWz
“9 A= ran T Fagh

Using the expressions for A? and Al we obtain the general solution of the
perturbed characteristic polynomial:

g_—A:;Z—Az 2T+.? +\/_}

2(AIZ =
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From the relation (4.7), it can be seen how the covariance terms in the system of
equations influence the characteristic speeds. We obtained the additional term
which depends on the heat flux g. The analysis of the obtained characteristic
speeds made in the same cases as previously leads to the following results.

Case 1

The thermomechanical couplings are neglected so there are still two
symmetric mechanical waves and two non-symmetric thermal waves which
propagate with the speeds

£ 2
(4.8) B==4=Z,
Po Po

[k Tyz

ir=t [ .

4.9) =% e 3pk

For the relaxation time vanishing to 0, the velocity of thermal wave tends to
infinity.
Case 2 (adiabatic process)

The thermomechanical couplings exist but the conductivity of the material
is equal to zero, so there are two symmetric coupled thermomechanical waves
which propagate with the speeds

(4 10) 22=A3Z+A2(2T+.g)
’ ‘ po(Az — Ay2)

5. Final comments

We have compared two descriptions of the thermodynamic behaviour of
a plastic material. The first one is concerned with the case when all objective
rates of stress, temperature, heat flux and velocity are defined by the material
derivative. In the second description it is replaced by the Lie derivative. We
wanted to find the answer to the question how the additional terms which
appear in the equations after applying the Lie derivative influence the
hyperbolicity conditions derived for the system of equations and the propaga-
tion of waves in the material. The differences between the results obtined for
each description are very significant. Let us restrict their discussion for the case
when the thermomechanical couplings are neglected. For the material des-
cription, the speed of the thermal wave depends on the quantities describing
the thermal properties of the material such as relaxation time, specific heat and
the coefficient of thermal conductivity. The speed of the mechanical wave
depends on the material density and the constants describing the plastic
properties of the material.
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Application of the Lie derivative influences the speed of the mechanical as
well as thermal wave. For the mechanical wave, we obtained the additional
term which depends on the actual stress 7 (see Eq. (4.8)). The wave is symetric.
But the thermal wave, which has symmetry in the material description, is not
symmetric in the Lie formulation. It has also the additional term which
depends on the heat flux gq.

The introduction of the Lie derivative generalizes the description of the
thermomechanical process but we have to realize that it changes the structure
of the equations, what gives finally different criteria for locatization.
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