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Mechanical models for lattice vibrations

L. G. KARLSSON (STOCKHOLM)

THE TRANSVERSE lattice vibrations of a mechanical model which consists of a one-dimensional
chain of pair of masses is studied. The masses with different moments of inertia are connec-
ted by massless beams and are also influenced by transverse forces. A transverse wave moves
along the chain and causes transverse displacements and rotations of the masses. The discrete
equations of motion and the dispersion relations are derived. By a limit procedure the discrete
equations of motion are transformed to continuous ones. The results are then applied to KNO;.

Zbadano drgania poprzeczne sieci w modelu mechanicznym stanowiacym jednowymiarowy
laficuch par mas skupionych. Masy o réznych momentach bezwladnosci polaczone s3 niewaz-
kimi pretami i poddane réwniez dzialaniu sil poprzecznych. Fala poprzeczna posuwajac si¢
wzdtuz laficucha wywoluje przemieszczenia poprzeczne i obroty poszczegblnych mas. Wypro-
wadzono dyskretne réwnania ruchu i zwigzki . Przejicie

rownania ruchu na zaleznosci kontynualne. Wyniki zastosowano do KNO;.

HecenoBanb! nonepeuHble KoNeGaHMA PElIeTKH B MEXAHWYECKOH MOJENH, COCTaBIMIoLed
OQHOMEDHYIO Ilellb IAP COCPeNOTOYEHHBIX Macc., Macchl ¢ pasHBIMH MOMEHTAMH HHEPITHH
CcoelMHEHb! HEBECOMBIMH CTED)HHAMH H NOMBEPTHYTHI TOXKE MAeHCTBHIO MONEPEUHbLIX CHI.
Tlonepeunas BoONHA, OBHTAACH BAOJb LENH, BhISLIBAET MONEPEYHbIE MEPEMEINEHHs ¥ Bpa-
IeHHA OTHAENBHBIX Macc. BhIBeeHbI MUCKPETHLIC YPaBHEHHA JBIDKCHAA H JHUCTICPCHOHHLIE
cooTHomenus, IIpene/bHELl nepexo[ NpeBpAINEET YPABHEHHA NBIKEHHA B KOHTHHYAbHEIC
3aBHCHMOCTH. Pesynsrath! mpuMereHBI K KNO;.

1. Introduction. The mechanical model

THE IDEA of investigating discrete and continuous mechanical models for some special
lattice vibrations came to me upon reading A. AskAR’S [1, 2] and 1. FiSCHER-HJALMAR’S
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[3, 4] works on the KNO; crystal. The continuous model is compared with the micropolar
theory.

The unit cell of KNO, in its aragonite structure is shown in Fig. 1. The left and the
middle figures show four molecules in the unit cell and orthorhombic symmetry. There-
fore waves travelling along the three orthogonal axes (x, y, z) are uncoupled.

In the mechanical models we consider the case of a transverse wave travelling along z,
that is along the zigzag-shaped chain of ions about the I axis, transverse displacements
along y, and rotations around x are assumed.

In AskAR’s discrete mechanical model, see [1], the ions K* and NO;5 are considered
as rigid bodies, the chain is made linear, the ions are joined by massless beams, which
cause coupling between transverse displacements and rotations. Furthermore there are
transverse forces on the ions from the chains in the neighbourhood. This means that
a transverse acoustical, a transverse optical and a rotational mode are obtained.

In the mechanical discrete model discussed here we consider a more general case with
two rigid bodies whose masses are M, respectively M, and moments of inertia J, respec-
tively J,, see Fig. 2. In this model the chain is simplified to be linear with constant dis-
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tances a between the masses. These are joined by identical massless beams with the ben-
ding spring constant K. Furthermore every mass is acted on by a pair of transverse forces
assiociated with the spring constant C. Transverse displacements are indicated by v; and
rotations by ¢;. Especially for KNO, we have that M, <> NO3, M, < K* and J, van-
ishes.

The aim of this investigation is to derive from the equations of motion of the discrete
model the corresponding equations of motion of a continuous model. The last equations
are when J, vanishes compared with equations of motion obtained from the micropolar
theory, see [3].

Of course this simplified model can give only qualitative results, for example for crys-
tals. In the case J, vanishes, a similar but better model is presented by I. FiscHER-HJA-
LMARS in [4].Wave solutions for discrete models similar to the ones above and corres-
ponding continuum models are given in [5].
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2. Derivation of the continuous model

At first the equations of the discrete model are shown, see [1], which are linear differ-
ence equations:

i 1

(2.1 M9, = (C+K) (v2+9,—20,)+ E“K“(Q’z—%)’
" 1

(2.2) M,9; = (C+K) (vs+9,—2v;)+ 7 Ka(ps—9,),
w 1

(2.3) Ji ¢y = EKG("JO —0;)— —G-Ka (92 +90—49,),
o 1

2.9 J2pr = 7 Ka(v, —v3)— % Ka*(gs+9, —49,).

As the continuous model is valid only for long waves (ag <€ 1, g = wave number),
compare [5], we derive the equations of motion for long waves of the discrete model with
Taylor series expansions and retaining derivatives up to the second order. We obtain
now the following linear differential equations:

(2.5) Mlijl = (C+K) (203 +azﬂ;,33 —-201)+Ka=<p;.3,

(2.6) M, = (C+K) (20, +0%0, 33 —20,)+Ka?p, 1,
. 2 1 1

(2-7) Jl ¢1 = _Kazvz,a—gxazwl —E-Kazwz—gKa‘?’z'gag
" g Do Bos T

(2.8) J,p, = —Ka 91’3——3*1(& wz—?Ka qp,—-E-Ka ®1,33-

With wave solutions as ¢'®*~®" an acoustical mode, an optical mode and two rotational
modes are obtained. Then we can calculate the following dispersion relations and ampli-
tude relations:

Acoustical mode

2C

2 - 2,2
(2.9) Whe = 3 M,a q2,
2.10) % 140Ga%?), 2 =0G@qg), ¥ =0(a).
L L2
Optical mode
(2.11) Wiy = 2(C+K)(— + —-)+0(a 24%),
O __Ma o P 3
(2.12) Chgadi +0(a%g?), o 0(ag), % = 0(aq).

Rotational modes
12
(2.13) 2 1 Ka* J‘ (( ) ) +0(a*q?),

Wrot1,2 = 3 Jl Jz
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Sel(g) -5+
214 P _ =2 1 £ +0(a%q?), 2L =0(@aq), 2= 0(aq).
%= d, (ﬁz_‘f_l.n)m (a*q?) 9 (aq) =y (aq)
J, J, J,
S . ; ; 1 Ka? Z
For vanishing J, we obtain only one rotational mode with w.,, = e while
1

Wieorz —* .

‘We shall derive continuous equations of motion comparable with the differential equa-
tions of the discrete model. We transform the discrete model to a continuous one by
some limit procedures. Those are chosen in such a way that the following conditions are
fulfilled:

+ M.

1. The density o’ = % must be finite.

2. The dispersion relations w,.(¢) and w;q;,,(g) must be identical in both models.
We let g vanish, and the following terms must remain finite and unchanged compared
with the discrete model:
M My J Uy

(215) T, a 3 e y = ) Cﬂ, Ka.

We make the following variable transformations in the discrete equations of motion:

M,v,+M,v
(2.16) u= Ul _ﬂz, o= _lMi_.T.jJ_-:‘_z ’ 'Pi = ¢1+W2’ wz = y?1+?3.

The limit procedures are inserted, what means that a lot of terms vanish, and we obtain
the following continuous equations of motion:

M+ M,.. 1
'—1‘2”‘%9+(Cﬂ+Ka)v‘33+ EKR[

(2.17) -1 omi. ]

yx—1 Y13t yx—l%‘a

(2.13) Jl‘:z'iﬁl = —Kg(x1_1+_'{.=__ o lKﬂ[ Jx(z)”“'?‘)-i'-fz(?—?-)

+73 a(yx—1) >
Jy (2% =2%)+J (2% —1) ]
- a(yx—l) 4241 B
S o (J T) 1 Ji 2y =1)+J2(* -2y)
@) ""(?*”T vs ?"“[ alyx—1) .
Jy(x—=2)+J,(2yx—1)
a(yx—1)

For the continuous model finally the following results are obtained:

1. The optical mode will disappear as w,,, — 0.

2. The dispersion relations w,c(g) and w,o;,» (¢) are identical for both models if J;
respectively J, are modified, considering the g2-term in @;q,;-
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3. The amplitude relations are identical for both models when g vanishes, but they
differ more and more for increasing q.

Furthermore we observe that this continuous model is not a real continuum model
which would give the acoustical mode only, compare [5].

3. Comparison with the micropolar theory

From the micropolar theory we obtain the following equations of motion:

id ] ’ 1 ’ ’ 1 r’r
@.1) (A ‘—'(¢_+"4*k)°.sa+'ik9’.a,

r20%% I r r_r l -~
(3.2) 0j'9' = —k'g +“9’.33—'“§k”,3s

¢’ — mass density, j* — moment of inertia/mass unit, ¢’ — symmetric stress coefficient,
k' — antisymmetric stress coefficient, o’ — couple stress coefficient, v’ — transverse dis-
placement, ¢’ — microrotation.

These equations give one acoustical mode and one rotational mode. This corresponds
to the case in the continuous model discussed above where J, vanishes.

This case is obtained if we insert y = » = 0 and let J, vanish in the corresponding
equations of motion.

M, +M,,. 1 1
(33) —1-20—20 = [Ca‘}'IKa]!J,;;'{" TKGQ‘a,
Ji o
(3.4) 5= —-%Kav.;—-:lzKaqu.
W/,
2.5 1
, o0
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C- Continuous [
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v — transverse displacement of the mass center of two neighbouring masses, p — rota-
tion of the mass with J;.
Now we identify these equations with the previous micropolar equations and obtain
f M 1+ M 2 rar J_l

3.5) e = QJ=20, ¢’ =Ca, k'=Ka,

&' = 0 (no couple stress), ©' =9, ¢ = %tp.

The dispersion relations for KNO; are calculated both from the discrete difference equa-
tions and from the derived continuous equations. In [1] we have M,, M,, J; and a de-
termined from the crystallography, C and K from experimental values on w,, and wy,
for long waves. This is shown in Fig. 3.
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