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Shock wave in piecewis'1 linear elastic material 

Z. WESOLOWSKI (WARSZAWA) 

THE SIX-DIMENSIONAL deformation space is divided into a number of regions. For each deforma­
tion belonging to a fixed region there holds the same linear stress-strain relation. The shock 
wave propagates in this piecewise-linear elastic material. The general algebraic propagation 
equations are given and three special cases are discussed. 

Sze5ciowymiarowa przestrzen odksztalcen jest podzielona na pewn~ licz~ rozl~cznych obszar6w. 
KCiZdemu obszarowi · odpowiada liniowy zwhp:ek napr~:ienie-odksztalcenie. W takim odcinkami 
liniowym materialer sp_r~:iystym propaguje si~ fala silnej nieci~glo5ci. Zakladaj~c. :ie jest to fala 
adiabatyczna, podaje si~ algebraiczne warunki propagacji dla przypadku og6lnego i dyskutuje 
si~ przypadki szczeg6lne. 

lllecrHMepHoe rrpoCTpaHCTBO ~e<t>opMar.urli paa~eneHo Ha orrpe~eneHHoe J<onuqecrao paae~He­
HHhiX o6nacreil. Kam~oil o6naCTH cooTBeTCTByeT JIHHeHHoe cooniomeHHe HarrpH»<eHHe-~e<t>o­
pMarum. B TaJ<OM HHTepaanaMH JIHHeHHOM yrrpyroM MaTepuane pacrrpocrpaHHeTCH y~apHaH 
aoJIHa. Ilpe~onaraH, trro 3Ta BOJIHa ~a6aTHqecJ<aH, ~aroTcH anre6p_auqecJ<He. ycnoBHH 
pacrrpocrpaHeHHH ~H o6mero cnyqag H o6cym~aroTcH qaCTIIbie cnyqau. 

ln~roduction 

THE PIBCEWISE linear elastic material as the approximation of the nonlinear elastic ma­
terial was discussed in [1]. In the present paper the strong discontinuity wave propagating 
in ~uch a material .will be considered. The corresponding solution for the nonlinear ma­
terial was given in [2] for the one-dimensional case, and in [3] for the three-dimensional 
case. 

1. Piecewise linear elastic material 

Denote by ui the displacement vector, and by e1i the (linear) strain tensor. In the Car­
tesian coordinate system { x 1} we have 

(1.1) 

where the comma denotes the partial differentiation. 
The symmetric tensors e1i are the points qf the six-dimensionallinear space V. Divide V 

into a number of disjoint regions vl' v2' v3' ... ' VK, VL' .. . and assume that to each 
region there corresponds the linear stress-strain relation. To different regions there corre­
spond in general different stress-strain relations. Denoting by a the stored energy, by -r:1i 
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352 Z. WESOt.OWSKI 

the stress tensor, by T the temperature and bye the mass density, we have for eii belong­
ing to the region Vx the following relations: 

1 Ki ·rs Ki" K 1 2 . i 
a= 2 cJ ellers+cJelJ+c+ 2 An +Bn+dlell1J, 

(1.2) 
1 ,. x,. K.j .. 
-TJ = cJ'Sers+C' +d'JfJ, 
e 

T = An+di1eu+B, 
(1.3) K K K K K 

cijrs = crsij = clirs' ell = cli' dil = dii, 

K K K 
where c'Jrs, c11, c are constants. The cons tans describing the thermal behaviour dii, 

A and B are assumed to be region-independent, but the generalization is straightforward. 
The material defined by Eq. (1.2) was discussed in [1] and [2]. 

Denote by VxL the boundary between Vx and VL. Assuming that r11 is a continuous 
function of EiJ, we have 

K L K L 

(1.4) (ciJrs -ciJrs) Ers+ (cil -cil) = 0 

for e11 E VxL· Because Eq. {1.4) is linear in e11 , the boundary VxL is a hyperplane. Since 
it divides two 6-dimensional regions, it is a 5-dimensional hyperplane. From this fact 
it follows that the coefficients in Eq. (1.4) must have the following form: 

K L KLKL KL 
ctJrs -ciJrs = 2 K mtl m's, 

(1.5) K L KLKL 
cii -c11 = 2 N m11, 

KL KL KL 
where m1i is a symmetric tensor, and K, N two constants. Not restricting the generality 

KL KL KL 

assume K = + 1 or K = -1. ForK = + 1 the region VL is softer than the region Vx. 
No additiomil restrictions have to be imposed on m11 if the material has no additional 
symmetry. The points e11 situated on the boundary VxL satisfy the equation 

KLKL KL 
(1.6) K m'5 ers+ N = 0. 

At the boundary VxL not on.ly r 1i, but also a must be a continuous function of eiJ. 
From Eqs. (1.2) and (1.5) it follows that 

(1.7) 
K L KL KL 

c-c= N 2 /K. 

For two neighbouring regions V1 and V2 , we repeat here the relations (1.2) slightly 
changing the notation 

(1.8) 

(1.9) 

1 iJ ,. .. .. ( 1 N2) 1 2 d .. a= -(c rs+Kmlm'5 )e e +(c'J+Nm'l)e + c+-- +-A'YI +B'YI+ 'JE 'Y) 2 - t} rs ...- t} - 2 K 2 ., ., i}·l' 

_!_TtJ ~ (cilrs±Km'lmrs)e,s+(cii±Nm'i)+d'ln; 
e 
ciJrs = ciirs = crsiJ, c'i = cii, mli = ml', 
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SHOCK WAVE IN PIECEWISE LINEAR ELASTIC MATERIAL 353 

where the upper sign holds for the region V1 and the lower sign for the region V2 • The 
equation of the dividing surface V12 reads (cf. Eq. (1.6)) 

(1.10) 

2. Conservation equations 

At the front !/ of the shock wave the displacement gradient ui,k is discontinuous. 
Denote by U the propagation speed of!/ and by ni the unit vector orthogonal to !/. 
Since the displacement ui is continuous at !/, there hold the compatibility equations 
(cf. [3]) 

(2.1) 

(2.2) 

[ui,k] = pH,nk, 

{u1] = -pHiU, 

H1Hi = I, n1 ni = I. 

The double brackets denote-the jump at!/. In terms of the values ( · )8, ( · )F at the rear 
and front sides !/8, !/F of!/, we have 

The vector pHi is the amplitude of the shock wave. Due to Eq. (2.2) the parameter p 
has the meaning of the intensity of the shock wave. 

From the definition of E;J and the relation (2.1)1 , it follows: 

(2.3) 

Both the jump of the deformation tensor E;J and of the entropy 'YJ are in general not 
equal to zero. To simplify the notation denote the entropy jump by S 

(2.4) S = [n]. 

Since EjJ and 'YJ are discontinuous at!/, _ also the stress -rii and stored energy a are 
discontinuous at!/, cf. Eq. (1.8). The conservation laws for momentum and energy must 
therefore be written in the integral form, from which there result the Cotchine equations, 
cf. [4] and [5] 

(2.5) 

(2.6) eU[u+ ~ it'zi,]+[Tiizl1]n, = 0. 

Equations (1.8), (2.1), (2.5) and (2.6) are the governing equations for the shock wave 
propagation in the piecewise linear elastic material. This set of equations must be comple­
mented by the entropy inequality. We confine our considerations here to the adiabatic 
process. In this case the heat flux equals zero and 

(:~.7) 
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3. Si~e region 

The deformation state of the material points situated at the front side g;F of the dis­
continuity surface!/ differs from that of the points situated at the rear side f/8

• These two 
states belong either to a single region or to two neighbouring regions Vg, and VL, or to 
two regions Vx, VL having no common boundary. Consider first the case, when both 
states belong to the same region Vx. The jumps of the stored energy and stress are 

(3.1) 
[a]= ~ ciJrs[euErs]+cii[eu]+ ~ A[17 2]+B[17]+d11[eiJt'J], 

_!_[Tii] = Cijrs[e,.s]+dii[17]. 
(! 

Note that for the jump of the product of two quantities a, b the following formula 
holds: 

(3.2) [ab]= a 8 b8 -aFbF = [a](b)+(a)[b], 

where ( ·) denotes the arithmetic average of a and b 

(3.3) 

Taking into account the symmetries of the coefficients (cf. Eq. (1.9)) we have 

[a] = ciirs(eii) pH,.ns+ciipH1n1 +AS+2B(1])S+di1(eiJ)S+dii(1]) pH1n1 , 

(3.4) 
_!_[Tii] = cii"spH,.ns+diiS. 
(! 

It remains to calculate the jumps of the two products in Eq. (2.6). Basing on Eqs. (3.2) 
and (2.1 ), we have 

[ ~ U,u•] = -(U,)pH'U, 

~ [ Tij uJ] = - (cijrs< E,.s) + cil +d11(1]))pHj+ (cijrspH,.ns+dij S) (uj>. 
(3.5) 

Substitute now Eqs. (3.4) and (3.5) into the energy conservation equation (2.6) and 
the momentum conservation equatio.n (2.5) to obtain 

(3.6) eU(A(17) +B+d;1(eu))S-eU2(u1)pH; +c1i"spH,.,nsn1(u1) +d1i(u1)n1S = 0, 

(3.7) ec1'"spH,.nsn1 -eU2pH1+d11n1 S = 0. 

Multiply Eq. (3.7) by (u;) and subtract the resulting equation from Eq. (3.6). Taking 
into account the fact that the expression in the brackets in Eq. (3.6) equals the average 
temperature T (cf. Eq. (1.2)3} 

(3.8) A('ry) + B+d1k(e1k) = (T), 

the resulting equation reduces to the equation 

(3.9) S(T) = 0. 

ltfollows that S = 0 and _Eq. (3.7) reduces to the propagation condition 

(3.10) (ciJrsn1ns- U 2 f5i")H,. = 0. 
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The normalized amplitude H 1 is the proper vector, and the squared speed U2 .is the 
proper number of the tensor c'l'snins. The propagation speed U does not depend on the 
intensity of the wave. 

4. Two adjoining regions 

Assume that the state at the rear side f/8 of the discontinuity surface f/ coresponds 
to the region vl' and the state at the front side ffF to the region v2. Both regions vl 
and V2 have a common boundary V12 • The formulae for the stored energy a and the stress 
tensor -r:1i are given by Eq. (1.8), and the equation of V12 is given by Eq. (1.10). 

The jump of the displacement gradient u1,k is given by Eq. (2.1) where pH1 is a vector 
to be calculated. Instead of using one single parameter p, Y"e shall use two parameters p 8 , 

PF defined by the following relations: 

(4.1) 

(4.2) 

p = PB+ PF, PB ~ 0, PF ~ 0, 

(u,,k)8 = a,k+ PBHink, 

(u,,kt = a,k -pFH,nk, 

Km1ka 1k+N = 0. 

Provided (ui,k)8- and (ui,k)F are given and m 1kH1nk =F 0, this system may be solved for 
PB, PF and ai;c· Note that a1k is situated on V12 • 

Define now two additional parameters a1 and a by the 'relations 

(u,}8 = a,+ p B H ,u' 
(u1}F = a,-pFH,U, 

(4.3) 

'Y}B = a+pBS, 
(4.4) 

'Y}F = a-pFS. 

Basing on the relations (4.2)-(4.4) and (1.10), we calculate the jumps of the strain 
tensor, specific energy and of the products appearing in the energy conservation equation 
(2.6). The calculations lead to the following formulae: 

(4.5) [ ] _ ( + · ) ijrs H + 1 ( 2 2} tjrsH H · a - Po PF c au ,.ns 2 PB-PF c 1 ,.nJns 

(4.6) 

(4.7) 

. (4.8) 

1 ( 2 2 ij )2 ( 2 2) (d'. 1 2) +2 PB+PF)K(m H,n1 + PB-PF JH,n1 S+ 2 As 

+ (PB+ PF) (c11H,n1 +AaS+BS+ad1iH1n1 +d1iatJS); 

_!_[ -r: 11 ] = (pB+PF) (ciJrsH,.ns+d11S)+ (pB-PF)Km 11m"sH,.n, 
e 

1 [. . .] . 1 ( 2 2 2 2 u,u' = -(PB+PF)a'H,U +2 PB-PF)U, 

_!__[ -r:iiu,] = (pB+ PF) ( -ciJrsa,.sH1 U + c11"sH ,.nsa1 -ci1Hi U -d11H,aU +d11a1 S) e . 
-~j~pi) (ciirsH,H,.nsU+dijH,US)-(pi+pf;.)milm"sH,H,.nsKU. 
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The expressions (4.5)-(4.8) a'rter substituting into the momentum and energy conser­
vation equations (2.5), (2.6) lead to the following system of algebraic equations: 

(4.9) (pB+PF) (cijrsH,nsn1 +diiniS-H1U 2)+(PB-PF)Kmiim'sH,nsn1 = 0, 

{4.10) - ~ (p'j-pf:).(cijrsH,H,n1n8 -U
2 -S2A)- ~ (p'j+pi)KmiimrsH,H,n1 ns 

+(pB+PF)S(Aa+B+diiaiJ) = 0. 

In this system of equations the values (u; ,k)F and nk are given. Because PF may be 
expressed by H1 using Eq. (4.2), the unknowns are S, U, Hi and PB · Taking into account 
the fact that H;Hi .= I, we have 4 equations for 5 unkowns. The set of equations (4.9)" 
and (4.10) posseses therefore a one-parameter family of solutions. As the parameter may 
be taken, e.g. p, then the propagation speed U, entropy jump S etc. depend on p. 

-For the discussion of the results the symmetric approach is more convenient, when 
neither of the regions V1 , V2 i~ distinguished. Assume that aik an<;l the ratio 

(4.11) 

are given, and the unknowns are S, U, H, PB and PF. As the parameter will serve the sum 
p = PB+PF measuring the intensity of the wave. The equations (2.2), (4.1), (4.9)-(4.II) 
constitute the set of 7 algebraic equations for 7 unknowns: S, U, H, PB and PF. Note that 
Eq. (4.10) is of the fourth order, then!fore in the general case the solution can not be 
given in the analytical form. 

5. Special solutions 

In the special cases m = 0, m = I and 1!' = oo not only the numerical,'but also ana~ 
lytic . solutions are available. 

The case m = 0 corresponds to PF = 0, and in accord with Eq. (4.2) to 

(5.1) 
(ut,kt = a,k, · 

(u,,k)B = a,k+ PBHtnk. 

The front state (eii)F is situated on the boundary V12 . In this situation either of the rela­
tions (1.8) may be used. Therefore for both states hoW the relations appropriate for the 
region vl' in particular 

(5.2) 

and the r t1sults of Sect. 3 hold true if it is assumed 

(5.3) 
ciirs --+- ciirs + Kmiimrs, 

cii--+- cii+Nmii. 

We face an analogous situation if m = oo. In this case PB = 0 and the rear state is 
situated on the boundary V12 • For both states the formulae appropriate for the region V2 

may be used. The results of Sect. 3 hold true if it is assumed 

(5.4) 
ciirs--+- ciirs -Kmiimrs, 

cii--+- cii -Nmii. 
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Consider now the case m = I. We now have p 8 = PF and the set of equations (4.9) 
and ( 4.1 0) reduces !o 

(5.5) ciJrsH,nsn1 +~iin1 S-U2H1 = 0, 

(5.6) 

The expression in the brackets in Eq. (5.6) equals the temperature T* corresponding to 
the state ui,k = a1,b 'fJ = a. Therefore 

(5.7) S = !p8 K(m11H,n1) 2 /T* = !pK(milH1n1) 2 T*. 
2 4 

It was assumed above that either K = 1, or K = -1 From Eq. (5.7) it follows that 
in the case considered here K = +I, .because both s and p are nonnegative. From Eq. 
(1.8) we read now the result~ the shock wave moves in the direction of lower elastic moduli. 

F B 
If ciikl denotes the moduli corresponding to the front state, and c1ikl the moduli corre• 
sponding to the rear state, then 

JJ F 
(5.8) ciJkl = c'i'" + 2m'imrs. 

From this relation it follows that the sound speed (acceleration wave speed) behind the 
shock wave is larger than the sound speed in front of the shock wave. 

From Eq. (5.7) it follows that S and H 1 are functions of p, S = S(p), Hi = Hi(p). 
We have 

(5.9) S(O) = 0, dsl - ;?; 0 
dp p=O • 

Substitution of Eq. (5.7) into Eq. (5.5) leads to the propagation condition of the shock 
wave 

(5.10) (ciJrsn1ns-U2~1')H ,+ S(p) d 1ln1 = 0. 

From Eq. (5.8) it follows that for p ~ 0 the propagation condition (5.10}reduces to the 
condition 

(5.11) (ciJrsn1ns-U2 ~ 1')H, = 0, 

and coincides with the propagation condition of the acceleration wave for the elastic 
moduli equal to the average value of that of the medium V1 and the medium V2 • lt$hould 
be stressed that the acceleration wave cannot propagate at all because on 9' the deriva­
tive of the stored energy with respect to the displacement gradient is not defined. 

Differentiate now Eq. (5.10) with respect top and sub~titute p = 0. There results the 
equation 

(5.12) (ciJrsn1ns-U2 (0)~ii) dHr I -2U(O) dUI H 1(0)+d1in1 dSI · = 0. 
dp p=O dp p=O dp p=O 

Multiplying both sides of Eq. (5.12) by H 1(0) we obtain 

dU I ;..__ 1 ij ( dS I 
(5.13) dp P=o - 2U(O) d nJHt 0) dp P=o. 
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The value of the left-hand side may be larger of, equal to, or smaller than zero. However, 
independently of the sign of dUfdplP= 0 , the sound speed behind the shock wave is larger 
than the sound speed in front of the shock wave, cf. the remark after Eq. (5.8). 
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