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On the free molecule quenching of a gas jet
by another gas at rest

L. TRILLING (CAMBRIDGE)

THE cOLLISION rate of jet molecules with reservoir molecules is considered as a function of the
jet velocity and the temperature of the gases. Both the total number of collisions and the colli-
sions with relative velocities bounded by some threshold velocity are found. Further the compu-
tation of the relative kinetic energy flux is discussed. The results obtained are a generalization
of those known previously. Their applicability to the problem of nucléation of freely expanding
vapour is briefly discussed.

Predkos$¢ zderzen czasteczek strumienia z czasteczkami zbiornika rozwazono jako funkdéje
predkosci strumienia i temperatury gazéw. Wyznaczono zaréwno caltkowity liczbe zderzen
jak i liczbe zderzeni z predkosciami wzglednymi ograniczonymi przez pewne wartosci progowe.
Omoéwiono takZe strumienie energii kinetycznej. Otrzymane wyniki sa uogélnieniem wynikow
znanych juz wczesniej. Przedyskutowano mozliwos¢ ich zastosowania do zagadnienia zarodko-
wania swobodnie rozszerzajacej si¢ pary.

CropocTs COyflapeHHsI YacTHIl IIOTOKA C YacTHHaMM o0kema paccMaTpuBaeTcd Kak (hyHKuus
CKOPOCTH IIOTOKA M TeMmmeparypbl rasos. Onpepensiercst Kak ofluee 4YHCIO coymapeHHil, Tak
M YMCJIO COYINAapeHMH C OTHOCHTE/JBHBIMH CKODOCTAIMM, OIDaHMUYEHHEIMH OMpEMe/IeHHbIMA
NOpOroBbIMH 3HaueHHAMH. OOGCY)KHAIOTCA MOTOKM KHMHeTHYeckoit sHeprum. Ilonmyuenmbie
pesyJIbTaThl ABJIAIOTCA 0GODLIEHMEM paHee M3BECTHBIX PE3yJILTATOB. PaccMaTpHBaeTcs BO3-
MOYKHOCTh MX NPHMEHEHHS K 3afauam obpasoBaHMA CBOGOMHO PaCIUMPAIOLIETOCHA napa.

PROFESSOR WELADYSLAW FI1szZDON has made many important contributions to our under-
standing of the dynamics of low density gases and, in particular, to some aspects of the
condensation theory. On the seventieth birthday of that excellent friend, the following
notes may provide a rarefied aura to our warmest congratulations and best wishes for
many further years of creative activity and scholarly leadership.

In a number of situations including the nucleation of a vapor in a freely expanding
jet and certain crossed beam experiments, the problem arises of describing the very low
density interaction of a jet of one gas (1) with a quiescent different gas (2). In particular,
it is necessary to find the collision rate of jet molecules with reservoir molecules as a func-
tion of the jet velocity and the temperatures of the gases.

In principle, this involves the analysis of the collision rate per unit volume:
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where n,, n, are the number densitites of the two gases, o is the collision cross-section



334 L. TRILLING

(assumed constant for simplicity), W is the jet velocity directed along the x-axis, u,,,,
1.2, Wi,2, are the thermal velocities of the two gases, m, M are the molecular masses
of the two gases, T, T, are their temperatures.

T . i .
! and normalize all velocities with respect
2

to the thermal velocity of gas (1) so that Eq. (1) becomes

We now define the parameter o =
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where g; is the length of the (nondimensional) velocity vector, dq; is a volume element in
the appropriate velocity space.

If we introduce the “modified center of mass” coordinates Q = (U, V, W); q =
= (u,v,w)

ulsvlswl+m2,92$ Wy -

(3) Uu,v,w = T+a ’ u,ﬁ,W=u1,ﬂl,w1—u2,vz,w2,
so that
U,V W(l+a)+au,o,w U,V W(l+a)—u,o,w
(4) Uy, Uy, Wy = — ( I+i s Uz, Uz, W = (1+II) s
we find that
2 2 __ 2 pr
®) qi+eq; = (1+0)Q*+ -4
and that
q1,92
(6 J( =k
) Q q

These results are a slight generalization of the well-known calculation procedure
outlined, for example by JEANS [1].
Substitution of Eqgs. (4) and (5) into Eq. (2) yields

° 2 )0 +——7 —
) dN=n1nza]/2kT' @ |orwer 5] e iiaoda.

m a3
The integration over Q is carried out at once
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or in terms of the “modified reduced mass”
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If there is rotational symmetry about the x-axis, then with
dudvdw = 2q¢*sinfdqdo,

(10)
Vu+ W) +vi+w? = /g +W*+2qWcosb = V(0),

we obtain

(11) dN = ZHMNI/%(’“—:-%@)— =" |/ q%+ W2 +2qW cosf q*sin0dbdq

again a generalization of a classical result. One further step may be taken in a straight-
forward way: integration over 6.
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where V(0) is the value of the relative velocity at the limiting angles 6,, 6,. The quan-
tity ¥(6) is always nonnegative. The values assigned to V(6) depend on the physical
questions asked of the system.

The simplest problem to be approached is that of finding the total number of collisions:
in that case, the range of g is [0 < g < o] and all values of 6 are permissible

[0 <6 < =)
In that case
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We note in passing that Eq. (13) has the correct limits for large and small values of W
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In many problems (e.g. capture of slow monomers by clusters in free expansion, excit-
ation of internal degrees of freedom by energetic collisions etc...) we also need to know
how many collisions occur with relative velocities either higher or lower than some spec-
ified threshold velocity b (normalized, as W is) with respect to the “modified reduced
mass” and the jet temperature

2k(mT,+MT,
(15) b= b]/ THm LN,
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The range of ¢ is now 0 < g < b, but the range of @ calls for an examination of the
hodograph of the flow (Fig. 1 a, b, ¢).
We distinguish three cases there:
a) 0< W< -2 2
2
b) % < W<b,

) b< W< oo.

b
a o(w<%
b L2ewen S

2

C b<e<w<coo

<y

/

FiG. 1. Integration regions in the hodograph plane for N(W, b), E(W, b).
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In all cases the integral must be carried out over the entire circle of radius b, but the
way the circle is cut into sub-areas is different in the three cases.

In case a) we have two complete inner circles of radius W and b— W and center located
at (— W); for those circles [0 < 6 < n]; they are distinct because the sign of [W—gq]
changes at W. We then have a circular section of center (— W) which extends in angular
variable from 6 = 0 to the interesction with the circle of radius 5. At that point, ¥ = b,

Thus
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A similar argument shows that in case b) there is a full inner circle of radius (W—b)
and two circular sections distinct because the sign of (W—gq) changes at ¢ = W. The
integral in b) is, therefore,
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Finally, in case c) the center (—W) of the circular sections is outside the region of
integration which is divided into two subsections
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All of these integrals can be carried out in closed form and it turns out that the result
in all three cases is the same:
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This is the desired result; its limits lead back to a number of classical results; thus

. e ' 2k(mT>+ MT, 5
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On the other hand,
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This result tells us that the number of collisions of relative velocity b where b <€ 1 is pro-
portional to n,e~#?, the number of jet molecules whose thermal velocity cancels the bulk
velocity of the jet, so that they have the opportunity of meeting the requirement (b < 1). Itis
also proportional to b* and, therefore, very small, because not only are there few molecule
pairs which meet this criterion, but their low relative velocity also reduces the rate of
collisions. It is easy to verify that as b — 0, the result (18) becomes identical with Eq. (18').

The main dynamic property one is likely to need in the discussion of free expansion
flows of real gases and vapors is the relative kinetic energy, or intensity of collisions, since
that is what determines whether a structural change is likely to occur as a result. We
therefore next compute the relative kinetic energy flux per unit time. As one can show
rather simply in a manner analogous to the derivation of Eq. (12), it is defined by the
integral
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where the limits of integration are defined as before. After considerable labor, we obtain
the result ‘
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This is an expression with the same general structure as Eq. (13) for the mass or number

flux, although it is more complex. Some limiting behavior features are again of interest.
If all collisions are permitted (b — o), the kinetic energy flux is
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both of which are classical results.
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When W becomes negligible, we find
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the average relative kinetic energy of all impacts of velocity less than b is
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It can be shown by direct Taylor expansion of Eq. (20) that Eq. (22)" is valid for all
values of W.

The results of Eqs. (13) and (20) thus give us the information we set out to obtain
(unfortunately they are quite complicated); we show that they can be computed fairly
simply by means of the auxiliary function

(23) fW,b) = ‘/T" [2erf W —erf(W —b) —erf(W + b))
whose values are readily available in standard tables. In particular, we find
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All the terms which appear in Eqgs. (13) and (20) can be expressed by the use of Egs.
(23) and (24) in terms of f(W,b) and of its derivatives, which are tabulated. Thus
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Similarly, after some manipulation
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We see that the numerical evaluation of J\of, E involves no more than linear combina-
tions of tabulated error functions and their derivatives.
of of o
ob’ oW’ ab*’
tions of b for a given value of W (W = 1). Then Figs. 3 and 4 show the number ﬁuzl N
and the mean relative kinetic energy E/ﬁf as functions of b for W =0, 1, co. [.é/N —
o k(mT,+MT,)

M

An application of these calculations can be made to the problem of nucleation in

a freely expanding vapor jet. The formation of the smallest nuclei (up to some 5 mono-

To illustrate these results, Fig. 2 shows the four functions f, —- as func-

W?2 for all b with nonuniform behavior at & = 0].
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FiG. 2. Plot of 7_- f(w, b) for W = 1.00.
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FiG. 3. Mass flux N(b, w).
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Fi1G. 4. Mean relative kinetic 'energy per molecule E?ﬁ’(b, w).

mers) occurs by triple collisions in the early stages of the expansion when the vapor is
still in the continuum regime. Since nucleation is exothermic, the heat of formation is
carried off by the uncaptured monomer and eventually, by thermal collisions, that heat
is distributed to the monomer gas; the monomer gas therefore has higher enthalpy than
the cluster gas; at high Mach Numbers where the intermediate-sized clusters are formed,
the additional enthalpy appears largely as bulk velocity; to an observer travelling with the
cluster gas, therefore, the monomer gas appears as a jet whose velocity is related to the
amount of heat released by the formation (upstream) of the dimers, trimers, etc... at the
initiation of nucleation.

Various models of cluster growth may be entertained: either by capture of slow mono-
mers (capture coefficient a function of relative velocity with a sharp cutoff at a critical
velocity which increases with cluster size) or by a combination of capture and re-emission
with capture predominating until the decrease in the number of available monomers and
the increase of internal energy of the cluster cause a change of process.
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