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On the stability of an evaporation viscous jet (*)
J. SKIEPKO (WARSZAWA)

THE STABILITY problem of an evaporating viscous jet is discussed. The flow in the surrounding me-
dium is assumed to be potential. In equations for disturbances, the velocity of flow in basic flow is
approximated by a constant value. The solutions in the region of a jet and in the vapour region are
expressed by modified Bessel functions. Using the boundary conditions on the surface of a jet, the
condition of the existence of disturbances growing in time is formulated. This condition is formulated
in terms of the solutions of a certain algebraic equation, including modified Bessel functions.

Dyskutowany jest problem stabilnosci lepkiej strugi. Zalozono, ze przeplyw na zewnatrz strugi jest po-
tencjalny. W rownaniach dla zaburzen, skladowe pr¢dkosci podstwowego przeplywu aproksymowano
stalymi warto$ciami. Rozwiazania w obszarze strugi, jak tez i na zewnatrz nicj, wyrazaja si¢ za
$rednictwem zmodyfikowanych funkcji Bessela. Korzystajac z warunkéw brzegowych na powiemcm
strugi, sformutowano warunek istnienia rosnacych w czasie zaburzen. Warunek ten jest sformutowany
w terminach istnienia pewnych rozwigzan algebraicznego rownania zawierajacego zmodyfikowane
funkcje Bessela.

HUccnenyerca npobnema ycroduuBocTu Baskoit crpyk. [Ipeanonaraerca, uyro Tedenune
BHe CTPYK fIBJIAETCA MNOTEeHUMUa/lbHOM. B ypaBHeHMAX O/NA BO3MYylleHWI cocTaBnA-
IOl[Me CKOPOCTM OCHOBHOIO TEeYEeHUs aNNpPOKCMMUPOBAHbLI NOCTOAHHBIMM 3HAYECHHUAMM.
Pemenna B 06/1acTH CTPYK, Kak TOXKe W BHE €€, BLIPaXKalOTCA NOCPEACTBOM MoAubULM-
poBanubix ¢pynkumni Beccenn. C ucnonb3oBanueM rpaHMyHbIX yc/lOBMI Ha NOBEPXHOCTM
CTPYK, CHOPMYIMPOBAHO YCIIOBUE, FapaHTHPYIOLLEE CYIIECTBOBAHUE BO3PACTAIOUMX BO
BpPEMEHU BO3MYUIEHUMH. DTo ycnoBue chopMyIMpoBaHO B TepPMMUHaX pemeHuit anrebpa-
MUYECKOro ypaBHEHUH, coAepyKaBulero MmoaMdpuumpopanible pyHkunu Beccens.

1. Introduction

IN MANY TECHNICALLY important applications, due to high temperature or more often
due to low pressure of the surrounding medium, liquid jets evaporate on their sur-
face. The appearance of evaporation on the surface of a liquid jet produces an ad-
ditional mechanism of instability. Its interactions with other mechanisms such as ther-
mal conduction or surface tension can, in some cases, make flow more stable, in others
can amplify the effects of instability. The motion in an evaporating jet and in a sur-
rounding medium, which will be called a basic flow, does not have a simple mathe-
matical description. It is necessary to simplify the description of basic flow; this stems
not only from difficulties in solving the governing equations but also from the need
to have a possibly simple form of system equations for the disturbances. Approxima-
tion of the parameters of basic flow by constant values leads to the equation for di-
sturbances in the form of Bessel equations. Having the general form of the solution
for disturbances and using the boundary conditions on the surface of the jet, a con-
dition which guarantees the existence of the solution growing in time is formulated.
This condition has the form of an algebraic equation dependent on wave number and
wave speed. In the limited case it takes the well-known form of the Rayleigh condi-
tion.

(*) The author was supported by the Polish government under the contract CPBP 01.22.
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2. A basic flow and governing equations

A cylindrical infinite viscous jet of the radius a is immersed in an inviscid gas. The flow
in the gas region is assumed to be potential. In the vicinity of the surface of the jet, the
liquid evaporates in a narrow layer. Such a layer, called the thermal layer, was introduced
by H. J. PALMER [2] in his investigation of the stability of the evaporating semispace.
In Palmer’s discussion on the boundary between the thermal layer and the liquid, the
temperature and flux of heat are continuous. On the boundary between the thermal layer
and vapour, the flux of energy has to be continuous. In the case of a cylindrical jet, the
introduction of a thermal layer would involve too many calculations, so we assume that
the evaporation process takes place only on the surface of the jet. This means that the
thermal layer degenerates at the surface of the jet. Then the surface of the jet separates
liquid particles from vapour particles, which just in the last moment were reproducing
from neighbouring particles of the liquid jet. This means that the temperature of vapour
particles on the surface of the jet is lower than the temperature of the neighbouring partic-
les of the jet. This difference in temperature is adequate to the amount of heat needed for
evaporation. The temperature after evaporation is a function of the temperature before
evaporation. We denote

2.1} T, = F(Ti).
Expanding in the Taylor series in the vicinity of 7}, we obtain
(2.2) TL-T)=FITG-TH+...

The last relation says that the disturbances of the vapour temperature are equal to the
disturbances of temperature of the jet at the same point multiplied by F'(7}").

The mathematical description of the flow inside the liquid jet and in the vapour region
is made possible by a suitable system of differential equations and boundary conditions.
In the cylindrical coordinate system », ¢, z, with the axis z coinciding with the axis of
a cylindrical jet, the liquid region corresponds to r < a. Assuming low velocity in that
region, the Navier-Stokes and energy equations with convectional terms omitted can be

applied.
Forr<a
(2.3) V.U =0,
(2.4) - glvp, + ViU =0,
i
(2.5) bV =0.

Neglecting the viscous effects in the vapour region leads to the following system of equa-
tions for r > a:

(2.6) v-Uu, =0,
VP,
(2'7) (U, VU, = - )
v
(2.8) kYT =0,
where U; — velocity vector, P; — pressure, o; — density, ¢,; — specific heat at constant
volume, T — temperature, k; — coefficient of thermal conductivity, 1 = [, v, [ refers to

the liquid region, v refers to the vapour region (r > a).
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On the limit between the liquid and the vapour regions, the conditions of conservation
of mass, momentum and energy take the form for r = a

(29) Veow = Vier = mo,
oVi 2 1 2 1
(2.10) =¥ ZMW —me = —P —me, - oG,
ou
(2.11) s+ ol = mUy
| a1y
(2.12) MoAvap + 2'7(3)(&1 -+ k’—c# =
(2.13) T, = F(TY),

where V; — radial component of velocity, U; — axial component of velocity, ¢ — coeffi-
cient of a surface tension, G = (1/R;) + (1/Rz), where R, R, — the radii of a curvature
of a normal section of a surface. F(7}") — known function determining the temperature
of vapour produced by the liquid at temperature T}, ny — evaporation rate in steady
conditions, Ayap — the latent heat of evaporation for the liquid.

To determine the evaporation rate 7, the formula

1/2 0
M P P,
2.14 =F | — — —
( ) Ui (ZWR) (TSI/Z (TU)I/Z) )

will be used, where FE is the evaporation coefficient, R is the gas constant, M is the
molecular weight of the liquid, P is its vapour pressure at the surface temperature T,
and P, and T, are the pressure and temperature of the gas phase above the liquid (cf.
MAA [3], PALMER [2]).

3. An evolution of small disturbances

Investigation of the stability is equivalent to an analysis of the behavior in time of
the small disturbances imposed on the basic flow. The differential equations describing
the evolution of the small disturbances are obtained by linearization of Navier-Stokes
equations for the liquid region or Euler equation for the vapour region in the vicinity of
a basic flow. In that linearization the components of the velocity vector are approximated
by the constant values. Denoting the disturbance of the vector of velocity by u;, i = I, v,
we can put

(3.1) u, = Vpy,
¢y — the scalar function.
This is so because we assumed the potentiality of the flow in the vapour region. In

the liquid region the flow is viscous, but there we can represent velocity as a sum of the
potential and vortical parts:

(3.2) u=Ve +VxB, where B= (0,-%,0) .

Using the representation (3.2) in the linearized form of Navier-Stokes equations and a
continuity equation, the following equations are obtained:

2 10 &
(3.3) 0t 5 (] " Y oo O _

o v or 0922 o Ot ’
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O _ M
(3.4) =
o 10p | P _
(3.5) = T et el
2 2
(36) K @ = a ’.FI +o— 167—‘1 + 6 "rl K = Q1Cyl )

Yor T orz T rar | 922 k;

In a similar way, from the Euler equations, the continuity equation and the energy equa-
tion, the equations describing the evolution of disturbances in the vapour region, can be
derived in the form

Opv 0P _ _Pu
37 + =-=
( ) 8t v 0z 0Oy '
a Pu 16‘100 azpv —
38 o e Ta T O
at, aT,\ _ 8°T, 19T, 0T, | &°T, _ OuClov
aat (G +o%e) =t i ot e

U — the mean velocity in the jet region.
From the conservation laws of mass, momentum and energy on the surface of the jet,
the following conditions hold: for r = a
Ay Js ds . m
e - R} ; i L9
or ot dz  pw
O o LB 0

ar r 0z ot o’

102 9 19y , 0P O 10y _  0Opy
i) ML a2 " orr or +26r(’) o (E Tra:) Moz

(3.10)

+77|U1

9? 19
(3.12) = pr = 2nome; "t + 2 ( i o ( w')) =—p + %(1 —k%a®)s — 2mme;

or? r Or
3 2 a7,
(3.13) MAvap + inﬁm(gv“ o) lura—i =0,
(3.14) T, = T}, where 7= F'(T}).

In the above expressions, the disturbance of the surface of the jet has been assumed in
the form

(3.15) s(z,r,t) = 5(r)eftTikz
A similar form for the other parameters is imposed
ilr, z,8) = gy (r)eft+*e
pi(r, z,1) = gy (r)e 2
(3.16) Ti(r, z,t) = Ty(r)ePtikz
pu(r,z,1) = By (r)ef* i,
Ty(r,z,1) = T,,(r)emﬁkz ;
where k — wave number, 3 — wave speed.
Using these expressions, Egs. (3.3), (3.5), (3.6), (3.8) and (3.9) can be converted into
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forr >a
(3.17) B+ 17, — %, =0,
(3.18) sy (8 + ikU)T, =T, + ;':f*‘:, ~ ¥*T, ,
forr <a
(3.19) B - Ui - 6, - B2, = 0,
(3.20) P0)+ 1B0) - K7 =0,
(3.21) }fT1 =T} + ~T{() — BT

The most general solution of the above system which vanishes at infinity and is finite at
r = 0 has the form

(3.22) Pi(r) = Csrlai(rls)
(3.23) wi(r) = Cily(kr),
(3.24) ?,(r) = C3Ky(kr),
(3.25) To(r) = Calo(kr),
(3.26) T, (r) = C4Ky(l3r),

where C), Cz, Cs, Cs, Cs are constant, 2 = k2 + k18, 12 = k? + k, (8 +ikU), I} = k2 + Q‘ﬁi,
and I, Ky, I; are modified Bessel functions.

4. Solvability conditions

Assuming that the disturbances of the pressure and the temperature are small,
the disturbance of the evaporation rate, after using Eq. (2.14), can be written in the
form

4.1) m = AT, + AT, + Bipy,
where

. ( )1/2 P 1 1 P
1= 7R aTl (Tn)l/z 2(7}())3/2 ea )

1 1/2
Ag == ;
2 (ZWR) (T‘ﬂ)3/2 r=a

1/2
g=g LY A )
2TR (’1’:))1/2 r=a

The solutions (3.22) to (3.26) do not satisfy the boundary conditions (3.10) to (3.14) for all
wave numbers and wave speeds. To find the condition under which these conditions can
be satisfied, the solutions (3.22) to (3.26) are used in Eqgs. (3.10) to (3.14). The elimination
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of s and Cj in the resulting equations leads to the following system:

D Cy + D12Cy + Dy3Cs + DysCs = 0,
D Chr + DpCh + D23C3 + DypsCs = 0,

(42)
D31Cy + D3Cz + D33Cs + D3sCs = 0,
Dy Cy + DgzCz + Dy3C3 + DysCs = 0
where
7 +ikU
Dy = LI(,(ka), Dz = ("ﬁ_Al gt As) Iy(lza),
a Qv o
+ ikU)? ) . .
D13 = BZMQU - ﬂ(,@ + ZkU)[\()(kG.) -_ ﬁk]\‘[)(k(]),

a
Dy = (8 + ikU)al3I}(aly),
D21 = 2zk,u;I{,(lca) + iknu s I()ka, Dzz = —[UAlf()(lza) + T[[)(Iz&)UAz] 3

Dy3 = — UB1oy(B + ikU)Ko(ka),
Das = pu(=k2sI(als) — ik Ii(als) - %141. (aly) — mol2 I (als)
D31 = aiflo(ka) + 2uk2Il (ka) + a‘z’_ﬂa — k2a?)kI)(ka),
Dy = — {%’?Aln.(zza) + ﬁ;m (1 - k%a?)Aydo(la) + 7 ,I\‘,:f('f;)) 2noer ' A2Ko(l3a)
+ 02291 - kzaz)A2[{4,(l3a)] } ,

D33 = [2’709;'131& (B + ikU)Ko(ka) — v (B + ikU)Ko(ka)

o 2 2\ 0v ‘1 o
= 55'5(1 —ka )EBl(ﬂ + zLU)I\.,(La)] ,

Dss = 2mikly Iy (als) — %(1 — k2a?)ikly Iy (aly)
D41 = D4,4 = 0,

3
Dyz = Avap + 5(’)(1)2(952 — 07 ) Aly(lza) — k2 Ij(l2a)

Iy(la 3 - 5
- T% /\vap + 577(2)(9;2 — O 2)—42]'\0(130)1

3 _ . ,
Ds3 = dap + 5105 " = 07 ) Brov(B + ikU) Ko(ka) .

The system of equations (4.2) has a nontrivial solution only if

Dun Diz Dz Dys
Dy Dy Dz Dys

4.3 =0.
43) D31 D3z D3z Dss

Dy Dsa Dy Dys

This equation determines the wave numbers and wave speeds for which the boundary
conditions (3.10) to (3.14) can be satisfied. If, for some wave numbers k, there exist wave
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speeds 3 with positive real parts, then there are disturbances growing in time; this means
that the investigated flow is unstable.
In the case of the lack of evaporation, the coefficients 7y, A;, A2 and B; are equal
to zero and D43 = 0, Dy = —klz[y(l2a) # 0, and the last equation of the system (4.2)
is satisfied only by C; = 0. Putting C; = 0 in three other equation- of the system (4.2)
transforms them to the system
- DnCi+ Di3Cs + D1sCs = 0,
DuCy+ Dp3Cs + DasCs = 0,
D31C1 + D33Cs + D3sCs = 0.

The condition for the existence of nontrivial solutions of the system (4.4) has the form

Dy Dz Dys
(4.5) Dy Dz Dys|=0.
D3y D33 Dss
If u = o, = 0, the last condition takes the well-known form
a Il(k(l)

(4.6) # =
obtained by Rayleigh [5].

— (1 - k*a’)ka

oia I“(ka) ’

5. Final remarks

The result of the present analysis is a derivation of the condition (4.3) as a kind of
tool which makes it possible to obtain, through numerical calculation, the main stability
characteristics in every defined case. Unfortunately, in the general case that condition
does not allow us to deduce even qualitative information concerning the destabilizing role
of evaporation.
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