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On the free molecule quenching of a . gas jet 
by another gas at rest 

L. TRILLING (CAMBRIDGE) 

THE coLLISION rate of jet molecules with reservoir molecules is considered as a function of the 
jet velocity and the temperature of the gases. Both the total number of collisions and the colli­
sions with relative velocities bounded by some threshold velocity are found. Further the compu­
tation of the relative kinetic energy flux is discussed. The results obtained are a generalization 
of those known previously. Their applicability to the problem of nucleation of freely expanding 
vapour is briefly discussed. 

Pr~dkosc zderzeil czctsteczek strumienia z czctsteczkami zbiornika rozwa:iono jako funkcj~ 
pr~o8ci strumienia i temperatury gaz6w. Wyznaczono zar6wno calkowit'l licz~ zderzeil 
jak i licz~ zderzeil z pr~o8ciami wzgl~dnymi ograniczonymi przez pewne warto8ci progowe. 
Om6wiono taki:e strumienie energii kinetycznej. Otrzymane wyniki SCl uog6lnieniem wynik6w 
znanych ju:i wczesniej. Przedyskutowano mo:iliwosc ich zastosowania do zagadnienia zarodko­
wania swobodnie rozszerzaj(lcej si~ pary. 

CI<opoCTb coyAapeHHR qaC'l"lm noToi<a c qaC'l"lmaMH o6'beMa paccMaTpHaaeTcR I<ai< <l>YHI<UWI 
ci<opoCTH noToi<a H TeMnepaTypbi ra3oB. OnpeAemieTCR I<ai< o611.lee qHcno coyAapemm, Tai< 
H . ~CJIO COyAapemm C OTHOCHTeJibHbiMH CI<OpOCTRMH, orpaHHqeHHbiMH onpeAeJieHHbiMH 
noporOBbiMH 3HaqeHWIMH. 06cy>«AaiOTCH llOTOI<H I<HHeTHqeci<OH :meprHH. llonyqeHHbie 
pe3yJILT8Tbi RBJimOTCH o6o611.leHHeM paHee H3BeCTHbiX pe3yJibTaToB. PaccMaTpHBaeTcR B03-
MO>I<HOCTb HX npHMeHeHWI I< 38AaqaM o6pa30BaHHH CB060AHO paCI.IIHpHIOII.lerOCH napa . 

PROFESSOR WLADYSLAW FISZDON has made many important contributions to our under­
standing of the dynamics of low density gases and, in particular, to some aspects of the 
condensation theory. On the seventieth birthday of that excellent friend, the following 
notes may provide a rarefied aura to our warmest congratulations and best wishes for 
many further years of creative activity-and scholarly leadership. 

In a number of situations including the nucl~ation of a vapor in a freely expanding 
jet and certain crossed beam experiments, the problem arises of describing the very low 
density interaction of a jet of one gas (1) with a quiescent different gas (2). In particular, 
it is necessary to find the collision rate of jet .t;nolecules with reservoir molecules as a func­
tion of the jet velocity and the temperatures of ~he gases. 

In principle, this involves the analysis of the collision rate per unit volume: 
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where nl' n2 are the number densitites of the two gases, <1 is the collision cross-section 
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334 L. TRILLING 

(assumed constant for simplicity), W is the jet velocity directed along the .x-axis, u1 , 2 , 

v1 , 2 , w1, 2 , are the thermal velocities of the two gases, m, M are the molecular masses 
of the two gases, T 1 , T 2 are their temperatures. 

We now define the parameter ex = MT1
- and normalize all velocities with respect 

mT2 

to the thermal velocity of gas (1) so that Eq. (1) becomes 

(2) dN = n1n2u-. / 2
kT1 ex

3

~2 e-<q~+cxqi> y (u1 + W -u2)2 + (v1 -v2)2+ (wl -w2)2 dq1dq2, V m n, 

where q, is the length of the (nondimensional) velocity vector, dqi is a volume element in 
the appropriate velocity space. 

If we introduce the "modified center of mass" coordinates Q = (U, V, W); q = 
=(u,v,w) 

(3) 

so that 

U, V, W = u1 , v1 , w1 +t~u2 , v 2 , w2 

1+ex 

(4) U, V, W(1+ ex)+ exu, v, w 
ul,vl,wl = 1 ' 

+ex 
u, V, W(1 +ex) -u, v, w 

u2,v2,w2= 1 ' +ex 

we find that 

(5) . 

and that 

(6) J(~·;2) =I. 

These tesults are a slight generalization of the well-known calculation procedure 
outlined, for example by JEANS [1]. 

Substitution of Eqs. (4) and (5) into Eq. (2) yields 

(7) 

The integration over Q is carried out at once 

(8) 
dQ = 4nQ2dQ, 

or in terms of the "modified reduced mass" 

exm MT1 m 

(9) 
ft = I + ex = M T1 +m T2 ' 
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ON THE FREE MOLECULE QUENCIDNG OF A GAS JET BY ANOTHER GAS AT REST 335 

If there is rotational symmetry about the .x-axis, then with 

dudvdw = 2q2 sin0dqd0, 
(10) 

y(u+W)2 +v2 +w2 = yq2 +W2 +2qWcosO = V(O), 

we obtain 

again a generalization of a · classical result. One further step may be taken in a straight­
forward way: integration over 0. 

(12) aN= 2n1 n 2 o-V2k(m~~MT,) r•' ~~ [V3 (02)-V3 (01)], 

where V(O) is the value of the relative velocity at the limiting angles 01 , 02 • The quan­
tity V(O) is always nonnegative. The values assigned to V(O) depend on the physical 
questions asked of the system. 

The simplest problem to be approached is that of finding the total number of collisions: 
in that case, the range of q is [0 < q < oo] and all values of 0 are permissible 
[0 < 0 < n]. 

In that case 

(13) 

w 

N = 2n n <1-. /2k(mT2 +MT1 J J e-q2 qdq [(W +q)3 -(W -q)31} 
1 2 V nmM \ 3W 

0 

00 

+ r e-ql qdq [(q + W)3- (q- W)3] 
. 3W 

w 

_ ,/k(mT2 +MT1)[1+2W2 
fW 2 -w:r] 

- n 1 n 2 <1 Jl 2 mM 2 er +. yn e . 

We note in passing that Eq. (13) has the correct limits for large and small values of W 

• o v2k(mT2 +MT1) · 
hm N(W) = n 1 n2 <1W M = n1n2<1Wphys, 
w~oo m 

(14) 

In many problems (e.g. capture of slow monomers by clusters in free expansion, excit­
ation of internal degrees of freedom by energetic collisions etc ... ) we also need to know 
how ¥J.any collisions occur with relative velocities either higher or lower than some spec­
ified threshold velocity b (normalized, as W is) with respect to the "modified reduced 
mass" and the jet temperature 

(15) b _ b -. /2k(mT2 +MT1) 
- phys V mM . 
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336 L. TRILLING 

The range of q is now 0 < q < b, but the range of () calls for an examination of the 
hodograph of the flow (Fig. 1 a, b, c). 

We distinguish three cases there: 

a) 

b) 

c) 

. b 
0<W< 2 , 

b 
l < W< b, 

b < w < 00. 

a 

b 

c 

b 

b 
O<w<2 

b 
2<w<b 

b< w<oo 

~ 

u 

FIG. 1. Integration regions in the hodograph plane for N(W, b), E(W, b). 
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ON THE FREE MOLECULE QUENCHING OF A GAS JET BY ANOTHER GAS AT REST 337 

In all cases the integral must be carried out over the entire circle of radius b, but the 
way the circle is cut into sub-areas is different in the three cases. 

In case a) we have two complete inner circles of radius Wand b- Wand center located 
at (- W); for those circles [0 < () < n]; they are distinct because the sign of [ W- q] 
changes at W. We then hav~ a circular section of center (- W) which extends in angular 
variable from () = 0 to the interesction ;with the circle of radius b. At that point, V= b. 

Thus 

(16) 

. w 

Na = 2nl n2 a,. / 2k(m T2 + MT1) { r e- q2q [(W +q)3 _ (W -q)3]dq 
3W V nmM . 

0 

b-W b + W 

+ J e- •'q[(q+ W)3 - (q- W)3]dq + J e- •'q[b3 -(q -W)']dq}. 
w b-W 

A similar argument shows that in case b) there ·is a full inner circle of radius ( W- b) 
and two circular sections distinct because the sign of (W-q) changes at q = W. The 
integral in b) is, therefore, 

(16') 

b-W 

Nb = 2n1n2a,. l2k(mT2+MT1) IJ e-q2q[(W+q)3-(W-q)3]dq 
3W V nmM 

0 

W b+W 

+ f e-•'q[b3 -(W -q)3]dq f e-•'q[b3 -(q -W)']dq}. 
b-W W 

Finally, in case c) the center (- W) of the circular sections is outside the region of 
integration which is divided into two · subsections 

(16") 

W+b 

+ J r•'q(b3 -(q -W)3]dq}. 
w 

All of these integrals can be carried out in closed form and it turns out that the result 
in all three cases is the same: 

o ... I k(mT +MT,){ W 2 + 1/2 
(17) N(W, b)= n1 n2a Jl 2~M 

1 
W [2erfW+erf(b-W)-erf(b+W)] 

- w~;;< [(b+ W)e-Cb- W)'- 2We- W' + (b- W)e-(b+ W>']}. 

This is the desired result; its limits lead back to a number of classical results; thus 

(18) Iim N(W, b) ~ 2n1 n2a ... I 2k(mT2~MT1) [1-(1 +b2)e-b2
]. 

w ... o Jl nm 
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On the other hand, _ 
• o -. /-2k--,-(m_T___:._2+_M_T,_t) b4 -wl[ (4 2 2) 2 ] 

(I8') i~N(W, b)= n1 n2a V nmM · e I+ 9 w - 3 b + .... 

This result tells us that the number of collisions of relative velocity b where b ~ I is pro­
portional to n 1 e- w2

, the number of jet molecules whose thermal velocity cancels the bulk 
velocity of the jet, so that they have the opportunity of meeting the requirement (b ~ I). It is 
also proportional to b4 and, therefore, very small, because not only are there few molecule 
pairs which meet this criterion, but their low relative velocity also reduces the rate of 
collisions. It is easy to verify that as b-+ 0, the result (18) becomes identical with Eq. (18'). 

The main dynamic property one is likely to need in the discussion of free expansion 
flows of real gases and vapors is the relative kinetic energy, or intensity of collisions, since 
that is what dete~ines whether a structural change is likely to occur as a result. We 
therefore next compute the relative kinetic energy flux per unit time. As one can show 
rather simply in a manner analogous to the derivation of Eq. (12), it is defined by the 
integral 

(19) E = 2ntn2a ... /2k(mT2+MTt). kTt I+ctjqe-ql(Vs(02)-Vs(Ot))dq, Jl nmM 5W et 

where the limits of integration are defined as before. After considerable labor, we obtain 
the result 

(20) E = n1 n2 a Jjk'<mJ~~~T,)' · { W4

+ 3~
2

+ 3/4 [2erfW -erf(W +b) 

I 
-erf(W -b)]---:;=- ((W +b)(W2+b2)e-<W-b>2 -2W3e-w2 + (W -b)(W2 +b2)e-tW+bf1

] 

Wyn _ 

- ~ [e-<W-b)l -2e-W2 + e-<W+b>l]- 3b (e-(b- W)l -e-<b+W)l)}. 
. 4yn . 4Wyn 

This is an expression with the same general structure as Eq. (13) for the mass or number 
flux, although it is more complex. Some limiting behavior features are again of interest. 

If all collisions are permitted (b -+ oo ), the kinetic energy flux is 

E = n1n2a [k(mT2 +MT1)]
312 

(W
4

+3W
2

+3/4)erfW + ~ (~2 + 2_)e-w2 ] 

(2I) y m/2 M . W V n 2 4 

and the average kinetic energy transmitted is 
w . 

o (W4 +3W2 +3/4)erfW+ .1_(W2+5/2)e-w2 

(2I') (Ke) = ~ = k(mT~MT1 ) Jl n W 

N (W 2 +I /2)erfW + ~ e- Wl 

Jl n 
In particular, 

(2.I ") 
1. (K) _ 2k(mT2+MT1) 
1m e - M ., 

W-+0 

I . (K) _ k(mT2+MT1) w · _ mW2
phys . 

liD . e - 2 -
2 w~oo ' M · 

both of which are classical results. 
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When W becomes negligible, we find 

(22) E = ;~;; [k(mT~MT,)r[t-(t+b•+ ~
4

) e-b'] 
the average relative kinetic energy of all impacts of velocity less than b is 

(22') 
t-(l+b2 +~)e-b' 

1-(1 +b2)e\ b2 

339 

= 2k(MT2 +M I;.) 
1 

_ b4 e-b2 

M 2[1-(1 +b2 )e-b2
] 

and as b-+ 0 

(22'') E =! b2 k(mT2+MT1 ) 

N 3 M 
1 b2 

= 6m phYs· 

It can be shown by direct Taylor expansion of Eq. (20) that Eq. (22)" is valid for all 
values of · W. · 

The results of Eqs. (13) and (20) thus give us the information we se.t out to obtain 
(unfortunately they are quite complicated); we show that they can be computed fairly 
simply by means of the auxiliary function 

(23) f(W, b) = ~n [2erfW -erf(W -b) -erf(W +b)] 

whose values are readily available in standard tables. In particular, we find 

of = 2e- W2 [1-e-b2cosh2bW] = 2e-W2 -e-(W-b)2 -e-<W+h)2 

ow ' 
:: = 2e-<Wl~b2)sinh2bW = e-<W-b)2 -e-<W+b)\ 

:::2 = 4e-W2 [W(1-e-02Cosh2bW)+be-b2sinh2bW], 

(24) 

iJ2f 
ob2 ·= 4e-<W2 +b2)[Wcosh2bW -bsinh2bW] = 2((W ~b)e-<W-b)2 -(W +b)e-(W+b)2

]. 

All the terms which appear in Eqs. (13) and (20) can be expressed by the use of Eqs. 
(23) and (24) ~n terms of f(W, b) and of its derivatives, which are tabulated. Thus 

(25) N = nln20' ,. I k(mT2+MTt) {<2W2 1)f w _!!__ -b of}-
2W V 2mM + + 1 ow ob · 

Similarly, after some manipulation 

(26) E = nln20' [k(mT2+MTt)] 
312 

{<W4+3W2+3/4)f+5/2 (_!!__- of} 
· wym/2 M oW b ob 

( 
3 of b3 of ) b(W2 b2) of b ( of o

2
f )} 

+ w ow - ob - + ab + ab - 2ob2 · 
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We see that the numerical evaluation of N, i involves no more than linear combina­
tions of tabulated error functions and their derivatives. 

To illustrate these results, Fig. 2·shows the four functions f, ~{, :{v, ::{, as func­

tions of b for a given value of W ( W = 1 ). Then Figs. 3 and 4 show the number flux N 
and the mean relative kinetic energy E/N as functions of b for W = 0, 1, oo. [E/N--+ 
--+ k(mT2

; MT1
) W 2 for all b with nonuniform behavior at b = 0]. 

An application of these calculations can be made to the problem of nucleation in 
a freely expanding vapor jet. The formation of the smallest nuclei (up to some 5 mono-
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FIG. 4. Mean relative kinetic 'energy per molecule E/N(b, w). 
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mers) occurs by triple collisions in the early stages of the expansion when the vapor is 
still in the continuum regime. Since nucleation is exothermic, the heat of formation is 
carried off by the uncaptured mono mer and eventually, by thermal collisions, that heat 
is distributed to the mono mer gas; the monoQ}er gas therefore has higher enthalpy than 
the cluster gas; at high Mach Numbers where the intermediate-sized clusters are formed, 
the additional enthalpy appears largely as bulk velocity; to an Qbserver travelling with the 
cluster gas, therefore, the monomer gas appears as a jet whose velocity is related to the 
amount of heat released by the formation (upstream) of the dimers, trimers, etc ... at the 
initiation of nucleation. 

Various models of cluster growth may be entertained·: either by capture of slow mono­
mers (capture coefficient a function of relative velocity with a sharp cutoff at a critical 
velocity which increases with cluster size) or by a combination of capture and re-emission 
with capture predominating until the decrease in the number of available monomers and 
the increase of internal energy of the cluster cause a change of process. 
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