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Phonon gas hydrodynamics based on the maximum entropy principle
and the extended field theory of a rigid conductor of heat(*)

W. LARECKI and S. PIEKARSKI (WARSZAWA)

THE GENERAL CASE of extended field theory of a rigid conductor of heat, consistent
with the entropy principle in the sense of Miiller, 1s introduced and the equivalent
symmetric conservative system with respect to the fields of Liu multipliers is con-
structed. Then the extended hydrodynamics of a phonon gas based on the maximum
entropy principle and governed by the system of field equations analogous to the
extended field theory of a rigid conductor of heat is considered. It is shown that
the equations of phonon gas hydrodynamics can be rearranged to the symmetric
conservative system with respect to Lagrange multipliers of the variational problem
of entropy maximization; moreover, the additional conservation equation implied
by this symmetric conservative system was shown to correspond to the result of
substitution of the distribution function which maximizes the entropy into the kinetic
balance of entropy. This provides a direct and simpler proof than that given
by DReYErR [12], concerning the fact that the distribution function maximizing
the entropy leads to the field equations of hydrodynamics consistent with the entropy
principle after substitution into the respective system of moment equations and that, in
this case, Liu multipliers of the entropy principle correspond to the Lagrange multi-
pliers of the variational problem of entropy maximization. It is also shown that, due
to the symmetry of moments, the field equations of the phonon gas hydrodynamics
considered can be rearranged to the form of the symmetric conservative system gene-
rated by a single potential.

Wprowadza si¢ ogoélny przypadek rozszerzonej teorii pola sztywnego przewodnika
ciepta, zgodnej z zasada entropijng Millera. Odpowiadajacy uklad réwnan pola
sprowadza si¢ nastegpnie do rownowaznego ukladu symetrycznego konserwatywnego
wzgledem pol mnoznikéw Liu. Jako odniesienie fizyczne rozpatruje si¢ rozszerzong
hydrodynamik¢ gazu fonondéw oparta na zasadzie maksimum entropii, ktérej uktad
rownan pola ma analogiczna strukture do ukfadu réwnan rozszerzonej teorii pola
sztywnego przewodnika ciepta. Rownania rozpatrywanej hydrodynamiki gazu fono-
néw zapisuja si¢ jako ukiad symetryczny konserwatywny ze wzglgdu na pola
mnoznikéw Lagrange’a zagadnienia wariacyjnego na maksimum entropii, a dodat-
kowe rownanie zachowania implikowane przez ten uklad symetryczny konserwa-
tywny odpowiada podstawieniu funkcji rozkfadu maksymalizujacej entropi¢ do kine-
tycznego bilansu entropii. Wykorzystujac te fakty pokazuje si¢ w odmienny, zna-
cznie prostszy sposdb niz podany wczesniej przez DREYERA [12], ze funkcja roz-
ktadu maksymalizujgca entropig, po wstawieniu do odpowiedniego ukladu réwnan
momentowych, prowadzi do ukladu réwnan pola zgodnego z zasadg entropijna,
a mnozniki Liu koresponduja z mnoznikami Lagrange’a zagadnienia wariacyjnego.
Ponadto pokazuje sig, ze dzigki symetrii momentow wystepujacych w rozpatry-
wanej hydrodynamice gazu fonondw, jej ukiad réownan pola mozna przedstawi¢
jako ukiad symetryczny konserwatywny o lewej stronie okreslonej jedng funkcija
generujaca.

(*) This work was supported in 50% by C.P.B.P.02.01 and in 50% by C.P.B.P.02.03. The
reported research was performed within the framework of joint research program of the
Department of the Theory of Continuous Media at the Institute of Fundamental Technological
Research, Polish Academy of Sciences and the Faculty of Physics at the University of Paderborn,
FRG.
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Beoaurcs obumii cay4ail pacilApeHHOH TeopHH MOJIS KECTKOIO TEIUIONPOBOIHHAKA,
COrJIacHOH € JHTponuueckHii mpHHUHNOM Miomnepa. OrBeyaromias cHCTeMa ypa-
BHEHHIl NMONMA CBOAHTCH 3aTEM K 3KBHBAJICHTHOH CHCTEME CHMMET PHYHOH KOHCep-
BATHBHOH MO OTHOWIEHHIO K MmoasM MHoxHTeneil Jlo. Kak ¢usnyeckoe oTHecenme
paccMaT PHBAETCS PACILMPSHHAS THAPOAAHAMEHKA rada (oHOHOB, omMparowascs Ha
NPHHLAT MAaKCHMYMa 3HT POIHMH, KOT OpOil CHCTeMa yPaBHEHHH MO/I1 UMEET aHAI0rHY-
HYK CTPYKTYpY Kak CHCTE€Ma YypaBHEHHH pPAaCIIAPEHHOH TEOPHH MO.S XKECTKOro
TermionpoBoAnnka. OKa3blBaeTCd, YTO YPaBHEHHS PacCMaTPHBAEMOIL THAPOIMHAMHEKH
raza (JOHOHOB 3aMHCHIBAIOTCH KAK CHMMETPHYHAY KOHCEPBATHBHAS CHCTEMAa [0
OTHOWEHHIO K MojasM MHOXHTenei Jlarpanxa, a BapHaUMOHHAs 3alaia IS Mak-
CHMYM4 JHT POIHH H JOMNOJHHT €/IbHOE YPAaBHEHHE COXPAHEHHS, BbI3bIBAHHBIC YePe3 3Ty
CHMMeT PUYHYIO KOHCEPBATHBHYIO CHCTEMY, OT BEYAIOT MOACTAHOBKEe QYHKUMH pacr-
peaenenHs, MaKCAMH3HPYIOXeH JHTPONHI0, B KHHET HiecKnii Gaianc Jurponud. Mc-
NOJNB3YS 3TH (PAKT bI, MOKA3LIBAET CSl, OT IMYHLIM 3HAYHT eJILIHO 60J1ee NPOCT bIM COCo-
60oM, 4eM mpHBeneHHBI panbine JlpeepoM [12], uto dyHkums pacnpeneneHus, Mak-
CHMH3HPYIONIAA 3HT POMHIO, MOC/IE MOACTAHOBKH B COOT BET CTBYIOLYIO CHCTEMY MO-
MEHTHbIX YPaBHEHMIi, MPHBOAHT K CHCTEMeE YPaBHEHHIl OIS COBMaAaloLeii ¢ 31T po-
MHYECKHM MPHHIATIOM, 2 MHOXHATENH JIr0 COOTBETCTBYIOT MHOXHTensM Jlarpamxa
BapHalMOHHOH 3amayd. Kpome 3toro okasmiBaerc, 4TO Oiaaromaps CHMMET pHH
MOMEHT OB, BBICTYNAKOILMX B PacCMaT pHBaeMOil rHAPOJMHAMHKE raza QoHOHOB, ee
CHCTEMY YPaBHEHHIA 10715 MOXHO MPE/JICT ABHT b KaK CHMMET PHYHYIO KOHCEPBAT HBHYIO
CHCTEMY C JIEBOH CTOPOHOH OMNMpeAE/ICHHOH OJHOH reHEepHpYyIollell (QyHKUHEH.

1. Introduction

In [1], Liwu proposed a general method of phenomenological modelling of
continuous media in terms of the extended set of balance equations. He
assumed local constitutive relations to be restricted by the entropy inequality
in the sense of MULLER [2, 3]. According to this approach, it is possible to
consider the sequence of models, obtained by employing successive extensions
of the fundamental set of balance laws.

In this paper, the extended field theory of a rigid conductor of heat is
introduced and compared with the extended hydrodynamics of a phonon gas
based on the maximum entropy principle. We discuss the general case of the
theory, described by the system of balance equations composed of the energy
balance and the arbitrary finite set of its extensions. From the hyperbolicity
condition, usually assumed in extended thermodynamics, ii follows that the
field equations of the extended field theory of a rigid conductor of heat can be
written in the symmetric conservative form with respect to the fields of Liu
multipliers.

A particular phenomenological model of the heat conduction based on the
concepts of the extended thermodynamics was proposed by RUGGERI [4, 5]. In
turn, Jou and Perez Garcia [6] and Bampi, Morro and Jou [7] considered
the description of transport processes in a rigid conductor of heat, consistent
with the extended irreversible thermodynamics (EIT). Ia [6] this description
was related with the theory of fluctuations whereas in [7] it was compared with
phonon gas hydrodynamics derived by Cuester [8]. In [9] it was shown that,
in the case of the linear isotropic dispersion curve, the low-temperature phonon
gas hydrodynamics proposed by NiELSEN and SHkLovsky [10] and related



PHONON GAS HYDRODYNAMICS BASED ON THE MAXIMUM ENTROPY PRINCIPLE... 165

to the phonon distribution function which maximizes the entropy is described
by the system of field equations of the form of extended field theory of a rigid
conductor of heat.

The general case of the extended hydrodynamics of degenerate material
gases (corresponding to the completion of the fundamental set of balance laws
with an arbitrary finite set of its extensions) was considered by DreyEr [12].
The procedure applied by Dreyer is the following. He derives the set of moment
equations for intrinsic moments from the Boltzmann kinetic equation. Besides
the classical conservation equations this set contains the additional balance
equations for the successive non-equilibrium moments up to the arbitrary
finite order N. He introduces the corresponding extended thermodynamics
motivated by this set of moment equations, such that the moments up to the
order N are taken as primitive fields, while the moment of the order N+1 and
all the production terms are given by local constitutive relations. He postulates
the consistency of this system with the Miiller entropy principle, that is, he
assumes the existence of the entropy and of the entropy flux depending on the
same primitive fields. Then, by means of the Liu procedure, he formulates the
consistency conditions and determines the entropy in terms of the primitive
fields and the Liu multipliers.

On the other hand, he introduces the variational problem of the entropy
maximization under the constraints corresponding to prescribed values
of these moments which were taken as the primitive fields of extended
thermodynamics. As a result, he obtains the distribution function dependent on
the Lagrange multipliers of the variational problem. Hence, the kinetic
expressions for moments, entropy and the entropy flux, taken for this
distribution function, result in functions of Lagrange multipliers. Dreyer
shows that the result of the insertion of the distribution function which
maximizes the entropy into the kinetic expression for the entropy can be
expressed in terms of Lagrange multipliers and moments in the form iden-
tical to that known from extended thermodynamics. From these observations
he concludes that Liu multipliers can be identified with the Lagrange
multipliers and that the description of the state of the system by the
distribution function which maximizes the entropy is consistent with the
extended thermodynamics.

In this paper a similar approach is applied to the phonon gas. In Sect. 3 the
energy balance of the phonon gas is derived from the Boltzmann-Peierls
kinetic equation. Then we derive a sequence of the moment identities which are
the succesive extensions of the energy balance. It is composed of the balance
equation for the heat flux, for the flux of the heat flux ..., up to the moment
equation for the arbitrary N —1-th moment of this kind. In that manner we
obtain a system of moment equations for moments, which correspond to the
primitive fields for the extended field theory of a rigid conductor of heat.
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We formulate the variational problem for the phonon distribution function
which maximizes the kinetic expression for the entropy density under the
constraints corresponding to the fixed values of those N moments, which
were taken as the primitive fields of the extended field theory of a rigid
conductor of heat. Thus we obtain the distribution function dependent on the
Lagrange multipliers of the variational problem. We also show (similarly as in
[13]), that this distribution function maximizes the flux of the kinetic entropy
in the arbitrary direction under the constraints, corresponding to the fixed
values of the projections of these moments on that direction.

We insert the distribution function obtained from the variational principle
into the corresponding sequence of the moment equations and arrive at the
closed system of equations with respect to the Lagrange multipliers. The same
distribution function is also inserted into the kinetic balance of entropy. We
show that the system of the field equations with respect to the Lagrange
multipliers is symmetric conservative and the additional conservation law
implied by this system corresponds to the result of the insertion of the
distribution function which maximizes the entropy into the kinetic balance of
entropy. The potentials (generators) of this symmetric conservative system are
determined in the form of integral expressions, dependent on the phonon
distribution function which maximizes the entropy.

The structure of this symmetric conservative system corresponds to the
structure of the field equations of the extended field theory of a rigid conductor
of heat, discussed in Sect. 2. As it was shown by RUGGERI and STRuMIA [14],
RuUGGERI [4], every symmetric conservative system is consistent with the
Miiller entropy principle. Hence the approach, proposed in this paper, gives
the alternative derivation of the identities analogical to that obtained by
DreYER [12]. Moreover, by applying the reasoning presented in [13] it can
be shown that the distribution function which maximizes the entropy is the
only distribution function assuring the consistency with the Miiller entropy
principle.

In [15], it was shown that the equations of the isoentropic flow of an ideal
gas can be equivalently written in the form of the symmetric conservative
system, the left-hand side of which is determined by a single generating
function (potential). In turn, in [9] it has been shown that for the field
equations of the low-temperature phonon gas hydrodynamics involving the
linear isotropic approximation of the dispersion relation it is possible to find
the whole family of equivalent symmetric conservative systems of such special
form. In Sect. 5 we show. that also the equations of the extended hydrody-
namics of the phonon gas, obtained in this paper, can be equivalently written in
the form of symmetric conservative systems with the left-hand sides determined
by a single potential. In order to obtain these systems, we apply the group
reduction of tensors and the scaling procedure (introduced previously in [9]).
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Contrary to [9] and [15] where the potential for the symmetric conservative
system was determined in terms of macroscopic quantities, in this paper we
determine it in the form of the integral expression, involving the distribution
function which maximizes the entropy.

2. Extended field theory of a rigid conductor of heat

By a rigid heat conductor we shall mean the undeformable (rigid)
continuous material body #. We shall assume, that for a certain inertial
observer the body remains unmoved, and the material points of the body
manifold will be identified with the corresponding points of a three-dimen-
sional Euclidean point space E3. For a rigid heat conductor, all balance laws of
continuum mechanics are satisfied trivially except the energy balance.

In this paper we shall consider a uniform rigid heat conductor without heat
supply and, therefore, it wiii be convenient to use the energy density referred to
the unit volume ¢. The local form of the energy balance takes then the form

2.1) d,e +divqg=0,

where q denotes the heat flux. In order to formulate the thermodynamic theory
of a rigid conductor of heat, the entropy balance should be taken into account.
The assumption that the heat supply vanishes implies vanishing of the entropy
supply. Then the local form of the balance of entropy reads

2.2) o,n + divh =g,

where 7 is the volume density of the entropy, h is the entropy flux and ¢ is the
entropy production, where additionally ¢>0.

According to the approach of Liu [1] we can write formally the extended
system of balance equations of the order L—1, L>2 for the rigid heat
conductor. This system has the form

0, +divqg=0,
2y @)
0,q+divQ =P,
(2) 3) @
6,Q+divQ="P,

(23) - b
w-1 W  @-

6, Q +divQ= P .
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@3 W
By Q,Q...., Q we denote the tensors of the order two, three,...,up to the order L,
correspondingly, which do not have any direct physical meaning, and which
play the role of the fluxes in the system (2.3) (we employ the convention that the
W@ (@-1
index in brackets denotes the order of the tensor). Similarly, by P, P... P we
denote the tensor quantities of the order one,¢two,...,L—1, which are inter-
preted as the corresponding productions. As the primitive fields of the extended

field theory of a rigid heat conductor (of the order L—1) we take the set of
@ @w-n

fields ¢,q,Q,.., Q whereas the flux in the last equation and produc-
W@ €-n
tions P,P,.., P should be given by the constitutive relations. In the
approach of Liu, the local constitutive relations are assumed together with the
usual principies of continuum mechanics, that is, the principle of material
objectivity, the invariance with respect to the symmetry group of the con-
sidered material and the principle of equipresence. For the extended field
theory of a rigid heat conductor, local constitutive relations take the form

w W €-1

Q = Q (6’ q,"" Q )9

W W L-1

P=Pg.. Q)
(2.4)

(L-1) (L:l) (L-1)

P = P (6q,. Q).

According to the Miiller entropy principle, the thermodynamic restrictions on
the form of the constitutive functions (2.4) are formulated by means of the Liu
procedure applied to the field equations (2.3), (2.4) and to the entropy
inequality

@.5) 8,1 + divh>0.

For the entropy density and the entropy flux, given by the constitutive
functions of the form

(L—1)
n= ﬁ(s)qv"’ Q ),

(2.6) . @~
h=h(eq,., Q ),
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the Liu procedure leads to the following relations

L-2 (r+1)
7 dh=Y T . T I:Dg)rf]®d Q

I=0 (1, /+1) (I,2I)

w
+ Tr.. Tr I:D(I_l)ﬁ]@)dQ,
Q

(1,L) (L-1,2L-2)

L-1 . 1))
@8 ¥ [D(nﬂ]OP20,
I=1 Q

where ® is the tensor product, Tr denotes the trace operation taken with

(")
respect to the indices (i,j) (in order to simplify the notation, we introduce

the additional symbols Tr and Tr understood as identities), © denotes
(0,0 (L1 © ()
the total contraction of tensors and the notation Q =&, Q = q has been

applied.
The quantities

(2.9) l L= Du’)ﬁ, J = 0,1,...,L"‘ 1,

which occur in Egs. (2.7), (2.8), are called the Liu multipliers. In extended
thermodynamics, hyperbolicity of the field equations, satisfying the ther-
modynamical restrictions (2.7), (2.8), is assumed [16, 17].

BoiLraT [18], RuGGer and Strumia [14], RUGGERI [4, 5] have shown that
the field equations of extended thermodynamics can be transformed to the
form of symmetric conservative systems of partial differential equations with
respect to the fields of Liu multipliers. Such transformation is a consequence of
the bijective relation between the primitive fields and the Liu multipliers, which
can be written as

G DO n @-
Q = Q (l’ l"“) l )’
® W)WM @-n
=2 (Q,Q,---, Q )

In the case of Egs. (2.3), (2.4), the potentials (generators) of the symmetric
conservative system have the following form

(2.10)
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-1
o=2 +0Q-1,
=0
(2.11)
L-2 (&) (Jtl) (L—-1) (L)
V=Y Tr . TrA® Q +Tr.. Tr X ®Q-h
J=0(1,J+1) (J.2)) (1,L) (L—-1,2L-2)

Taking into account Egs. (2.10), (2.7) and differentiating Eqs. (2.[1) with
@)

respect to the tensors A we arrive at

0
D({) o =Q,
(2.12)

T+

Or+1 X I:D(i)‘l’] = Q,

where o; denotes the permutation of the tensor of the order J, which
intercheanges the first index with the last J-th index.

From Eq. (2.11) it follows that the system of Egs. (2.3), (2.4) can be written
in the symmetric conservative form

)

(213) a, [D(_{)(P]'{' div [UJ+1 XD({)\ll:]: [.‘s

As it has been shown by Gopunov [19], the symmetric conservative systems
imply an additional balance equation. In the case of the system (2.13), this
additional balance equation has the form

L-1(J) L-1(J)
(2.14) a,[z lOD({)(p—qojI+ div[): l@(a';HxD(i)\b)—\b]

J=0 J=0

L-1() )
= LOP =g.

J=0
From Eq. (2.11) it follows, that Eq. (2.13) is identical with the entropy balance
(2.2) with n and h given by Eq. (2.6).

3. Kinetic description of a phonon gas. Moment equations and balance of entropy

In this Section we briefly review some properties of the kinetic description
of phonon systems. For simplicity, we shall restrict the considerations to
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a single branch of phonon excitations, neglecting all interactions between
different branches. In this case, the kinetic equation takes the form

9. 3. o (k™) of (!, km,
3.1) LR Q:ai* L (xaxf )

= J(f(x', k™, 1),

where f(x/, k™ t) is the phonon distribution function, k denotes the phonon
wave-vector with the components k' k% k3 x = [x! x2x3] is the spatial
variable, w(k) denotes the dispersion curve of excitations and J(f) is the
collision integral [20].

The variable k belongs to the First Brillouin Zone, which can be repre-
sented as a parallepiped with correspondingly identified opposite walls.
This identification endows the First Brillouin Zone with the topology
of a torus [21]. With the accuracy to the set of measure zero, the First
Brillouin Zone can be identified with the set of Euclidean vectors from
the interior of the parallepiped. The quantities hw(k) and hk describe
the energy and the quasimomentum of a single phonon, respectively (2rnh is
Planck’s constant). Similarly as in the case of kinetic theory of material
gases, the macroscopic quantities are defined as moments of the distribution
function, that is, as integrals of the products of the distribution function and
the appropriate tensor fields, defined on the First Brillouin Zone. These tensor
fields describe the contribution of a single phonon of wave-vector k to the
given physical quantity.

Let W(k) be the function defined on the interior of the parallepiped
representing the First Brillouin Zone and with values in the set of Euclidean
tensors. The physical quantity, corresponding to W(k), is given by

d’k
(3.2) W(x, 1) = [WK)S(x,k, 1) 2
It follows from the physical meaning of the quantities hw(k) and hk that the
fields defined as integrals

3

d’k
e(x, 1) = [hok)f(x,k, ) 20>

d’k
P(x’ t) = jhkf(x’ ka t) W:

(3.3)

have a meaning of the macroscopic spatial densities of the energy and
quasimomentum, correspondingly. In Egs. (3.2), (3.3) we confine ourselves



172 W. LARECKI AND S. PIEKARSKI

to the normalization convention for the distribution function usually applied
in solid state physics and the integration is carried over the set of Euclidean
vectors belonging to the domain of W (k). Moment equations are obtained
as in the case of kinetic theory of material gases, that is, the moment equation
for the quantity W(x,t) is obtained by computing the time derivative of Eq.
(3.2) and substituting the kinetic equation into the integrand

&k
G4 WD) = [¥W) 0S0k) o

d:!
= —div {If(x,k,t)[‘“’(k)@Vk“’(k)] ﬁ}

3

4’k
+ JW K I(f(x,k, 1)) - o

The field W(k) is called a summational invariant if, for every distribution
function f(x,k,?), the following integral vanishes

d*k
(3.5) JW &) J(f(x,k,0) P = 0.

The phonon energy hw(k) is a summational invariant and, therefore, the energy
balance takes the form

(3.6) d,e+divg=0,
where ¢ is given by Eq. (3.3),and the heat flux q is defined as

3
3.7 q = [hok)f(xk,t) V ok (‘i l)‘
Hence, the energy balance of the phonon gas results from the moment equation
for the field W (k) = ho(k).

Since in every equation of the system (2.3), except the first one, the time
derivative acts on the flux from the previous equation then, in order to obtain
the system of moment equations corresponding to the system (2.3), we should
introduce the tensor fields of the form

(3.8) g)l(k) =ho(k) {é}[ka(k)]}, F=01,..L
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The corresponding moment equations have the form

(I+1)

69 A IN®Ik) TE L div] N @fck) Sk

(2 )3
= IN(k)J(f(x, t))

@ )3

5 ),, 1=0,1,2,., L—1.

For convenience, we shall apply the notation

(M) (M)
= [N W05k ) s a ),,
(M) (M) 43k
(3.10) = [ N®)J(f(xk,0)
) e
M=01,..,L.

) (1)
It follows from Egs. (3.10), (3.6) that e = Q, q = Q and all the remaining
(M) (M)
tensors Q and P, M =2, 3,.., L are totally symmetric tensors of the

order M. Taking into account the notation (3.10), we write the system (3.9) in
the form

(0) 1)
8,Q +divQ =0,

1) (2) (1)
8,Q +divQ = P,
(1) (3) 2)
3,Q +divQ = P,
(3.11)

(L-1) & @&-1)

3, Q +divQ= P .

Hence, the structure of the system of moment equations (3.11) obtained by
&)

integrating the kinetic equation with the tensors N(k) is formally identical

to that of the extended system of balance equations for a rigid conductor of

heat.
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The kinetic entropy of the gas of Bose particles governed by the kinetic
equation (3.1) is given by

(3.12) n(x9 = [{[/06k, 0 + 1 In [f(xk, ) + 1] — f(x,k,£) Inf(x,k t)} 2 )3

For every solution of the kinetic equation, the balance of entropy holds
(3.13) on+divh=g¢

with the entropy flux h given by

(B.14)  h(x,t) = [{[f(x,k,2) + 1] In[f(x,k,t) + 1]

— f(x,k, ) Inf(x,k,0)} V, (k) %k

@m)>

and the entropy production ¢ related to the collision integral of the kinetic
equation given by the formula

B3.15)  a(x,0) = [{In[f(x,k,&) + 1] — Inf(x,k t)}Jkat)) G )3

If for the given collision integral (3.15) is nonnegative for every distribution
function then we say that the considered kinetic equation satisfies the
Boltzmann H-Theorem.

4. Field equations based on the maximum entropy principle

One of the fundamental tools of statistical physics is the variational
procedure of determining the microstate corresponding to the given ma-
croscopic data. Such a microstate is obtained as a solution of the varia-
tional problem of the entropy maximization under the constraints corres-
ponding to the values of macroscopic quantities, ZUBaRev [22]. Hence,
it is possible to determine the phonon distribution function which maxi-

mizes the entropy (3.12) for fixed values of moments. Taking the values
© 1)  (@L-1)

of the moments Q,Q,.., Q as the constraints in the following variational
problem

(271)3 Igo AOIN(k ) =

4.1) a{I[U+ Din(f+1) — fln f] kY dak}
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we obtain the distribution function of the form

L-1(np (D

(M) (M) ™)
42)  fE(A.K)=[exp&(A,k)—1]74, é(A’k)=,Z:°AGN(k)’

which satisfies the necessary condition for the extremum of the functional.
From the reasoning analogical to that given by DReYER [12, Eqs. (4.10), (4.11)]
it follows that the function (4.2) corresponds to the maximum and therefore
it maximizes the entropy under the assumed constraints. It can be observed
that the distribution function (4.2) also maximizes the functional in the
variational problem

@3 9 {I[(f+ Din(f +1) = fInf] [Vio®)] -0 (‘;371;3

L-1(D (r+1) dnk
- T Aof N wnf 55| <o

(n
where n is an arbitrary unit vector and A are the Lagrange multipliers.
The variational problem (4.3) determines the maximal value of the entropy
flux in the arbitrary direction n under the constraints corresponding to the
W@ W
fixed values of projections of the fluxes Q,Q,..Q onto the same direc-
mEe W
tion n. As it follows from Eqgs. (3.10), (3.11), the moments Q,Q,..,Q are
fluxes in the considered system of moment equations. Hence, the distribu-

tion function (4.2) not only maximizes the entropy for the fixed values of
© @ @&-1)
Q,Q,.., Q , but also maximizes the entropy flux in the arbitrary dire-
ction n, for the fixed values of projections of the fluxes of these moments
(VI ®)) w
Q:n,Q-n,..,Q n onto the same direction n. In [13] the same maximizing
property has been shown in the case of the low-temperature phonon gas
hydrodynamics.
n

Assuming that the Lagrange multipliers A are functions of the inde-

pendent variables x,t and inserting the distribution function (4.2) into the

system (3.11) we obtain the closed system of equations with respect to the
n
fields A(x,?)

(X) (D (K+1) (D (K) (D
(4.4) 3,Q(A) +div Q (A)=P(A), K=01,.L—1,
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where

(K) (D

Q) = IN(k)f(f(A k)) @ )3,

4.5
(*3) ® O ®

P(A)= IN(k)J(f(é(A k))) (n )3-

According to the kinetic expressions (3.12), (3.13) and (3.15), entropy,
entropy flux and the entropy production in a phonon gas described by the
distribution function (4.2) are given by the following integrals

n n (n
7(A) = J{[FEAK) + 1] In [ f(EA,K) + 1]
n D d:’k
— fE(AK) Inf(E(A K)} G
_ D (n m
@6)  h(A) = [{[AEAK) + 1] In[fEAK) + 1]
f(«f(A k) lnf(E(A )} Vo) 2K G )3,

(N n (n [¢9] d3k
6(A) = [{In[f(EA.K) + 1] — InfEAK)T(FEA,K)) o

The integrals (4.5) and (4.6) are convergent for all physically reasonable
dispersion relations. If the domain of phonon wave-vectors k is approximated
by the whole three-dimensional Euclidean vector space, the requirement of the
convergence of Egs. (4.5), (4.6) imposes the restrictions on the admissible
despersion relations.
With the aid of Eqgs. (4.5), and (4.6),,,, the following scalar and vector
(n

functions of the arguments A can be introduced

n L-1() )@ (1] (0))] d3k
D(A) = Z AOQ(A) — ii(A) = —[In[f(&A.k) + 1] 20"
@4.7)
@» vinm
‘P(A ): Tr .. Tr A® Q (A)-h(A) =

J=0(LJ+1) (2D
d*k

— [ [fEAK) + 11V, 2K ol
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In view of Eqgs. (4.5),, (4.6), , and (4.2), differentiation of Eqs. (4.7) leads to the
identities

@ D @ Ut o
(4.8) QA) = D(){)‘P(A), QA= D‘f‘P(A)’

where the derivatives are understood as the derivatives of tensor functions
with respect to tensor arguments (Frechet derivatives). It is apparent that
substitution of Egs. (4.8) into (4.4) results in the symmetric conservative
system with respect to the fields of Lagrange multipliers

® 7. M oo M
4.9) 8, I:D(m «p(A)] + div I:D(u)‘I’(A)] = P (A).
A A

Taking scalar products of the subsequent equations of the system (4.9) with
© @) (L-1)
the corresponding subsequent Lagrange multipliers A, A,., A and adding

the results, we obtain the folowing conservation equation

L-1() n o
(4.10) a,{ Y A® [Dmcp(A)] ~ rD(A)]

J=0
Feed MY L1 D
-{-div{z Tr .. Tr A®|:D(J)‘I'(A)i|—‘P(A)} z AQP(A).
J=0(J+1) (J.2])

On account of Egs. (4.2) and (4.5), the integral formula (4.6) can be rearranged
to the form

3

(2n)®
L-1() ) dk Lt Do
J[ Y. AON() ]JU(E(A k) —== Y AOP(A).
J=0

o 0 o
@11)  &(A) = [In(exp&(A,k) J(FE(A,K)

@n)?

If it is assumed that the H-Boltzmann theorem holds for the kinetic equation
(3.1) then the expression (4.11) must be nonnegative since in this case, the
integral formula (3.15) is nonnegative for all distribution functions.

It follows from Egs. (4.6), (4.7), (4.11), (3.12), (3.13) and (3.14) that the
additional conservation equation (4.10) implied by the system (4.9) corresponds
to the kinetic balance of entropy of the phonon gas which is described by the
distribution function (4.2)
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n ¢9] n
(4.12) 0,7(A) + divh(A) = 6(A).

The Liu procedure of extended thermodynamics can be applied to the system

(4.9) written in the form Eq. (4.4) together with the additional conservation

equation (4.10) written in the form of Eq. (4.12). Then, Eq. (4.11) plays the
n

role of the residual equality and it implies that A, I =0,1,.,L—1 cor-
respond to Liu multipliers. As a consequence, the Liu procedure yields the
relations

n  L-1(M) (M) (D
Dnii(A)= Y AODwQ(A),
A M=0 A

(4.13)
n L-1 (M) M+1) D)
Dnh(A)= Y Tr .. Tt A®Dy Q (A)
A A

M=0(1,M+1) (M,2M)
and the differentials df and dh

L-1(D D
di= Y AGdQ,
I=0

(4.14)
L-1 D d+1)
Y Tr ..Tr A®d Q,

I=0(1,0+1) (.20

dh

assume the form analogous to Egs. (2.7), (2.9), which follows from the

application of the entropy principle to the extended thermodynamics of
1y
a rigid conductor of heat. In Eq. (4.14), the Lagrange multipliers A stand
(N

in place of the Liu multipliers L. The relations (4.14) are the counterparts
of the relations [12, Eqs. (4.15), (4.16)] derived for the case of degenerate
material gases. With the aid of the reasoning analogous to that applied

in [13], it can be proved that the distribution function (4.2) is the only
© W &1
distribution function parametrized by the tensor fields A,A,.., A which,
after simultaneous substitution into the system of moment equations (3.9)
and into the kinetic balance of entropy (3.12), (3.13), (3.14), gives the

consistent system of L+1 tensor field equations (4.9), (4.10) with respect
© @ @-1

to the tensor fields A, A,.., A . Due to the unique correspondence between
the distribution function which maximizes the entropy and the symmetric
conservative system of equations of the extended hydrodynamics of phonon



PHONON GAS HYDRODYNAMICS BASED ON THE MAXIMUM ENTROPY PRINCIPLE... 179

gas, and due to the fact that the symmetric conservative systems are con-
sistent with the entropy principle in the sence of Miiller, it was possible
to obtain the results analogous to that of DReYER [12] in a much simpler
way. It should be noted that the integral identities analogous to Eqgs. (4.7)
and (4.8) have been also derived by Drever [12, Eqs (4.13),, (4.14),, (A.1.1),
(A.1.2)] but they have not been used to obtain the symmetric conservative
system of field equations.

5. Symmetric conservative system generated by single potential

The group decomposition of symmetric Euclidean tensors of arbitrary
order is well known [23]. The symmetric tensor of even order N can be
represented as a sum of 1/2N+1 following tensors: the symmetric tensor
of the order N transforming under rotations like a scalar and the symmetric
tensors of order N transforming under rotations like traceless symmetric
tensors of the orders 24,.,N. Analogously, the symmetric tensor of odd
order M can be decomposed into the sum of 1/2(M +1) tensors of order
M with the following components: the symmetric tensor transforming under
rotations like a vector, and the symmetric tensors transforming under rota-
tions like traceless symmetric tensors of the orders 3,5,.,M. Components
of this decomposition are mutually orthogonal and symmetric tensors of the
order P transforming under rotations like traceless symmetric tensors of the
order £ form a vector space of the dimension 2X+1. In this space, the
orthonormal basis can be introduced and the tensors, which are its com-
ponents, satisfy the relations

(5.1) EP,OEM, =6, af=12.25+1,

where J,5 denotes the Kronecker symbol. With the aid of the group
(R)
decomposition, an arbitrary symmetric tensor A of the order R can be written

in the following form

(R)

(52) A = Aju'y ER:).,

where £ =0,2,..,R for Revenand Z = 1,3,...,R for Rodd and y = 1,2,...,.2% + 1.
The usual summational convention is understood over repeated lower and
upper indices.

Applying the group decomposition (5.1), (5.2) to the fields of multipliers
(0]
A, I=0,1,.L—1, we obtain the following representations
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(0]
(5.3) A(x', t) = Au-"(x‘,t)E",.
® M
The expressions of the form div Q(A) appear in the left hand side of the

® 0
system (4.4). The symmetric tensors Q(A), § = 1,2,..,L are given by the
integral formulae (4.5), and, at the same time, they can be represented as the
0]
derivatives of the vector potential W(A) with respect to the subsequent
-1
multipliers A . Introducing the orthonormal basis {e;} of the Cartesian
coordinate system {x‘}, i =1,2,3 for the representation of the vector ¥ and
-1
employing the group decomposition (5.3) of the multiplier A , we obtain

M ov! oy!
54 Ds-n¥Y(A)=—— ¢®E;s_ ;' =
( ) (SA’-) ( ) d 15-1:7 i S-1r P 15_“,-7

Es_1;'®e,.

)
In Eq. (5.4), the symmetry of Dis-1)¥(A) has been taken into account. Hence,
A
we obtain from Eq. (5.4)

. S ) (n 0 oy
(5.5) divQ(A) =div [D(S'—\l)‘P(A)] = IZE (BAS_ 1:7)] Es_ ;5"

(P) (9
The tensors Q(A), p=0,1,.,L—1 are differentiated with respect to time

in the left-hand side of the system (4.4). These tensors can be represented
0 P)
as derivatives of the potential &(A) with respect to multipliers A and, as

symmetric tensors, they can be decomposed according to Eq. (5.2). Hence,
the time derivatives in the system (4.4) can be written in the following
form

3 (P) 3 n o/ 0d :
(56) ,Q =0, D(:)‘p(A) = l:a (m)] Ep[ .

Taking into account Egs. (5.5) and (5.6) and applying the group decom-
position (5.2) to the right hand side, which is a symmetric tensor given
by Eq. (4.5),, we rearrange any equation of the system (4.4) to the
form
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o[ 0@ o [ ov RE "
(5.7 lia (a/lxr?) + a—f(m) - P y] Egy’ = 0.

Since the base tensors Eg;” are linearly independent, Eq. (5.7) is equivalent

to the following system of equations with respect to the components Ag;”
®)
of the group decomposition (5.2) of the multiplier A

a(od N\, 0[P\  _u
8) a (&AR,”) o (aAu') =P

where Z =0, 2, .., R for R even and Z =1, 3, .., R for R odd. Applying this
procedure to all L equations of the system (4.4), we obtain the equivalent
system with respect to the componets of the group decomposition (5.2) of all

1)
multipliers A
o o é [ov! =
ot (aA,,") T ox (aA,,;f) =5
1=0,1,2,., L—1,

£e {0, 2,4,..,1 for I even,
1,3,5 .,1I for I odd,
y=1,2,3,.,25+1.

(5.9)

Multiplying the obtained system by the row vector composed of compo-
nents of the group decomposition of multipliers [Ago’, Ay A 12 Ars'se..
Ap—11-1**"'] we arrive at the additional conservation equation

0 0P 0 oy!
gl A R R = Yy~ g ypIX
(510) ar (Au- BAH:V ¢) + ax‘ (A-I! 6/1[;-7 14 ) A”: P o

which, as it follows from Egs. (5.3), (5.4), (5.5), (5.6), corresponds to the bal-
ance of entropy (4.10) written in components of the group decomposition
of symmetric tensors. In Eq. (5.10), the usuval summation convention is
understood over repeated lower and upper indices.

The same group decomposition (5.1), (5.2) can be applied to the symmetric

n
tensors N(k) given by

0]
(51 1) N(k) == lea(k) Elra.
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Emploing the decompositions (5.3) and (5.11) and taking into account the
(n

orthogonality of the base tensors, we express the argument &(A,k) of the

distribution function as a function of the components of the group decom-
o

position of A

L-1) O L-1 24+1

(5.12) (A k)= E(Ayst k) = Z AONK = Y Y Y A,°N,; k),

J=0 dea(J) a=1

where a(J) = {0, 2, ..., J} for J even and a(J) = {1, . J} for J odd. Let A be
an arbitrary Lagrange multiplier of even rank, except (LAU if L is odd. In
particular, (K) = (X) can be taken. Substituting Eq. (5.12) into the distribution
function (4.2) and differentiating the result with respect to the component Ay,!
of (JN\), we calculate the derivatives of components ¥' of potential ‘P((/I\)) with

respect to Apo!

0¥ (Awy’) D do(k) - Pk
s =3 Aml{—j ok, o (L] (2n)3}

_ dw(k) d*k
_ J i, N QSR s

(5.13)

(n
Analogously, the derivatives of the scalar potential #(A) and the derivatives

(9}
of the components ¥*(A) with respect to the components Ay w=123of
(N+1)
A can be determined

coitur) o ok
dAns1y  0Ani1d { ~iIs L +f(é(AM: k)] (275)3}
s Pk
= INN+1lj(k)f(é(AM! ,k)) W,
vl Wi Ays!) 0 do(k) Pk
(Ams") _ “ L
o el rwrend bl R RO T

do(k) ’k
B J ok, Nyt (k)f(f(AMr K)) = 2n)®
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It follows from the properties of the group decomposition of symmetric tensors
that, for symmetric tensors A and B of the even rank I transforming under
rotations like a scalar, the following relation holds

(5.15 AQOB = ¢;(Tr..TtA)(Tr..TrB)

and, for symmetric tensors C and D of the odd rank J transforming under
rotations like a vector, we have

(5.16) COD = ¢)(Ir..Tr C)*(Tr..Tr D),

where ¢; and c; are the respective combinatorical constants.
On account of (5.15), (3.16), the base tensors E¥°, and EN*1", satisfy the
relations

N

N

(5.17)
8y =ENt1 L QENHY = oy (T TrEN 1 L) (T TrEN 1 1)

N
|

™ N+1)
and the group decomposition of N(k) and N (k) implies

()]
Tr.Tr N = Tr..N.Tr [Nyo! E¥°,],
(5.18) : :

(N+1)

[r.Tr N = lr---Tf,[NNH 1I ENt! li]'
7 z

~,

In view of Eq. (3.8), it follows from Egs. (5.11), (5.15), (5.16), (5.17) and (5.18)
that

)
(5.19)  Nxo'(k) = NK)OEY, = [Ny’ K E¥,]OEY,

)
= Npyo' (K EN?, © EN?, = ¢y(Tr.. Tr N)(Tr.. Tt EN?))
1 1 N kbt s | 1

= Jeyho®)|V,o®) |V,
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(5'19) e N+11 N+ 1%
o]’ Ny+g /()= N WOEV"'!; =[Ny, KEN ' JOEN Y,

(N+1)

=Ny+1 EVT L OEY Y = oy (Te, s N )+ (Tr TrEN 1)
T EY

= Vens 1 ho®)| Vo) ‘3“’(").

Substitution of Eq. (5.19) into Eqgs. (5.12) and (5.13) yields

8P (Aps") o dok) &k
T = Vern [ho@Vo® € 57 o
0P (Aps " 3

200 TR e o]Vt ) T s
0 (Aps") , Bw(k)aco(k) d*k
il \/C~+1jhw(k)lvkw(k)|Nf(f(Auz ,K)) )

and we obtain

0P(Ams") _ [en+1 OF (Ams)

Ay (! CN Ayt

(5.21)
0¥ (Aps") _ 0¥ (A"
MAn+1y’ 0Ays+11'

It follows from (5.21) that the transformation of fields A;;" should be
introduced in order to rearrange the system (5.9) to the form of the sym-
metric conservative system generated by a single potential. Therefore, we
define

N
Aps? for all remaining LxX,

— CN+1 , o _ B
(522) A= \/c A’ for I=N+1 and ZX=1,

and express the argument (5.12) of the distribution function as a function of
new fields A"
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2¥7+1

M - -
(5:23)  {(AKk)=E(An" k) = &A1 k) = Z Y Y An*Np'(K)

I=0Zfea(l) a=1

2X+1

3
— c
Z Ans11 J;;}f‘l‘NN+1 (k) + Z E AN+ 15" Ny 1s"(k)

Fea(N+1)\{1) a=1

L-1 2rX+1 __

+ Z Z Z Aps® Ns* (k).
I=N+2Iea(l) a=1

It follows from Eq. (5.23) that the distribution function satisfies the con-
dition

o - s
(5.24) FEAEDK) = fEAL(x1),K) = fE(A " (x,1),K)

under the transformation of the fields (5.22), for all x't and k.
Substitution of Eq. (5.23) into Eq. (4.7) enables us to express the scalar
potential & and_ the components ¥* of the vector potential ¥ as functions of

new variables A,y

n e
@(A) = 45(/1”7) = 45(_,1”‘/),
(5.25) 0 .
T‘(A) = WI(AHY) = q’i(/iuy)-

On account of Egs. (5.23), (5.19) and (5.24), the differentiation of integral
formulae defining the potentials yields

ad’(AnJ) , oy 00(K) 2k
o, = Ve hoRIVe®|" ) T G
(5.26) e 0841
Cney 0Aniy
V(A ") dok) 4’k

Py = Vex Jho®)|V,o®)| ¥ E(4,57,k) ok, ()’
NO

_ %Ay
0Ayo'
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(5.26) sy OV (A aw(k) dok) d’k
[cont] aAN+1 . \/_Ihw(k)w w(k)|~f(f(/1[:r,k)) ok (271:)3
_ [ ex %A
h m 0AN4+, 1],
and
65(2;;7) a 3k 6¢(/1";7)
e NI = T
(5.27
6'1’1(11127) a 5 ) F2®) e’k _5'}7‘(/1”7)
aA_M jNJ (k)f(é(AH‘ ’k)) ak, (27[)3 = aAJAa ’

for J#N+1 and 4#1.
It follows from Egs. (5.26) that, under the transformation of variables (5.22),
the relations (5.21) transform to the form

08(Ary") _ 0¥ (Ar)
0Anery’  0Ayo'

(5.28) o
0¥ (A" 39”(Au”)

Mysard geqy

For fixed values of the arguments Z”“, I#N and X#0, I#N+1 and Z#1
(that is except A mﬁ and Ay, ., i=1,2,3), a closed differential form of the
arguments Ayo', Ay+1' can be introduced

v - O ,
(5.29) Q — Q(AIEY)dANol + E TI(AI};Y)dAn+1 11.
i=1

For any simply connected region of the domain of admissible values of Zm‘,

Ay}, and for fixed remaining Z,,”, it has a potential (A ;") which can be
determined from the following system of four equations

(5.30)



PHONON GAS HYDRODYNAMICS BASED ON THE MAXIMUM ENTROPY PRINCIPLE... 187

It can be deduced from the integral formulae (4.7) defining potentials, from the
form of the distribution function (4.2) and from the form of its argument
£(A15"%;k) that, with the aid of an auxiliary function a(-) defined on (0,00) by the
integral

(5.31) )= i 1:((;‘: 11)) x,

the solution of the system (5.30) can be written in the form

— [ (A k) &k
(5.32) X(Am”)—J Jeho)|Vool)]F GO

Introducing the relations (5.26), (5.27), (5.30) to the system (5.9) and employing
the transformation of variables (5.22), (5.23) in the expressions (4.5), defining
gle right-hand side, we arrive at the equivalent system with respect to the fields

A (x,t) the left-hand side of which is completely determined by a single
function ..#(A“:T)

a[a (a.#)] 6[ 0 (ax’)] -
— | — — + =3 — — = P 7,
ot A‘NOl aA[Iy 0x aAN-'-lli 6/1”-7

I1=0,1,2,.,N-1,NNN+2,..,L-1

5 0,24,.,1 forI even,
T 11,3,5 ., for I odd,

y=1,2.,25+1,

8 8 o r=
o il
0t] 3Ano' \0AN+1+f 0x" [ A N4y 1 \OA N4y o CN+1

d [ i) ( k4 )} | [ | ( ik 4 )] oy
e = o + _—E e N — = P ﬂr
0t dA No* \0AN +14° Ox' | 0AN+1 1 \OA N+ 14"

4=3,5,.,N+1,
B=1,2,.,24+1.

Analogously as in the case of the additional conservation equation (5.10)
implied by the system (5.9), the additional conservation equation implied
by Eqgs. (5.33) results from the multiplication of the system (5.33) by the
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row vector composed of the components A ;' which should be arranged
in the order corresponding to the order of equations in the system (5.33). It
assumes the following form:

(5.34) ’3{ 0 [Z,da i —2.#’]}
ot [ 94 yo* 04,4

LN Y A=A
0x" [0A N+ 4 A4

where the summational convention is assumed over indices i, J, 4, a with the
respective ranges defined in Eqgs. (5.33).

It follows from Egs. (5.22), (5.26) and (5.30) that (5.34) is equivalent
to (5.10) and therefore it is the balance of entropy. This conclusion also
directly follows from the fact that the balance of entropy corresponds
to the kinetic balance of entropy (4.10) taken for the distribution function
(4.2) and the transformation of variables (5.22) does not change the distri-
bution function.

The system (4.4) is a system of L tensor equations. If L is even, then

0 (2 (L-2) ™
each of the multipliers A, A,.., A can be chosen as A, and therefore the
construction of the system (5.33) can be performed in %L ways. If L is
0 @2 (L-3) ()

odd, then A,A,., A can be chosen as A and the same construction
can be done in j(L—1) ways. Hence, 3L or 3(L—1) equivalent symmetric
conservative systems generated by a single potential can be found for

©) ™ N+ (1)
even or odd L respectively. In particular, if A is taken as A, then A = A

is a vector and the group decomposition reduces to one component Ayy’
() (1)

of A and three components A;,’, j =1,2,3, of A. Then ¢, =c¢, =1 in Egs.

(5.17), (5.19) and, as a consequence, Egs. (5.17) and (5.19) reduce to identities.

In this case, the potential s# assumes the form

a(f (E(Apr" k) dk
hok)  (2n)*

(5.35) H(Ams") = _‘J‘

and corresponding system (5.3) simplifies to the following form:

. o[ @ (o], o[ & (0#\]_ e
(. ) 5t aAool 3/1”" 5x‘ aAl li aA‘u‘y - "
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(5.36) 1=0,1,2,., L-1,

[cont.]

_ 0,2,4,..,1I for I even,
“11,3,5,.,1 for I odd,
y=12.,22+1.
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