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Shock wave in piecewise linear elastic material
Z. WESOLOWSKI (WARSZAWA)

THE SIX-DIMENSIONAL deformation space is divided into a number of regions. For each deforma-
tion belonging to a fixed region there holds the same linear stress-strain relation. The shock
wave propagates in this piecewise-linear elastic material. The general algebraic propagation
equations are given and three special cases are discussed.

Szesciowymiarowa przestrzen odksztalcen jest podzielona na pewna liczbe roziacznych obszarow.
Kazdemu obszarowi odpowiada liniowy zwiazek naprezenie—odksztalcenie. W takim odcinkami
liniowym materiale sprezystym propaguje si¢ fala silnej nieciaglosci. Zakladajac, ze jest to fala
adiabatyczna, podaje sie algebraiczne warunki propagacji dla przypadku ogoélnego i dyskutuje
sie przypadki szczegOlne.

IllectumepHoe npocTpaHcTBO AedopMmarinii pas/iesieHo Ha ONpe/esIeHHOe KOJIMYECTBO paseHHe-
HHbIX obnacreii. Ka)knoit 06acTH cooTBETCTBYET JTHHEIHOE COOTHOIIEHHE HaNpsKeHHe-Aedo-
pmanmsa. B Takom MHTepBanamMH JIMHEHHOM YNIPYTOM MaTepHalle PacnpOCTPaHAETCA y[apHas
Bomaa. Ilpenmonaras, uro ata BosHAa aauaGaTHyecKas, NAIOTCA anreOpaHYecKHe YCIIOBHA
PacIpoCTpPaHeHHA AJIA o0LIero ciyuas H oDCY»KIaloTCA YacCTHhIE CIIYUYaH.

Introduction

THE PIECEWISE linear elastic material as the approximation of the nonlinear elastic ma-
terial was discussed in [1]. In the present paper the strong discontinuity wave propagating
in such a material will be considered. The corresponding solution for the nonlinear ma-
terial was given in [2] for the one-dimensional case, and in [3] for the three-dimensional
case.

1. Piecewise linear elastic material

Denote by u; the displacement vector, and by ¢; the (linear) strain tensor. In the Car-
tesian coordinate system {x'} we have

1
(1.1) &y = 5(“1.;"‘“}.1),

where the comma denotes the partial differentiation.

The symmetric tensors ¢;; are the points of the six-dimensional linear space V. Divide V/
into a number of disjoint regions V,, ¥,, Vs, ..., Vx, Vi, ... and assume that to each
region there corresponds the linear stress-strain relation. To different regions there corre-
spond in general different stress-strain relations. Denoting by o the stored energy, by ¥/



352 Z. WESOLOWSKI1

the stress tensor, by T the temperature and by p the mass density, we have for ¢;; belong-
ing to the region Vi the following relations:

1 K K K 1
o= Ef:‘J"“e” erstcey+c+ — An*+By+diem,

2
(1.2) 1 . .
E'r” = e, + ¢ +d'y,
T = An+die,+B,
(1.3) ¥k

K K K
ciirs — rsii — clirs ol = cdi gii = git,

K K K - _ )
where ¢, ¢, ¢ are constants. The constans describing the thermal behaviour d¥,
A and B are assumed to be region-independent, but the generalization is straightforward.
The material defined by Eq. (1.2) was discussed in [1] and [2].

Denote by Vg, the boundary between Fx and V.. Assuming that 7'/ is a continuous
function of &;;, we have

K L K L.
(1.4) (¢ — %) g,y (¢ —ct) = 0

for &;; € Vx,. Because Eq. (1.4) is linear in ¢&;, the boundary Vg, is a hyperplane. Since
it divides two 6-dimensional regions, it is a 5-dimensional hyperplane. From this fact
it follows that the coefficients in Eq. (1.4) must have the following form:

K KLKL KL
ciju Ijrs - 2K mi; mrx

(1.5) K KLKL

cf—c” = 2N mY,

KL KL
where m” isa symmetrlc tensor, and K, N two constants. Not restricting the generality
KL

assume K = +1 or K = —1. For K = +1 the region ¥V, is softer than the region V.

No additional restrictions have to be imposed on m'" if the material has no additional
symmetry. The points g;; situated on the boundary Vg, satisfy the equation
KLKL KL
(1.6) K m™e,+ N = 0.
At the boundary V. not only 7%/, but also ¢ must be a continuous function of &;;.
From Eqgs. (1.2) and (1.5) it follows that
K L KL KL

1.7) c—c = N*K.

For two neighbouring regions V; and V,, we repeat here the relations (1.2) slightly
changing the notation

= S Kmtim ')Susr..+(C'JiNm”)Su"'(ci ) Tc )+ 2 A+ By+die,n,

(1-3)
-:3—1” = (¢ +Km'm™) e,,+ (¢ + NmY)+d'n;

(1.9) clirs — ciirs — orsij i — odi bl — i
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where the upper sign holds for the region ¥, and the lower sign for the region ¥,. The
equation of the dividing surface ¥,, reads (cf. Eq. (1.6))

(1.10) Km™e,,+N = 0.

2. Conservation equations

At the front & of the shock wave the displacement gradient u; ; is discontinuous.
Denote by U the propagation speed of & and by m; the unit vector orthogonal to &.
Since the displacement u; is continuous at &, there hold the compatibility equations
(cf. [3D
Q1) I["{:k]] = pH;n,,

[ux] = —pHU,

(2.2) HH =1, nni=1.
The double brackets denote-the jump at &. In terms of the values (- )%, (-)F at the rear
and front sides &2, & of &, we have

[-1=Cr=C)

The vector pH; is the amplitude of the shock wave. Due to Eq. (2.2) the parameter p
has the meaning of the intensity of the shock wave.
From the definition of ¢; and the relation (2.1),, it follows:

(2.3) 2[[8;1]1 = pH[ﬂJ+ijﬂ‘.

Both the jump of the deformation tensor ¢; and of the entropy 7 are in general not
equal to zero. To simplify the notation denote the entropy jump by §

(2.4) s = [n].

Since &; and % are discontinuous at &, also the stress 7'/ and stored energy o are
discontinuous at &, cf. Eq. (1.8). The conservation laws for momentum and energy must
therefore be written in the integral form, from which there result the Cotchine equations,
cf. [4] and [5]

@.5) [+"]n,+oUTi] = 0,
2.6) gULU+-%-£f‘ﬁ, +[Hi]n, = 0.

Equations (1.8), (2.1), (2.5) and (2.6) are the governing equations for the shock wave
propagation in the piecewise linear elastic material. This set of equations must be comple-
mented by the entropy inequality. We confine our considerations here to the adiabatic
process. In this case the heat flux equals zero and

(2.7 [#] = o.



354 Z. WESOLOWSKI

3. Single region

The deformation state of the material points situated at the front side &% of the dis-
continuity surface & differs from that of the points situated at the rear side $°2. These two
states belong either to a single region or to two neighbouring regions Vg, and ¥V, or to
two regions Vi, ¥, having no common boundary. Consider first the case, when both
states belong to the same region V. The jumps of the stored energy and stress are

1 1 .
[o] = 5 [ ey, e,.,]]+c”|[e,;]]+—2—A[nz]]+B|[7i]]+d“[[eUn]],
(3.1 {
S = o fen]+d[].
Note that for the jump of the product of two quantities a, b the following formula
holds:

3.2) [ab] = a®b® —a"bF = [a]<b> +<a)[b],
where (- ) denotes the arithmetic average of a and b
(3.3) 2ay = (- )"+ ().

Taking into account the symmetries of the coefficients (cf. Eq. (1.9)) we have

[o] = ¢¥r*Cei;y pH ng+ c’pHin;+ AS+2B{n) S+d"{&;;> S+d"'{n)y pH n;,
34
@4 é[r”]] = ¢""pH n,+d"S.

It remains to calculate the jumps of the two products in Eq. (2.6). Basing on Egs. (3.2)
and (2.1), we have

\I %a, a'i = —CidpH'U,
(3.5) il

E[r” i) = —(cHr*Ce,sy+ct +d"<(n>) pH;+ (¢Y"*pH n,+d" S) (it .

Substitute now Eqgs. (3.4) and (3.5) into the energy conservation equation (2.6) and
the momentum conservation equation (2.5) to obtain
(3-6)  QU(ALn> + B+d",;)) S —oU*Cityy pH' + ¢"pH nyniCityy +d"Cityn, S = 0,
3.7 oc"pH,n,n;—oU?pH'+d"'n;S = 0.

Multiply Eq. (3.7) by <{#;)> and subtract the resulting equation from Eq. (3.6). Taking

into account the fact that the expression in the brackets in Eq. (3.6) equals the average
temperature 7 (cf. Eq. (1.2);)

(3.8) A(n) + B4+d™epy = (T,
the resulting equation reduces to the equation
(3.9) S(TY = 0.

It follows that S = 0 and Eq. (3.7) reduces to the propagation condition
(3.10 (c""*n;n,—U26")H, = 0.
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The normalized amplitude H; is the proper vector, and the squared speed U? is the
proper number of the tensor ¢""*n;n,. The propagation speed U does not depend on the
intensity of the wave.

4, Two adjoining regions

Assume that the state at the rear side &# of the discontinuity surface & coresponds
to the region V,, and the state at the front side &F to the region V,. Both regions V,
and ¥V, have a common boundary V;,. The formulae for the stored energy o and the stress
tensor 7'/ are given by Eq. (1.8), and the equation of ¥, is given by Eq. (1.10).

The jump of the displacement gradient u;, , is given by Eq. (2.1) where pH; is a vector
to be calculated. Instead of using one single parameter p, we shall use two parameters pg,
pr defined by the following relations:

4.1 P=7Ppst+pPr, Ps=>0, pr=0,
(u1,0)® = ap+psHny,
4.2) (u,)" = aw—prHin,,

Kmika[k‘{"N = 0.

Provided (u; x)® and (u; )" are given and m*H;n, # 0, this system may be solved for
Ps, Pr and a;,. Note that a;; is situated on V,,.
Define now two additional parameters a; and a by the relations

(#,)® = a;+psHU,

4.3 i

(42} (#)F = a, —prHU,
n® = a+psS,

@4 7t =a—pgS.

Basing on the relations (4.2)-(4.4) and (1.10), we calculate the jumps of the strain
tensor, specific energy and of the products appearing in the energy conservation equation
(2.6). The calculations lead to the following formulae:

. 1
4.5)  [o] = (pa+pr)c"a,H.n+ E(Pfu —p#) ¥ H H n;n,
+ —;-(p§+p§) K(mYHn;)*+ (p —p%) (d‘*‘H:n;S+% AS’)

+(ps+pr) (c"Hn;+ AaS+ BS+ad"Hn,+d"a,,S);

1, .
) E[[T“]] = (ps+ps) (¢V*H,n,+d"'S)+ (ps —ps) Km"m"™H,n,,
@) Slii] = ~@o+ P HU + 5 (B3~ PDU?,

. 1, ...
“8)  —[7"u] = (pa+pr) (—c""a, H,U+c"H,n,a,~c'H,U~d"H,aU+d"a,S)

—(ps—p#) (c""H,H,nn,U+d"H,US) - (pj+pp)m“'m"H Hn,KU.
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The expressions (4.5)-(4.8) after substituting into the momentum and energy conser-
vation equations (2.5), (2.6) lead to the following system of algebraic equations:

@9)  (pa+pr) (UH,nyn;+dVn;S—H'U?)+ (pp—pr)Km“mH,nyn; = 0,
£ o 1 .
(410) =2 (93— (I H H,nn,—~U? —S? )~ (9} +pR)KmVm"H, Hyn,n,

+(ps+Ppr) S(Aa+ B+dVa,;) = 0.
In this system of equations the values (u; )" and n, are given. Because pr may be
expressed by H; using Eq. (4.2), the unknowns are S, U, H; and pg. Taking into account
the fact that H; H' = 1, we have 4 equations for 5 unkowns. The set of equations (4.9)
and (4.10) posseses therefore a one-parameter family of solutions. As the parameter may
be taken, e.g. p, then the propagation speed U, entropy jump S etc. depend on p.
For the discussion of the results the symmetric approach is more convenient, when
neither of the regions V,;, V, is distinguished. Assume that a;, and the ratio

(4.11) m = pe/[ps

are given, and the unknowns are S, U, H, pg and pr. As the parameter will serve the sum
P = pp+pr measuring the intensity of the wave. The equations (2.2), (4.1), (4.9)-(4.11)
constitute the set of 7 algebraic equations for 7 unknowns: S, U, H, pg and pr. Note that
Eq. (4.10) is of the fourth order, therefore in the general case the solution can not be
given in the analytical form.

5. Special solutions

In the special cases m = 0, m = 1 and m = oo not only the numerical, but also ana-
lytic solutions are available.
The case m = 0 corresponds to pr = 0, and in accord with Eq. (4.2) to

(i, )F = aw,
(u1,0® = ap+psHn,.
The front state (g;;)F is situated on the boundary ¥,,. In this situation either of the rela-

tions (1.8) may be used. Therefore for both states hold the relations appropriate for the
region V,, in particular

(5.1)

(5.2) % T = (U Kmim™) e, + ¢+ Nmi +diiy),

and the results of Sect. 3 hold true if it is assumed
cijrs iy cijrs_i_Km{jmrs’
¢ — ¢4+ NmY.
We face an analogous situation if m = co. In this case py = 0 and the rear state is

situated on the boundary V,,. For both states the formulae appropriate for the region V¥,
may be used. The results of Sect. 3 hold true if it is assumed

cijrs_’ c”"—Km”m"‘,

¢l 5 et —Nmb,

(5.3)

5.4
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Consider now the case m = 1. We now have pg = pr and the set of equations (4.9)
and (4.10) reduces to

(5.5) c¢'"Hn,ny+d"n;S-U?H, = 0,
(5.6) - -;-pgKm”m"’H,H,n_,n,+S(Aa+B+d'—"a,_,) =0.

The expression in the brackets in Eq. (5.6) equals the temperature T* corresponding to
the state u; ; = a; %, n = a. Therefore

(5.7 S = %p,K(m”H,nJ)Z{T* = é—pK(m”H,nj)’ T

It was assumed above that either K = 1, or K = —1. From Eq. (5.7) it follows that
in the case considered here K = +1, because both s and p are nonnegative. From Eq.
(1.8) we read now the result: the shock wave moves in the direction of lower elastic moduli.

F B
If ¢'¥ denotes the moduli corresponding to the front state, and ¢** the moduli corre-
sponding to the rear state, then

B F
(5.8) ikl — likl y Ypiipars.

From this relation it follows that the sound speed (acceleration wave speed) behind the
shock wave is larger than the sound speed in front of the shock wave.

From Eq. (5.7) it follows that S and H; are functions of p, S = S(p), H; = Hi(p).
We have

das
5.9 S0 =0, — = 0.
(5.9) (©) 7 ey
Substitution of Eq. (5.7) into Eq. (5.5) leads to the propagation condition of the shock
wave

(5.10) (i n,—U28")H,+ S(p)dn, = 0.

From Eq. (5.8) it follows that for p — 0 the propagation condition (5.10) reduces to the
condition

(5.11) (¢r*n,n,~U28")H, = 0,

and coincides with the propagation condition of the acceleration wave for the elastic
moduli equal to the average value of that of the medium ¥, and the medium ¥, . It should
be stressed that the acceleration wave cannot propagate at all because on & the deriva-
tive of the stored energy with respect to the displacement gradient is not defined.

Differentiate now Eq. (5.10) with respect to p and substitute p = 0. There results the
equation

(5.12)  (c""*n;n,—U*(0) 6‘-’) any —ZU(O)d—U H‘(0)+d”n,£ =0,
p=0 dp p=0 dp p=0
Multiplying both sides of Eq. (5.12) by H;(0) we obtain
dUu 1 "
(5.13) Tfp_,.,o 200) d n,H;(O) b
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The value of the left-hand side may be larger of, equal to, or smaller than zero. However,
independently of the sign of dU/dp|,_o, the sound speed behind the shock wave is larger
than the sound speed in front of the shock wave, cf. the remark after Eq. (5.8).
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