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Non-Newtonian flows over an oscillating plate
with variable suction

T. HAYAT, Q. ABBAS, M. KHAN, A.M. SIDDIQUI(Y)

Department of Mathematics, Quaid-i-Azam University,
‘Islamabad 45320, Pakistan

() Department of Mathematics, Pennsylvania State University,
York Campus, 1031 Edgecomb Avenue, York, PA 17403, U.S.A.

THE FLOW OF second order fluid due to an oscillating infinite plate in the presence of
a transverse magnetic field for two forms of time-dependent suction are considered.
The analytical solutions of the governing boundary value problems are obtained. It
is found that an external magnetic field and normal stress coefficient on the flow has
opposite effects.

1. Introduction

IN THE PAST few years there has been a considerable interest in the oscillating
flows due to possible applications in engineering. The study of such flows was
first initiated by LIGHTHILL [1] who studied the effects of free-stream oscillations
on the boundary layer flow of a viscous, incompressible fluid past an infinite
plate. Thereafter STUART [2] extended it to study a two-dimensional flow past
an infinite, porous plate with constant suction when the free-stream oscillates
in time about a constant mean. The boundary layer suction is a very efficient
method for the prevention of separation. The effects of different arrangements
and configurations of the suction holes and slots on the undesired phenomenon
of separation have been studied extensively by various scholars and have been
compiled by LACHMANN [3].

Due to the development of practical boundary layer control systems, interest
in problems concerning suction have been renewed. This problem has also been
useful in the study of unsteady flow. Watson [4] generalized the Stuart’s problem
to the case of an arbitrary free-stream velocity. Later, KALONI [5] and MEs-
SIHA [6] extended Stuart’s problem to the case of constant and variable suction
respectively. Further, SOUNDALGEKAR and PuURI [7] discussed the fluctuating
flow of an elastico-viscous fluid past an infinite plate with variable suction.

Using the viscous fluid model, the flow of a fluid near a porous oscillating
infinite plane has been investigated in SCHLICHTING [8]. RAJAGOPAL [9, 10]
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discussed the flows of second and third order fluids due to a rigid plate oscillating
in its own plane. Later, FOOTE et al.[11] examined the flow of an oscillating
porous plate for an elastico-viscous fluid. PURI [12] studied an oscillating rotating
flow of an elastico-viscous fluid. Morerecently, HAYAT et al.[13-15] analyzed
some periodic flows of a second order fluid. TURBATU et al. [16] generalized the
viscous fluid flow problem of an oscillating flat plate in two directions. They
first considered the oscillating flat plate with superimposed blowing or suction.
The second generalization is concerned with an increasing or decreasing velocity
amplitude of the oscillating flat plate.

On the other hand in view of the increasing technical applications using the
magnetohydrodynamic effect, it is desirable to extend many of the available hy-
drodynamic solutions to include the effects of magnetic fields for those cases
when the fluid is electrically conducting. Flow past a flat plate has been stud-
ied by Rossow [17]. He has considered transverse magnetic field on the flow.
SURYAPRAKASRAO [18, 19] investigated the effects of transverse magnetic field
on the fluctuating free-stream velocity when the plate is subjected to a constant
suction velocity. Boundary layer flows of fluids of small electrical conductivity
are important particularly in the field of aeronautical engineering. Further, in
technological fields boundary layer phenomenon in non-Newtonian fluids is also
being studied extensively. Therefore, it is of interest to analyze the effects of mag-
netic field on the flow of second order, incompressible and electrically conducting
fluid over an infinite oscillating plate with variable suction.

The object of Sec. 2 is to investigate the effect of the variable suction velocity
of the form v/ (1+ € Ae™'t) as assumed by MESSIHA [6]. It is of interest to
study how second order results get modified due to the conducting fluid over an
oscillating porous plate. In Sec. 3 we assumed the suction velocity of the form
vo[1+8(e*t +e~**)] as in KELLY [20]. Detailed study is made in order to extend
the Kelly’s results [20] of viscous fluid past an infinite plate with time dependent
suction to the second order and electrically conducting fluid over an oscillating
porous plate. Thus, in this section the combined effects of second order fluid and
a magnetic field are considered.

2. Problem formulation

Consider the two dimensional flow of an incompressible and electrically con-
ducting second order fluid over a porous oscillating plate of infinite extent, which
occupies the plane y' = 0. The geometry of the problem is shown in the Fig. 1.
Let u' and v' be the velocity components parallel and normal to the plate respec-
tively. We look for a solution for the velocities which is independent of z/, the
distance parallel to the plate. Then the continuity equation requires that v’ is at
most a function of time and therefore retains its value at the plate throughout
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the flow. Hence, following MESSIHA [6] and SOUNDALGEKAR [7] we consider v’
for the first boundary value problem as

(2.1) o = —vl (14 € Ae't),

where v} is a non-zero constant mean suction velocity, «’ is the angular frequency,
€ is small and A is real positive constant such as € A < 1. By neglecting higher
powers of € approximate solutions are obtained for the velocity field in the
boundary layer. The negative sign in Eq. (2.1) shows that the suction velocity
normal to the wall is directed towards the wall. Further, the conducting fluid
is permeated by an imposed uniform magnetic field B = [0, B,, 0] which acts
in the positive y'-direction normal to the sheet. In the low magnetic Reynolds
number approximation (SHERCLIFF [22]), in which the induced magnetic field
can be ignored, the magnetic body force j x B becomes o(V x B) x B when
imposed and induced electric fields are negligible and only the magnetic field B
contributes to the current j =o(V x B). Here, o is the electrical conductivity
of the fluid, which has density p’. The constitutive equation of a homogeneous
incompressible fluid of second order is

T = —pl+ pA; + 1A + apA?,

where T is the Cauchy stress tensor, A; and A, are the well known first two
Rivlin-Ericken tensors, u is the dynamic viscosity, @; and as are normal stress
moduli and p is the pressure. In view of T the momentum equation in absence
of modified pressure gradient gives

(2.2) B_u' o o V32u’ e B’ 4 v,(’)?’u' 3 oBZ/!
: ot By’ - ayIQ ayizatl 3y13 Pl ?
where
v=Ft ot =t
p 4

In above equation «; is the material constant. For fluids to have motions which
are compatible with thermodynamics in the sense of Clausius-Duhem inequality
and the condition that the Helmholtz free energy be a minimum when the fluid
is at rest, the following conditions must be satisfied [23]

."”201 0120) al+02=0-
The relevant boundary conditions for the problem are
(2.3) u' (0,¢) = UL € '?,

(2.4) Limit o' (¥, ¢') =0.

¥ —oo



330 T. Havat, Q. ABBAS, M. KHAN, A.M. SiDDIQUI

Conducting second
order fluid
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Fig. 1. Physical model under consideration.

It should be noted that for &y = B, = 0 we are left with the equations
governing the flow of a non-conducting Newtonian fluid over an oscillating porous

plate.

2.1. Solution of the first boundary value problem

Following [7] we take a solution of the form

(2.5) it (yl, t)=U! [fl W)+ € et f, (y')] )

Now using Egs. (2.1) and (2.5) in Egs. (2.2) to (2.4), comparing harmonic and

non-harmonic terms and neglecting coefficients of €2, we get

o L _Eh_dn

4

(2.7) a@—(1+liwa)£f2——d—f2+(?£+1v)f2= %—aAs

dn?
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where
oy o2t 4
et I S
i) e v/ _ ahl __ovB?
=g *Sav. M=

During the past three decades there have been several studies of boundary
layer flows of non-Newtonian fluids. These investigations have been for non-
Newtonian fluids of the differential type [24]. In the case of fluids of differential
type, the equations of motion are an order higher than the Navier-Stokes equa-
tions and thus the adherence boundary condition is insufficient to determine the
solution completely (see [25-27] for a detailed discussion of the relevant issues).
The same is also true for the approximate boundary layer approximations of
motion. In the absence of a clear means of obtaining additional boundary con-
ditions, BEARD and WALTERS (28], in their study of an incompressible fluid
of elastico-viscous suggested a method for overcoming this difficulty. They sug-
gested a perturbation approach in which the velocity and the pressure field were
expanded in a series in terms of small parameter. This parameter in question
multiplied the highest order spatial derivatives in their equation. Though this
approximation reduces the order of the equation, it treats a singular perturbation
problem as a regular perturbation problem.

In 1991, GARG and RAJAGOPAL suggested that it would be preferable to over-
come the difficulty associated with the paucity of boundary conditions by aug-
menting them on the basis of physically reasonable assumptions. They thought
that it is possible to do this in the case of flows which take place in unbounded
domains by using the fact that either the solution is bounded or the solution has
certain smoothness at infinity. To demonstrate this, GARG and RAJAGOPAL [29]
studied the stagnation flow of a fluid of second order by augmenting the bound-
ary conditions. Their result agreed well with the result of RAJESWARI and
RATHNA [30] who studied the problem based on the perturbation approach for
a small value of the perturbation parameter.

Before proceeding with the solution, we note that Egs. (2.6) and (2.7) are the
third-order differential equations when « # 0 and for the classical viscous case
(a = 0), we encounter differential equations of order two. Hence the presence of
the material constant of the fluid increases the order of the governing equations
from two to three. It would, therefore, seem that an additional boundary con-
dition must be imposed in order to get a unique solution. The difficulty, in the
present case, in however, removed by seeking a solution of the form [28]

fi= fo +eafii+0(a?),

(2.10)
fa = fo2 + afiz 4+ 0 (¢?),
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which is valid for small values of a. Putting Egs. (2.10) in Egs. (2.6), (2.7) and
boundary conditions (2.8) and equating the coefficients of & and then solving
the resulting boundary value problems, the velocity field is given by

(2.11) u = (1 + aLy) € e~ it

where

V1+4N +iw
o B iy = 1+ 1—}—24N+zw’

hQ(h+iﬁ)
1
Pl e Al o

Knowing the velocity field, we now calculate the shearing stress which in terms
of 7 is given by

Py Pyy _Ou  « %y ity U
21 O
(2.13) Pzy = Ui 6n+4[8n6t 4(1+€Ae )82
From Egs. (2.11) and (2.13) we get
(2.14) (Pzy) 0 =€ g [aL h— —ah ahz]
Now from Egs. (2.11) and (2.14) we have
(2.15) u(y, t) = (M, coswt — M sinwt),
(2.16) Pzy = |B| cos (wt + F),
where
(2.17) M, =€ e [cos hin+ an(Lycos hin+ L;isin h;n)],
(2.18) M; = — € e [sin hin — an (L; cos hin — L, sin h;n)],

B =B, +iB;, ﬁ=arctan%,

Br =€ {aLr = hr + iwahi —a (h’z . h'12):| 1
(2.19)
B;

1
€ [aL,- - h,,' — Zwah, = 2&’1,-’1.,‘] ,
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(2.20)
LR L V(I +4N)2 +w? + 144N B
T2 2|2 4
L_1+N+a+wa Na w’a
TT 9T T T T4 T o T 16r]
(2.21) e P
L‘_w+b Nwa ﬂ_i_wzb
T4 2 4r 2r 167’

(2.22) r=a?+b*=1/(1+4N)> + w2,
V(I +4N)? + w2 + 144N

a= 2 f

. V(1 +4N)? + w2 —1-4N

3. Second boundary value problem

(2.23)

In this section geometry of the problem is the same as that in the previous
section except the form of the variable suction velocity. Thus, following the
notation of [20], the boundary layer equation with no pressure gradient is given
by

Ou it —iwt)] O

(3.1) 5 +vo[1+6(e +e ) By
Pu [ Bu . iy ], el
_ua—y2+a [W+‘Uo{1+5(e +e )}a—y3 - > 4

*

where v = p/p, @ = a1/p, vo < 0 is the suction at the wall and the cou-
pling parameter is the non-dimensional amplitude, say, 6. Note that in writing
Eq. (3.1) we have used the variable suction velocity equal to v,[1+8(e™!+e~%t))]
from KELLY [20]. We further note that for a* = 0 = B, Eq. (3.1) reduces to
KELLY [20]. For the problem under consideration the boundary conditions are

(3.2) u(0, ) = 2U,coswt,
(3.3) u(oo, t) = 0.
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3.1. Solution of the second boundary value problem

We shall assume a solution of the form

(3.4)

where U, (y) is the complex conjugate of u, (y). Substituting Eq.

to (3.3) and then introducing

(3.5) n= l”°_’y,

v

Un = Uoshn,

s I
U (y, t) = ug (y) + Z Un, (y) ginwt kN Z En (,y) e—z’nwt’
n=1 n=1

(3.4) in (3.1)

into the resulting equations and the boundary conditions we arrive at the fol-

lowing boundary value problems

v dg | G (dir  dy

3.6 —_—
(3.6) lvo| dn ~ |vo| \ dn ~ dn
& . & v [d3¢y B
B S, o B B g
dn [vo| dn [vo| \ dn dn
(3.7) ¢o (0) =0, ¢o (00) = 0,
. Vo d¢’n dve (dﬁbn—l d¢n+l)

3.8 AP, + ———

) ¢ lvo| dn ~ |vo| \ dn dn
. d2¢'n v, d3¢n—l d3¢n+1
Codp? |\ dn? dn?
Vo d3¢n i d2¢n
Bl B £ — >

+a|vol = + tnal pr Nigg, n>1,

3.9) $1(0) =1, ¢1 (00) =0,

3.10) #n (0) =0, ¢n (00) =0, n>2,

where

A b 4
(3.11) B |2°| R £ 4 1=LB;.
Lg |vo] p|vo|

Equations similar to (3.8) to (3.10) result for 51 and ‘»an
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For § < 1, the equations are weakly coupled and an expansion is performed
in terms of powers of 4. Hence, we define

(3-12) ¢n(n) = Z ¢nj (n) §.
=0

Making use of (3.11) in (3.6) to (3.10) and then comparing the powers of § we
get

ada%o _d*¢0 | o deo
(3.13) dpd  dn?  |vo| dn

$o0 (0) = 0, ¢o0 (o0) =0,

+ Nigoo = 0,

d*¢10 _ dro
dn?  dn

¢10 (0) = 1, $10 (o0) =0,

1o
&

3.14) i (1 +ial)

+ (21X + Ny)¢1o = 0,

ad3¢01 ¢o1  don

e R o R + Nido
(3.15) _ (dﬁb_lo 4 d;m) — (d3¢10 i &’ ;10) ]
dn dn dn3 dn?3
$01(0) =0,  ¢o1(c0) =0,
ade;;‘ — (1 +ia)) d;’:;‘ - dj;‘ + (BA + N)én
o (5-8). (252)

¢11 (0) =0, $11 (00) =0,

ad3¢02 B d? o2 _ dp2
dn? dn? dn

(3.17) _ [ déu +d¢11 s d® 11 +d3 P11 1
dn dn dn? dn?

$o2 (0) =0, $o2 (00) = 0.
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Similar to (2.10) we can write

$oo = 00,1 + adoo2 + O (a?),
$10 = ¢101 + adio2 + O (e?),
(3.18) do1 = do1,1 + ador2 + O (a?),
¢11 = 1,1 +adz+ O (a?),
P02 = do2,1 + adozz + O (o?).

Substituting (3.18) in (3.13) to (3.16), equating the coefficients of o and then
solving the resulting systems we arrive at

(3.19) ¢no =0, n=0 and n> 2,

(3-20) $10 = (1+ aSn)e™,

(3.21) ¢11 =0,

(3.22) $o2 = 0,

(3.23) $oL = — (;gi + oo + ;aﬂgi) e~ + Qr cos gin + Qisingn
where

2
Ao =3 [(2+9:-) A2+ A(3g: — Si) — gr + (Srgr — Sigi)]

1+ TFAN AN
.q:g’r+?’gi= 2 ]
2 .
S=8 +is = LW+

V1+4N; + &)’

2. 2t
Qr = —)-‘—i;e grn [ — kP (24 gr) + Agi — A {(3g: — Si)

—1(Segs + Sigr)} + agr — & (Srgr — Sigi) |



NON-NEWTONIAN FLOWS OVER ... 337

2
Q; = ﬁe"gf" [ —oeA%g — Aoy a{3g, — S, +1

~(5:9- - Sigi)} - agi +a(Srg: + Sigy) |-

Hence from (3.4), (3.5), (3.12) and (3.19) to (3.23); the velocity field in the
boundary layer is given by

2 2 . |
(324) u= Uo[{("xgz' —ad. - Xangi)e 4

+ Q- cos g;n + @Q;singin}d + e 9" cos (gin — wt)
+ e~ 9an{S, cos (gin — wt) + Sisin (gin — wi)}].
The expression for the shearing stress in term of 7 is given by

x &
w Onot

i a¢ - wt —iwt @
(3.25)  Ppy = pU, |v,| [5;’—+a [ vo {1+ (et + e} ||
Using (3.5) and (3.24) in (3.25) and neglecting O (6%) terms we get
(3.26) (P«”Gy)r,—m = pU, |vo| [| E] cos (wt +7y) — 26],

where

E
E? = Ei + EZ, ~ = arctan —=,

Ey
E, = —g- +a(S; + Agi — gr),
E2=gi—a(5i+)‘gr+gi+)‘)a
, 1
G %[%{\/(1 +4N1)2+16A2—1—4N1}]2,
(3.27) 1
% R 2 2
e §+.2_[§{\/(1+4m) +16/\2+1+4N1}] ,

1 N1 ay N]Abl N10.1 )\2a1
8= i e s - ==
" 2+2+2+r1 2r r

by NiA Nibi A%
1+ 1441 + 101 + 1
2 T 2r T1

b
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Ty = a% —+—b% — \/(1 +4N1)2 + 16/‘\2,

VL 4N)? +16)2 + 14 4N,

012\ 7 )

VL+4N)? +16X2 — 1 — 4N,
; .

by

4. Discussions

In order to investigate the effects of the material parameter on the flow we
have plotted u against n in Figs. 2 to 7.

e In Fig. 2 we note that the boundary layer thickness decreases with increase
in frequency. It is further noted form Fig. 3 that velocity is negative for
higher values of w when N = 100.

e Figure 4 indicates the variation of the velocity profile for various values of
a. It is observed that as « increases, the value of the velocity decreases.
That is, increasing the normal stress coefficient has the effect of increas-
ing the boundary layer thickness. Further, comparison of Figs. 4 and 5
show that layer thickness decreases drastically with increase of N. It ap-
pears that the electromagnetic force makes the layer thicknesses thinner.
It is likely that the magnetic field provides some mechanism to control
the growth of the boundary layer thickness. Moreover, Fig. 5 also illus-
trates that u is negative for wt = 7/2, € = 0.5, w = 10, N = 100,
o =0.025, 0.05, 0.075, 0.1.

e In Figs. 6 and 7, the effect of material parameter is shown for second
problem when N = 0 and N # 0 respectively. It is also clear from
Fig. 6 that u decreases with increase of « first and then increases. With
N # 0 in Fig. 7, the velocity is less in comparison to the velocity in
Fig. 6.

¢ In Figs. 8 and 9 the fluctuating parts are shown for comparison purposes
when N = 5, €= 0.5 and w = 100. Figure 9 is particularly interesting
because it illustrates the effects of « at large w on M;. In the case of fluids
with material parameter, at w = 100, there is a sudden rise and fall of M;
near the wall. Also, from Figs. 8 and 9 one can conclude that an increase
in a leads to much increase in M; than M,.
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5. Concluding remarks

Exact solutions for the Stokes problem on a porous plate for an second order

fluid are obtained in the presence of a magnetic field. From Egs. (2.15), (2.17),
(2.18), (3.24) and (3.27), it is found that the penetration depth decreases with
fundamental frequency. This is not surprising; if we slowly oscillate a plate in
a sticky fluid, we expect to drag large masses of fluid along with the plate;
on the other hand, if we move the plate rapidly in a fluid of low viscosity, we
expect the fluid essentially to ignore the plate, except in a thin boundary layer.
Further, we note from these solutions that an increase of the magnetic field
reduces the velocity within the boundary layer and also to reduce the boundary
layer thickness.
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Variable viscosity and thermal conductivity effects
on heat transfer by natural convection from a cone
and a wedge in porous media

Notations
cp  specific heat,
f dimensionless stream function,
F  inertia coefficient of the porous medium,
g gravitational acceleration,
h local heat transfer coefficient,
K  permeamility of the porous media,
K thermal conductivity of the porous medium,
#s  thermal conductivity of the ambient fluid,
n geometric factor,
Nu; local Nusselt number,
Ty Tovil Talelah saniey, LSRG w = Foll
HfQe
Rar Raleigh number based on the characteristic length,
T temperature,
T, wall temperature,
u tangential velocity,
v normal velocity,
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THE PROBLEM OF STEADY, laminar heat transfer by natural convection flow over
a vertical cone and a wedge embedded in a uniform porous medium with variable
viscosity and thermal conductivity is investigated. The transformed governing equa-
tions are solved numerically by using a finite difference scheme. The obtained results
are compared with earlier papers on special cases of the problem and are found to
be in excellent agreement. The influence of porous medium inertia effect, viscosity
variation parameter ¢ and thermal conductivity variation parameter v on the fluid
velocity and temperature is discussed. Including the porous medium inertia effect
or viscosity variation parameter in the mathematical model is predicted to reduce
the local Nusselt number. Furthermore, the local Nusselt number increases in the
presence of thermal conductivity variation parameter.
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V.  wall mass flux coefficient,
¢  distance along the cone or the wedge,
y distance normal to the cone or the wedge.

Greek symbols

effective thermal diffusivity of the porous medium, picf—
thermal expansion coefficient, ’
viscosity variation parameter,

thermal conductivity variation parameter,

half angle of the cone or the wedge,

pesudo-similarity variable,

dimensionless porous medium inertia coefficient,
dynamic viscosity,

dynamic viscosity of the ambient fluid,

dimensionless temperature,

density,

dimensionless distance,

stream function.

€MD Q:E:'S: "j—‘i;{-l’“‘sa NQ

Subscripts

condition at the wall,
oo  condition at infinity.

g

1. Introduction

FLOW AND HEAT transfer from different geometries embedded in porous media
have many engineering and geophysical applications such as geothermal reser-
voirs, drying of porous solids, thermal insulation, enhanced oil recovery, packed-
bed catalytic reactors, cooling of nuclear reactors, and underground energy trans-
port. Most early studies on porous media have used the Darcy law, which is a
linear empirical relationship between the Darcian velocity and the pressure drop
across the porous medium and is limited to slow flows. However, for high velocity
flow situations, the Darcy law is inapplicable because it does not account for the
resulting inertia effects of the porous medium. In this situation, the relationship
between the velocity and the pressure drop is quadratic. The high flow situation
is established when the Reynolds number based on the pore size is greater than
unity. VAFAI and TIEN [1] have discussed the importance of inertia effects for
flows in porous media.

CHENG and MINKOWYCZ [2] have used the Darcy law in their study on free
convection about a vertical impermeable flat plate in porous medium. CHENG
et al. [3] have analyzed the problem of natural convection of a Darcian flow about
a cone using the local nonsimilarity method. CHAMKHA [4] has obtained similar-
ity solutions for the problem of non-Darcy free convection from a nonisothermal
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cone and a wedge in a porous medium. YIH [5] has reported the effect of uniform
lateral mass flux on free convection about a vertical cone embedded in a fluid-
saturated porous medium. HOSSAIN et al. [6] have studied non-Darcy natural
convection heat and mass transfer along a vertical permeable cylinder embedded
in a porous medium. YIH [7] studied coupled heat and mass transfer in mixed
convection about a wedge embedded in saturated porous medium. CHAMKHA [§]
has studied simultaneous heat and mass transfer by natural convection about a
vertical wedge and a cone embedded in a porous medium.

In all of the papers mentioned above the viscosity and thermal conductiv-
ity are assumed as constant. However, the problem of mixed convection flow
past a wedge for temperature-dependent viscosity was investigated by HOSSAIN
et al. [9]. HASSANIEN [10] analyzed the problem of mixed convection from im-
permeable vertical wedge in a fluid-saturated porous medium incorporating the
variation of permeability and thermal conductivity. HOSSAIN and MUNIR [11]
have investigated the natural convection flow of a viscous incompressible fluid
from an isothermal truncated cone. HOSSAIN et al. [12] have studied the effect
of radiation on free convection flow of fluid with variable viscosity from a porous
vertical plate.

The aim of the present work is to study the variable viscosity and thermal
conductivity effects on heat transfer by natural convection about an isother-
mal vertical wedge and cone embedded in a fluid-saturated porous medium. A
nonsimilarity transformation is employed to transform the governing differen-
tial equations to a form whereby they produce their own initial conditions. The
transformed equations are solved numerically. The obtained results for special
cases of the problem were compared with the previously published work and
were found to be in excellent agreement.

2. Problem definition

Consider steady, laminar, heat transfer by natural convection flow over a sta-
tionary permeable cone embedded in a fluid-saturated porous medium. Figure 1
shows the schematic diagram of the problem. The origin of the coordinate sys-
tem is placed at the vertex of the cone, where the z-direction is taken along the
cone and the y-direction is normal to the cone. The fluid is assumed to be New-
tonian and has constant properties except the density in the buoyancy term of
the balance of momentum equation, the viscosity and thermal conductivity. The
fluid and the porous medium are assumed to be in local thermal equilibrium.
The surface of the cone is kept at constant wall temperature. The temperature
at the cone surface is always greater than its uniform ambient values existing far
from the cone surface.
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medium
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Fic. 1. Flow model and physical coordinate system.

The governing equations that take into account the inertia effects of the
porous medium within the boundary layer and Boussinseq approximations may
be written as follows:

or"u  Or™v

2.1 -
e oz v dy 0,

FK |du d (1 pgBrK cosvy, T
2.2 142—u|— = pu— (—) e .
2 [ w oy T Mg\ p dy

(2.3) u—a—T— + U—az g 2 (ma—T-)
i dz 8y  pcdy\ By )’

The boundary conditions are defined as follows:

(2.4) v = Vy, T=T, at y=0,

(2.5) u 0, T=Tyx at y— oo,
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where u and v are velocities in the z and y directions, p is the density, ¢, is
the specific heat, g is the gravitational acceleration, K is the permeability of
the porous medium, fr is the thermal expansion coefficient of the fluid, T is
the temperature, F' is the inertia coefficient of the porous medium, the value V,
(constant) is the surface mass flux coefficient. The value of n can be either n = 0
for a flow over a vertical wedge or n = 1 for a flow over a vertical cone. When
n = 0 and v = 0, the problem will reduce to the case of a vertical flat plate.
The above equations were derived under the assumption that the boundary-layer
thickness is sufficiently thin compared to the local radius of the cone. Thus, the
local radius at a point in the boundary layer can be replaced by the radius of
the cone (z = rsiny).

Following [11], the variation of dynamic viscosity and thermal conductivity
with the temperature are written in the form:

_ 1 (du
(2.6) b= _1+ o (ﬁ)f (T Too)- )
[ 1 (ds ]
(27) K = Kf 1+ ;—; (ﬁ)f (T — Too) .

where the subscript f denotes the quantities outside the boundary layers. Intro-
ducing the following dimensionless variables:

(2.8) € =
(29) n = 2VRa,
(2.10) fem = e,
(2.11) o) =

and substituting Eqgs. (2.8)—(2.11) into Egs. (2.1)-(2.3) we obtain the following
transformed governing equations:

ot — 1 1ot ’
(2.12) [1+1_E§ ]f —-l—a[—efB +0]1
i ! ’ ,00 ,0
(2.13) (1++6]0 +(n+§)f9 +,Yef‘2._g(f_€—9——£),
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with the boundary conditions transformed to:

3
2.14 = a2 = acy
(2.14) f L 1 a n=0,
(2.15) P =4 =0 at n — 00,
2FKa.Ra
where the primes denote partial derivatives with respect to n, I" = —l—j%—l“
i

1,4d
is dimensionless porous medium inertia coefficient, e = — (ﬁ) (Ty — To) i
by f

1 (d
the viscosity variation parameter, vy = — (d—;) (Tw — Two) is the thermal con-
fif f

ductivity variation parameter, and a, is the equivalent thermal diffusivity. The
kind of the applicable fluid for the present form of viscosity and thermal conduc-
tivity is discussed in more detail is given in [11, 14]. The velocity components
are given by:

R.
(2.16) § = Bkl

2

aevRag ¢

(2.17) v = 2= (2n+1)f+£g—£+nf’.

The local Nusselt number Nu, is given by:

Nu, _ /

We now obtain approximate solutions of the equations (2.12)-(2.13) based
on the local similarity and non-similarity methods [13]. For the first level of
truncation the & derivatives in equation (2.13) can be neglected. Thus, the gov-
erning equations for the first level of the truncation are equation (2.12) and the
following equation:

(2.18)

1
(2.19) [1+~6]68" + (n + 5) 8 +40? =0

subject to the boundary conditions

(2.20) f —5;1%,

(2.21) o=l g g=0"" & 'gpeco
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At the second level of truncation, we introduce IT = %, = g—g- and restore all

of neglected terms in the first level of truncation; thus, we have Eq. (2.12) and
the following equation:

(2.22) [1+6]0" + (n + %) [0 + 407 = g (f'e —0'H)

subject to the boundary conditions

(2.28) f = ¢ , B=1 at 5 =10,
(2.24) P o= 0 =0 at n — 00.

The introduction of the two new dependent variables IT and @ in the problem
requires two equations with appropriate boundary conditions. This can be ob-

tained by differentiating (2.12) and (2.13) with respect to ¢ and neglecting the
2 2

0
terms —= and == which leads to

oEe o€

r el
.25 1 - ——of"
(&5} [ ¥ 1+e9] (1+ €6)? !

_ 1
T 1460

P

[’—E(f’@, i HIHI) +¢I] _ m [

—Efle’ + 9[] }

(2.26) (1+~0)8" + vd0" + (n + é—) (10 + ') + 2740'®

1
= g (1¢ —'IT) + 5 (f'e—0'm),
with boundary conditions
(2.27) I = : =0 t =0
’ T 42’ = o =S
(2.28) o = o, &=0 at 15— oo

The resulting equations with the boundary conditions have been solved nu-
merically using a finite difference method.
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3. Results and discussion

Numerical results are obtained for ¢ = 0,5, v = 0,2.5, I' = 0,0.5, and
n =0, 1. In order to verify the accuracy of our present method, we have compared
our results with those of YIH [5] and CHAMKHA et al. [7]. The present results
compared with the above researches are in good agreement, as shown in Table 1.
Table 2 gives the parametric conditions for each of the curves shown in Figs. 2-5.

Table 1. Values for —6 (£,0) for the cases of wedge n =0 and cone n = 1 with
(I'=0,e=0, y=0).

n=0 n=1
¢ Yin [5] | CHAMKHA et al. [7] | Present results | Yiu [5] | CHaMKHA et al. [7] | Present results
-1014.9999 4.9830 5.0008 5.0995 5.0857 5.1006
-813.9999 3.9892 4.0015 4.1244 4.1156 . 4.1256
-6 2.9999 2.9936 3.0036 3.1655 3.1603 3.1661
-42.0015 1.9976 2.0127 2.2434 2.2409 2.2453
-2(1.0725 1.0722 1.0810 1.4139 1.4132 1.4153
0]0.4437 0.4439 0.4445 0.7686 0.7686 0.7687
210.1416 0.1423 0.1355 0.3537 0.3541 0.3530
410.0333 0.0340 0.0229 0.1342 0.1349 0.1309
610.0055 0.0058 0.0011 0.0400 0.0411 0.03559
810.0006 0.0007 0.000009 | 0.0092 0.0096 0.0064
10| 0.0001 0.0001 0.0 0.0016 0.0017 0.0006

Table 2. Parametric values for curves in the figures.

Curve r € vy
I 0 0 0
II 0.5 0 0
III 0 0 2.5
v 0.5 0 2.5
A% 0 5 2.5
A% ¢ 0.5 5 2.5

Figures 2 and 3 represent the behavior of the stream function and the fluid
velocity for the situations shown in Table 2 for both a cone and a wedge at
positive lateral wall mass flux at £ = 10. A resistance against the flow exists if the
porous medium inertia effect is considered. As a result, the flow stream function
and velocities near the wall decrease as shown by curves II and IV compared
with curves I and III for a cone and a wedge. Also, the effect of viscosity and



VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY . .. 353

thermal conductivity variation parameters on both the stream function and the
velocity is observed. It is found that the flow stream functions and velocities near
the wall decrease as the viscosity variation parameter € or thermal conductivity
variation parameter y increase.

4
afn=0 ----. o s P A i e R
2

1t e

s
.-

v, L i

.-
v, <
-3b ’r‘ —"-—. 2

.-
-
.=
.-

LILILIV
LIIL I, IV

15 20

F1G. 3. Velocity distribution for various values of ¢, v and n.

Figure 4 illustrates the temperature profiles for a cone and a wedge at £ = 10.
The resistive force discussed in the previous paragraph due to the presence of
inertia effect tends to increase the temperature of the flow for a wedge and a cone.
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It is also seen that the temperature increases as viscosity variation parameter.
Also, as thermal conductivity variation parameter increases, the temperature
profiles decrease near the wall.

1
0.9
08 k
0.7
0.6

® 0.5
0.4

0.3

0.2

0.1

0

LILIIL, IV
LILII, IV

n=0 ---- 0.01

n=1
0.001
0.0001
000001 | v LILV,VI !
0.000001 L OLIV.LILV. VI

FiG. 5. Nusselt number distribution for various values of ¢, v and n.

Figure 5 illustrates the distribution of the local Nusselt number for a wedge
and a cone. The porous medium inertia effect tends to decrease the local Nusselt
number due to its effect on the wall temperature slopes. As viscosity variation
parameter increases, the Nusselt number decreases. On the contrary, the Nusselt
number increases as thermal conductivity variation parameter - increases.
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4. Conclusions

The problem of steady, laminar heat transfer by natural convection boundary

layer flow of variable viscosity and thermal conductivity over an isothermal ver-
tical permeable cone or wedge with constant lateral wall mass flux embedded in
a uniform porous medium was considered. The governing equations for uniform
wall temperature were developed and transformed by using appropriate nonsim-
ilarity transformations. The transformed equations were solved numerically by
using the Keller-Box method. The numerical results are presented. It is found
that the Nusselt number decreased when the porous medium inertia or thermal
conductivity variation parameter effects are considered. Furthermore, the local
Nusselt number increases in the presence of the viscosity variation parameter.
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Analytical expressions of effective constants for a piezoelectric
composite reinforced with square cross-section fibers
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THE PURPOSE of this paper is to present analytical expressions of the effective elastic,
piezoelectric and dielectric constants of reinforced piezoelectric composite materials
with unidirectional fibers periodically distributed in a square matrix, as obtained by
means of the “double asymptotic homogenization” method. The cross-section of the
fibers is square. Each periodic cell of the medium is a binary piezoelectric compos-
ite wherein both phases are homogeneous piezoelectric materials with transversely
isotropic properties. Comparison between the derived theoretical predictions of char-
acteristic parameters and the existing experimental results shows a rather good agree-
ment. The results obtained in the present paper were verified by means of the uni-
versal relations of Schulgasser. Numerical computation of the effective properties can
be realized without difficulties.

Key words: Piezocomposite, effective properties, asymptotic homogenization, fiber-
reinforced, composite material.

1. Introduction

The piezocomposite materials have been used for hydrophone applications
and transducers for medical imaging. The determination of the overall properties
of piezocomposite, according to the physical and geometric characteristics of
their components, is very important for applications.

Different techniques have been reported to estimate the effective electro-
elastic properties of piezoelectric laminate composites. For example, in [1] the
effective coefficients of a bi-laminate medium of 4mm symmetry using the hy-
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potheses of equivalent homogeneity were obtained. In [2], the effective behavior
of bi-laminate media of hexagonal symmetry using the theory of uniform fields
in heterogeneous media by means of appropriate boundary conditions was deter-
mined. An effective medium model of layered composites has been investigated
starting from a physical reasoning given in [3]. In the case of very fine composite
structures, quasistatic and iso-strain (constant strain) approximations were used
to derive the effective properties of composites (see, [4, 5]) which include the
effective elasticity, permittivity, piezoelectricity, and density; some physical pa-
rameters useful for different applications were derived. Basing on the asymptotic
homogenization method, analytical formulae for the overall properties of layered
piezoelectric composites can be found in [6, 7].

Unidirectional fibrous composite with square cross-sections of fibers has been
investigated only by means of numerical solution of the local problems. For
instance, the finite element method was applied in [8] for determine the global
properties of a piezocomposite. The Ritz method was used in [6] to investigate a
rectangular cross-section in a square matrix for thermopiezoelectric composites.

In the present paper, using “double homogenization”, (e.g., the homogeniza-
tion is applied two times in different directions, according to the geometric con-
figuration of the composite), analytical expressions of the effective coefficients
are obtained, in a composite with square fibers distributed periodically into
square cells. Somehow, the present work is related to a recent work by ANDRIA-
NoV et al. [9, 10|, where an asymptotic approach and Padé approximants are
proposed for evaluating effective elastic and heat conductivity properties respec-
tively, of two-component periodic composites with fibrous inclusions. In order
to apply the so-called “double homogenization”, the problem is divided into two
homogenization stages: 1) the composite structure is homogenized, that is, the ef-
fective coefficients for a unidirectional structure in the direction x5 are obtained;
2) afterwards, the effective coefficients are calculated for the composite 2-2 in
the other direction z;. In this case, due to the symmetry of the composite, the
double homogenization can be easily realized. The main theoretical aspects used
in this work can be found in [7]. These results for square fibers are compared
with the expressions obtained in [7] for the laminate composites 2-2, and with
some theoretical and experimental results reported in the literature, [11]. The
universal relations given in [12] are satisfied for the set of coefficients calculated
in the present work.

2. Theoretical procedure

Piezoelectric materials are characterized by the following different material
coefficients: C' (elastic), e (piezoelectric) and ¢ (dielectric), which are the fourth,
third and second order tensors, respectively. When these materials are hetero-
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geneous and periodic, the material coefficients are X-periodic functions. Here
X denotes the periodic cell. Applying the method of asymptotic homogeniza-
tion, the material coefficients are transformed into new physical coefficients C
(elastic), e (piezoelectric) and & (dielectric), which represent the homogeneous
properties or effective coefficients. To obtain these coefficients it is necessary to
solve a set of local problems, which are represented by a system of partial dif-
ferential equations. In case of circular transverse section of fibers, an analytical
solution for this system is obtained making use of the potential methods of the
complex variable and properties of the Weierstrass elliptic functions, [13-17]. On
the other hand, analytical closed forms of the effective coefficients of piezoelectric
composites with square transverse sections of the fibers using asymptotic homog-
enization have not been reported yet. Therefore the purpose of the present work
is to present an alternative form for the computation of analytical expressions
for such composites.

Let us suppose that we have a composite material with unidirectional square
fibers periodically distributed, where each periodic cell is a binary homogeneous
piezoelectric medium with square symmetry in welded contact at the interface.
Both the matrix and the fibers are assumed to be composed of homogeneous
piezoelectric materials with 6 mm hexagonal symmetry.

2.1. Effective coefficients for the first homogenization in the direction z-

In [7], the effective coefficients were obtained for piezoelectric laminated com-
posites. Let us suppose that we have a laminate material formed by a piezoelec-

tric phase (phase 1) of elastic, piezoelectric, dielectric and density constants

oD 0 D

551 €ij' o Eij s p) respectively; and a phase of piezoelectric polymer (phase 2)

of elastic, piezoelectric, dielectric and density parameters denoted by: C(“7 ), e( )
e p@
ij? i
The effective coefficients for a piezoelectric laminate in the direction x, are
exactly expressed as follows:

Effective elastic constants

Iags + FL(—CS)/BH —ap+ Cl(:f)ﬁm) (2)1512
B2
(o -ehem -1 - s
B2 ’

o = I 0(22)+FL( C’ ﬁu —0122+C )ﬁlz) g)ﬁlz
137 B2 ’

* —
Cll__

(2.1) o =
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(2.1)
[cont.] (1) ~(2)
. o
O = ﬁlz ’
o _ (O - e -1 - chp
= P2 ’
or _ _Tios+ I (~CYBra — o + C53 Bio) — CFF o
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4
i —2.e1 (634)624)) Ba2Baz + (2.65 T BsaBiz + Pz (Br2)?) (3(2?:))
4 =

Ba2e 512) 3 ;(222) Ba2
2 2?2 (1 1) (1) {.(2
5&2)11 L (624) Baz2f42 — (044)552)) fgz) C:£4)5g2 (5(22)) B2
,832522 522 ,642

2
(B2 (Bio)? — e T Pfio) (62 €02 () o2
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1(cf) - el - o)
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Effective piezoelectric constants

£ (—e (1) + 624 )E(Z)FL I 6(224),342
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g e (e:(sé) ))022 Ip+l= e )+ egz)) e '332)/312
(2.2) 512
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Effective dielectric constants

en = eV IL + 5y — e I,
" ‘FLEgg)ﬁu %+ FL€§.3)}312 —T'fan+ 5g23)ﬁ12 + I'ags
(2.3) €33 = Brg ’

2
5(22)552) )

iz = Baz

Effective density constant

(2.4) p*=pVI +p® - pBry,.

where
pra =Ty C8 — C’él) C'(1 T,
Bor = - - c® +cVry,
Bag = —-ICR + 0D - 6213,

Bua = —Tpel) — el + 51y,

1 2 2
o - eghics - 63,

aig = (

an = (Cf - C)(Cfy - ),

az = (Cf) - CR)(CY - C),
(

-t -

Qyz = €aq — €y

agy = (C) — C2)(ely — &2,
o = (Cfy c{ (el = ei2),
Qg = (eg-z) £= ec(;z))(e:(alz) e%)).

The expressions Cyj» €1y €55 and p* represent the effective coefficients in the
Structure I (Fig. 1) and we denote by Iy the volume fraction of piezoelectric

material in this structure.

2.2. Effective coeflicients for the second homogenization in the direction z,

Now, the laminated composite is made of Phase 1 whose properties are the

averaged coefficients in the direction zs calculated previously, namely: CU, '

€;;» P and a phase of piezoelectric polymer (Phase 2) of elastic, piezoelectric,

dielectric and density properties denoted by: C’zJ ’ g), g) , p.
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X
Periodic cell
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1-3 Piezocomposite

FiG. 1. Schematic diagram of a 1-3 piezoelectric composite, illustrating the periodic cell and
two homogenization stages.

The effective coefficients of the composite in the direction x; are exactly given
in the following form:

E ffective elastic constants

= C* 0(2)
Lt L N
= b1
612 - — (C}fz o Cig))CII(FL == 1) == C}IKQﬁll
11 !
613 = - (CI3 i Cg))cfl(FL i 1) = 01*3611
(2.5) B 2 :

s A “Ffa11 + I'L(—C3011 — a1 + Céz)ﬁll) . 022),611
B ’

Ty — _ LLon + (=3B — a1 + c@p) - P,
B ,

C Iy I'n(—-C3 — 0(2) - 0(2)

C33 = — L¥31 + L( 33ﬁ11 a31 + 33 ﬁll) 33 :611
B )

Cua=Ci{lL + Cﬁ) — CS)FL,
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where
P = —FLC(Z) Ci, + Cii I,
Ba1 = —FLcl 2 Cikg + CﬁFL,
By = -I0L+6Y-62n,
B = _FLE(2) 55{1 +511FL:

o, — O — a2,
an = [Oh—CcEc, -0,

a;p =
(
ay = (Ch—C3)(Ch - CH),
(
(
(

5 295 2k 2
€15 — 8(15))(615 - 355))

Ci; — (2))(‘331 - 31(321))
Ciy — C(Q))(ee.] o 81(321))

Qg1 =
Q51 =

Qg1 =

B 2 2
a7 = “(331‘“3%1))(331 efn))

The expressions 6@, €;j, €;; and p denote the effective coefficients in the
composite Structure II. These expressions represent the effective coefficients of
the composite for square reinforcement fibers. The volume fraction of fibers is
expressed according to I'r = (I';)?.

3. Applications to transducers. Results

One of the important applications of the piezoelectric composite materials
appears in transducers used for medical imaging applications. The desired prop-
erties are a high electromechanical coupling coefficient K; (0.6 to 0.7) and a
low acoustic impedance Z (< 7.5 MRayls). Now, the case in which two differ-
ent homogeneous phases are involved in the composite is studied. The effective
properties of the composite can now be computed from Egs. (2.5)-(2.8). A set
of important physical parameters for pulse-echo transducer applications can be
calculated. For instance, let us mention the electromechanical piezoelectric cou-
pling coeflicients K; and K, the specific acoustic impedance Z, the longitudinal
wave speed V; and the hydrostatic charge coefficient dj,. They are given by the
following formulae (see, [18]):

V Oy
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N 2
=12 .O__KBI,
= D
Z =pVs,
(3.1) ’
[con:.] —D
VI = 2_:}'3'9
7
dp, = d31 + d3z + d3,
where
=D _ = |
C33 = C33 +€33(E33) 5
?31 = d—31__—1
V&350
5o S
(3.2) -
Sij = (‘UHJ‘Z&,

dmi = Emjsjia

Bl = GmpBap + Emn

The superscripts D and T at a given symbol in (3.1) and (3.2) mean that the
relevant quantity is measured at constant electric displacement D or at constant
stress T’ d;j is the piezoelectric coefficient of the composite, S;; are components
of the effective compliance tensor S, & is the Poisson'‘s ratio, A is determinant
of the a-j matrix and A;; is the minor obtained by excluding the i-th row
and j-th column. Some properties of the composite are presented as functions
of the volume fraction of piezoelectric phase and also their implications for the
design of pulse-echo ultrasonic transducers are shown. Material parameters of the
piesoelectric and polymer phases used in the calculations are shown in Table 1.

A composite of PZT — 5A rods embedded in a passive polymer Araldite
is now considered. The material values appearing in Table 1 were taken
from [7, 11]. In Fig. 2, the electromechanical piezoelectric coupling coefficients
K and K, are plotted as functions of the piezoelectric volume fraction. The
dotted line corresponds to the laminated composite 2-2 and the solid line to the
fibrous composite 1-3. We observe that the value of K; for the fibrous composite
is greater than that for the laminated composite. Also we can appreciate that
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for the same values of piezoelectric volume fraction, the 1-3 composite has a
smaller value of K. Therefore, the composite 1-3 has better physical properties
than the composite 2-2 for applications in transducers used for medical imaging
applications.

Table 1. Material parameters

PZT 5A | ARALDITE | TLZ-5 |VDF/TrFE copolymer

CE (10'°N/m?)| 12.10 0.546 12.6 0.85

CE (10'°N/m?) | 7.54 0.294 7.95 0.36

CE (10'°N/m?) | 7.52 0.294 8.41 0.36

CE (10'°N/m?) | 11.10 0.546 10.9 0.99

eas (C/m?) 15.8 - 24.8 —0.29

ea1 (C/m?) -5.4 - —6.5 0.008
€33/€0 916 7.0 1813 6.0

p (10°Kg/m?®) 7.75 1.17 7.898 1.88

€0 = 8.85 1072 C%2/Nm? (permittivity of free space)

0.7 407

0.2 —— 1-3 piezocomposite 402
—eee 22 pi@ZzOCOMpOsite

0.1 | =01
O-D " L i | i -l i 1 i 0.0
0.0 0.2 04 0.6 0.8 1.0

FiG. 2. Plot of electromechanical coupling coefficients K¢ and K, versus volume fraction of
piezoelectric. The laminate composite 2-2 (continuous line) and the fibrous composite 1-3
(dotted line).
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The analytical expressions that were derived using the “double homogeniza-
tion” method can equally be used for a passive or piezoelectric matrix. The sec-
ond example is for a 1-3 composite of TLZ — 5 piezoelectric rods embedded in a
piezoelectric copolymer VDR/TrFE. The properties are displayed in Table 1.
In Fig. 3(a-f), the parameters: short-circuit stiffness constant (FE-constant) Cas,

open-circuit stiffness constant (D-constant) 531?3 and dielectric constant £5,/eq,
specific acoustic impedance Z, electromechanical coupling constant K, longitu-
dinal wave speed V; are plotted against volume fraction of the fibers, respectively.
The continuous curve is the result of computation using the model proposed by
the authors. The dotted curve for the approzimate theory and the bullet points of
the experimental results were reported in [11]. The agreement is seen to be quite
good. The theoretical values show essentially the same trend as the experimental
data [11] as well as the approzimate theory used in [11] which was introduced
by Smith and Auld (see, [4-5]). In this sense, six simplifying approximations to
extract the essential physics are introduced en [4] and [5]. In connection with
that, the main assumptions can be summarized as follows. First, the authors as-
sume that the strain and electric field are independent of z and y throughout the
individual phases. This is clearly not true in detail, as finite element calculations
reveal. The expectation is that this approximation captures the physical behavior
in an average sense. Second, they add the usual simplifications made in analyzing
the thickness mode oscillations in a large, thin, electrode plate (symmetry in the
z — y plane, E; = E3 = 0, etc). The third approximation embodies the picture
that the ceramic and polymer move together in a uniform thickness oscillation.
Thus the vertical strains (in the z direction) are the same in both phases. This
is clearly not always true as the laser probe measurements of the displacements
of oscillating composite plates reveal. Fourth, they describe the electric fields in
two phases. Since the faces of the composite plates are equi-potential, they take
the electrofields to be the same in both phases. Fifth approximation concerns
the lateral interaction between the phases. They assume that the lateral stresses
are equal in both phases and that the lateral strain in ceramics is compensated
by a complementary strain in the polymer, so that the composite as a whole is
laterally clamped. Sixth approximation deals with the dependent coordinates.
Since the lateral periodicity is sufficiently fine, the authors obtain the effective
total stress and electric displacement by averaging over the contributions of the
constituent phases (rule of phases for both z3-components of strains and electric
displacement).

Note that the results of the “simple” physical analysis of Auld-Smith [4-5]
agree remarkably well with the “rational” homogenization method, while the
Auld-Smith results concern a thin plate with square inclusions whereas the
“double homogenization” technique is applied to a body which is infinite in di-
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rection z3. This may correspond to different hypotheses concerning the states of
stress and strains in the body as in the case in a plate and the cross-section of
an infinite cylinder. This may explain the difference observed the last value dy,.
This hydrostatic charge coeflicient dj, is plotted as a function of the fiber volume
fraction in Fig. 4. The solid line for the values are obtained using the“double
asymptotic homogenization” method. The dotted line for the calculated values
and the experimental bullet points were taken from [11]. This proves that the
agreement between the experimental data and the “double homogenization” pre-
diction is very good.

240 ~ -

220 -

200

180

PR -, (O |

160 =

120

100

d,(PCN")

80 -

40 Double homogenization -
- Taunaumang et al. (1994)

® Experimental data

-20 " B I T | L 1 M 1

0.0 0.2 04 06 0.8 1.0

F1G. 4. The hydrostatic charge constant dj, versus fiber volume fraction.
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INVERSE SOLUTIONS of the equations of motion of an incompressible second-grade
fluid are obtained by assuming certain forms of the stream function. Expressions for
streamlines, velocity components and pressure distributions are given in each case
and are compared with the known results.

Key words: second-grade fluid; exact solutions; two moving parallel disks.

Notations
T Cauchy stress tensor,
—pl indeterminate spherical stress,
I viscosity,
ai elasticity,
az cross-viscosity,
A, A, Rivlin-Ericksen tensors,
A" velocity,
grad  the gradient operator,
d/dt  material time derivative,
T the transpose,
P density,
X the body force,
v? the Laplacian operator,
V. av /o,
|A1|  the usual norm of matrix A,

u,v,w the velocity components,
z,yY,z the coordinate axis,

£ ~®e

relative velocity of the disk,
modified pressure,

Poisson bracket,

vorticity vector,



374 A.M. SippiQui, M. R. MOHYUDDIN, T. HAYAT, S. ASGHAR

v kinematic viscosity,
A second-grade parameter,
1 the stream function.

1. Introduction

RHEOLOGICAL PROPERTIES of materials are specified in general by their so called
constitutive equations. The simplest constitutive equation for a fluid is a New-
tonian one and the classical Navier—Stokes theory is based on this equation.
The mechanical behaviour of many real fluids, especially those of low molecular
weight, is well enough described by this theory. However, in many fields, such
as food industry, drilling operations and bio-engineering, the fluids, either syn-
thetic or natural, are mixtures of different stuffs such as water, particle, oils,
red cells and other long chain molecules; this combination imparts strong non-
Newtonian characteristics to the resulting liquids; the viscosity function varies
non-linearly with the shear rate; elasticity is felt through elongational effects and
time-dependent effects. In these cases, the fluids have been treated as viscoelastic
fluids. Because of the difficulty to suggest a single model which exhibits all prop-
erties of viscoelastic fluids, they cannot be described simply as Newtonian fluids.
For this reason, many models or constitutive equations have been proposed and
most of them are empirical or semi-empirical. One of the simplest types of mod-
els to account for the rheological effects of viscoelastic fluid is the second-grade
model. Further, the equations governing the flow of a second-grade fluids are one
order higher than the Navier—Stokes equations. A marked difference between the
case of the Navier—Stokes theory and that for fluids of second-grade is that, ig-
noring the non-linearity in the Navier—Stokes equation does not lower the order
of the equation; however, ignoring the higher order non-linearities in the case
of second-grade fluid reduces the order of the equation. The no-slip boundary
condition is insufficient for a second-grade fluid and therefore, one needs an ad-
ditional boundary condition. A critical review on the boundary condition, the
existence and uniqueness of the solution has been given by RAJAGOPAL [1].
The governing equations that describe the flow of a Newtonian fluid is the
Navier-Stokes equations. These equations are nonlinear partial differential equa-
tions and known exact solutions are few in number. Exact solutions are very im-
portant not only because they are solutions of some fundamental flows but also
because they serve as accuracy checks for experimental, numerical and asymp-
totic methods. Since the equations of motion of non-Newtonian fluids are more
complicated and nonlinear than the Navier-Stokes equations, so the inverse
methods described by NEMENYI [2] have become attractive. In these methods,
solutions are found by assuming certain physical or geometrical properties of the
flow field. KALONI and HuscHILT [3], SIDDIQUI and KALONI [4], SIDDIQUI (5],
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BENHARBIT and S1pDIQUI [6] and LABROPULU [7] used this method to study
the flow problems of a second-grade fluid.

In this paper we discuss the second-grade fluid motion between two parallel
disks/plates, moving towards each other or in opposite directions with a constant
disk velocity. For such a fluid equations are modeled for a grade of fluid two and
are solved by assuming certain form of the stream function. The graphs are
plotted explicitly in the functional form to see the behaviour of the flow field.

The paper is organized as follows. In Sec. 2, basic equations and formula-
tion of the problem is given. Section 3 consists of some special flows called the
Riabounchinsky type flows and finally, in Sec. 4, concluding remarks are given.
Stream function, velocity components and the pressure fields are derived in each
case. Moreover, the streamlines are plotted in each case to see the flow behaviour.

2. Governing equations

The constitutive equation of an incompressible fluid of second-grade is of the
form (8]

(2.1) T=—-pl+ pA, +a1A2+a2A%,

where T is the Cauchy stress tensor, —pl denotes the indeterminate spherical
stress and pu, a; and a9 are measurable material constants. They denote, re-
spectively, the viscosity, elasticity and cross-viscosity. These material constants
can be determined from viscometric flows for any real fluid. A; and A, are
Rivlin-Ericksen tensors [8] and they denote, respectively, the rate of strain and
acceleration. A; and A, are defined by

(2.2) A, = (gradV) + (gradV)',
dA, 2
(23) Az = ._C?t_ + A] (gradV) + (gra,dV) Al.

Here V is the velocity, grad the gradient operator, T the transpose, and d/dt
the material time derivative.
The basic equations governing the motion of an incompressible fluid are

(2.4) divV = 0,
dv ’
(2.5) i px + divT,

where p is the density and x the body force.
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Inserting (2.1) in (2.5) and making use of (2.2) and (2.3) we obtain the
following vector equation

1 1
(2.6) grad §p]V|2 +p—ao (V S T Z|A1|2)} +p[Vi—V x (V x V)]

= pV2V + a; [VEV, + VE(V x V) x V] + (1 + o) divAT + px,

in which V? is the Laplacian operator, V; = 9V /8¢, and |A1| is the usual norm
of matrix A;. If this model is required to be compatible with thermodynamics,
then the material constants must meet the restrictions [9, 10]

(2.7) p 20, ap >0, ay+az =0.

On the other hand, experimental results of the tested fluids of second-grade
showed that oy < 0 and a7 + a2 # 0 which contradicts the above conditions and
implies that such fluids are unstable. This controversy is discussed in detail in
[1]. However, in this paper we will discuss both cases, a; > 0 and a; < 0.

We consider two parallel disks/plates in water and start moving them towards
each other or in opposite directions (considering the size of the disks much larger
than the distance between them). One can observe that when the disks are
approaching each other, the effort required is smaller than that when the disks
are moving apart. It can be discussed and explained by considering the different
nature of the fluid motion. When the disks are approaching each other it is of
potential type and when they are moving away then that is of rotational nature.

For such consideration, various authors [11, 13, 14] assumed that the horizon-
tal components of the velocity u, v, do not depend on the vertical coordinate,
z, whereas the vertical velocity w depends linearly on the distance between the
disks. Thus the velocity field is of the following form [15]:

(2'8) V(m?y"z’ t) . [u(m’ y? t)’ U('r‘c’ y’ t)’ - 2¢z] b

where ¢ is the relative velocity of the disk, considered here to be constant.
Inserting (2.8) in (2.4) and (2.6) and making use of the assumption (2.7) we
obtain, in the absence of body forces, the following equations:

ou Ov
; — +—=2
(2.10) g—z +p l:aa—? - vw] = (;z + al—(,?—t) Viu — Vi,
(2.11) g—z +p [% + uw] = (p + al%) Vv + a1uVw,
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where
ov  Ou
(2.12&) —a—'a—y,
(2.12b) p=p+ %p (u2 +v? + 4¢o2z2) — o [uvzu + oV + % |A%|] ;
ou v ou  Ov\?
2.12 A?|=4( = 4 16> +2( — + — | .
@12)  [Adl (a:c) t (ay) #1662 (5 + 37

REMARK 1. On setting a; = 0 in (2.10) and (2.11) we recover the equations
for Newtonian fluid [11].

Equations (2.9)-(2.11) are three partial differential equations for three un-
known functions u, v and p of the variables (z,y). Once the velocity field is
determined, the pressure field (2.12b) can be calculated by integrating (2.10)
and (2.11). Note that the equation for the vertical component w is identically
Z€ro.

Eliminating pressure in (2.10) and (2.11), by applying the integrability con-
dition 8%p/0xdy = 8*p/0ydz, we get the compatibility equation

Ow 4] d
(2.13) p [E-t_ + 2¢w + (ub—; + v%) wJ

9 2 0 9 2 2
(u+a,a )Vw+a1[(ua—x+v5§)Vw+2¢V w].

Let us consider the potential component from the horizontal components of
the velocity and introduce the flow function of the following form:

9y A

(2.14) u=¢zr+ Fv s

= ¢y —

where 9 (z,y) is the stream function. We see that the continuity equation (2.9)
is satisfied identically and (2.14) in (2.13) yields the following equation:

9 0 G,
(2.15)  p [(24; + E) Vi + ¢ (ma + y@) V2 — {4y, v%}}

(Hm;;’)v — [2¢v w+¢(zﬁ+ya)v4w (%, V‘*w}]
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in which
vi=v2.Vv? Lw=-V
and
oy 0 (Vi)  ay 9 (V)

2 T i i —i——y R, SERERR JEL
{¢’v¢}_8x Ay dy Oz

is the Poisson bracket.

REMARK 2. The solution 9 = 0 of (2.15), corresponds to liquid potential
motion, known as the motion near the stagnation point.

3. Solutions of some special types

We consider Riabounchinsky type flows in order to solve (2.15).

3.1. Solution of the type ¥(z,y) = y&(z)

In order to obtain a class of solution of (2.15) we substitute

(3.1) V(z,y) = yé(z)

into (2.15) and get the following equation

¢(3§IV +IL'§V) ]
_ (€I§IV _ £€V)

where £ (z) is an arbitrary function of x and primes denote the derivative with
respect to z.

Integrating (3.2) once and equating the constant of integration equal to zero
we obtain

(32) p[p(3¢" +a") - (€¢" —€6")] = put" + l

(33)  pe"+p[(€%—£") — ¢ (26 +2€")]
(_56”/ + 2€I§IH _ 5:12)
e 4 | =0.
_¢ (25."/ e .'L'EIV)
For the solution of the equation (3.2) we write
(3.4) &(z) =0(1+2e"") — ¢z

in which §, ¢ and A are arbitrary real constants. Making use of (3.4) into (3.2)
we have

po 4¢
3.5 0= ——— — —
33) p—a02 o
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and thus from (3.1)

(3.6) $@0) = [~ = 2y 1 ae) — oy,

The velocity components (2.14) and the pressure field (2.12b) become

po i oz
7 =|—F - —|(14+ X
(3.7) w2 - B e,
(3.8) v =2¢y — & yoe’®.
p—aig? o
2.2 1
(3.9) D = po + paic (1 — %) e’® — 5P [&2 +4¢* (v* + z2) = 62)\262”J

29
+ [E).o (ao — 2¢o*y* — 4¢) e’ + a*X%q? (3 + %) g% + 8¢2] 5

where pg is an arbitrary constant, known as the reference pressure.
The streamline flow for ¥ = 2, is given by the functional form

)
.1 =
i 0} 4 (14 Xe°®) e — z¢p’
where
_ vo 4¢
€= 1-Ac?2 o

in which v is the kinematic viscosity and A is the second-grade parameter.
Figure 1 shows the streamlines for ¢ = o = XA =1, p/p = 0.5, a1/p = 0.1,
¥ = 15, 20, 25, 30, 40.
3.2. Solutions of the type ¢ (z,y) = y&(zx) + n(z)
Inserting
(3.11) ¥ (z,y) = yé(z) + (=)
in (2.15) we obtain the following equation

26 (4" +1") + By (€ + 2€") + ")
(3.12) P l: =i (yEIV 4 UIV)
~{y (€€ — &) + (" —§9")}

[ 2¢ (ye™V +19'V) + #{y (7Y + x£V) + 21"}
+a
1 —{y (€€ — €Y + (e —en¥))
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X

FiG. 1. Streamline flow pattern for ¢ (z,y) = {———EL—CL—? ﬂ] y (1 + Xe’™) — dxy.
p—ai10? o

From above equation we have

(élgﬂ/ _E‘EV)
3.13 R AN 3" " v _
(3.13) p[(£'€" —€€") — ¢ (36" +2€™)] + g Ofl[_¢(3£“/+m€v)]

and

('€ —¢&n") }
3.14 Ifll_ " — ¢ (2 1/+ 1t e v _ { =0,
(314) p[(n€" —&n") =6 (2" +zn")] + " —en 6@ + 27

where £ (z) and n (z) are arbitrary functions of its arguments. Integrating (3.13)
and (3.14) and then taking the constants of integration equal to zero we have

(315)  pe" +p[(€% - €€") — o (26" +2€")]
(_6‘51\/ e 25/5111 _ §”2)
— = 0,
_¢ (2&-/// + .,L.é-IV)

(3.16)  wn" +p[(n'€ —&n") — ¢ (20 + "))
= \‘ £Inm - 5771‘/ + nlgl!l ]
— 1

=(.
_,,7/15// - ¢ (27]’" + iB’I]IV)
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We note that (3.13) is similar to (3.2). Its solution is given in (3.4). Substituting
(3.4) into (3.13) we have

(3.17) 1@ (1 4+ 2e®) Y + (u+3a18) n' — pa (1 + Ae®) ™
— 2p¢n’" +ao? (p — a10?) e’ = 0,

where

EZLQ_&
P — ;o o

We note that it is not easy to obtain the general solution of (3.17). In order
to find its solution we consider the following special cases:

CASE 1. When a; #0, ¢#0, o=1, A=0
then (3.17) reduces to

(3.18) aran” + (u+ 3crd) p'V — pan™ — 2pén” = 0.

We see that (3.18) is of fifth order and in order to solve it we reduce its order
by putting n” = A (z) such that (3.18) becomes

(3.19) a@A" + (u+3a19) A" — pad — 2ppA = 0.

On substituting A(z) = P(z)e®, (3.19) takes the form

(320) i@ (313' +3P" 4 ﬁ”’) € + (1 + 3010) (2?’ % 1’5") e — paP'e” = 0.
Finally, P’ (z) = R (z) converts (3.20) into a second order differential equation
(3.21) @R+ (u+3a1(p+a@) R —[(3c1 —p)a+2u+ 6a14] R=0.

The solution of above equation is

i O 4d) (—c+ Nz 44)
——— |z + Agyexp| —— | z,

(3.22) R(z) = Azexp ( 5 s

where A3 and A4 are arbitrary constants and

e du@té)+p

bl

aja
d“3al(ﬁ'+2¢)+2u—pﬁ—
5 Q10 ’
B s e il
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In order to find n(z) we make backward substitutions and finally obtain the
form

T PR (. Selltm)e
mi (1 + ml)
A
+* —428(1+m2)$ + Ase® + Agx + Az,
™ma (1 + mz)

where A; (i =5, 6, 7) are constants of integration and

=g T _4d —c+ V2 —4d

my = 5

From (3.4), (3.11) and (3.13) we get

3.24) Y(zy) =y

= —¢(4+£E) + Ase® + Agx + A7
—

Le(l‘*'ml)ﬂ? + _A—‘i_e(H—mz)m.
my (1+mp)? ma (1 +ma)?

The velocity components and pressure field are

u

3.25 u=
(3.25) e

- 4¢a

- As (1+my)z
(3.26) v =2¢y Lm it ml)e

Ay

p————elIm2)® 4 Age” 4 Ag]
ma (1 + ’m.z) . -

1
(327)  p=po—5p [a? + A3+ 49% (v* + 2%) — dygAs

2 2
A_362(1+m1)z N 2A344 e(2rmitmz)z | _A_éeQ(H-mg)z

+ o
my L) ms

2A3A5 (2 + 3m1 + m%)
(2+m1)my (1+m)

(24m)z

+ Ale™4¢? +

2A4A5 (2 + 3m2 + m%) e(2+m2)z
(2 +mz) ma (1+ ma) '
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The streamline for ) = (25 is given by the functional form

(3.28) S
' ¥= g1 — CE¢

— 2 + Lz (1+ma)z #56(1%112)1

X my (1 +my) mg (1 + my) )
+Age® + Agz + Ay
where
g=——-44, a=—t_—_4
1 == p— aq

Streamline pattern is plotted in Fig. 2for¢ =a= A= 1, p/p = 0.5, a1 /p = 0.1,
Ay = Ay = As = Ag = A7 = 1, ¢ = 15, 20, 25, 30, 40.

o - p
V
///'/
20/
0 1 ==/

, 0.5 0 0.5 1

F1G. 2. Streamline flow pattern for ¥(z,y)
=y [»—L ¢(4+m)] + Ase” + Aez + A7 +

e(1+m1):n + A e(l+m2)1:.
p—a1

(1+m ) ma(1+ma)

CASE 2. When a; #0, ¢=0, o=1, A#0
then (3.17) reduces to
(329)  ar(1+ ")V + (p—o01)n™ —p(1+Xe") 0" + (p— a1) Ay = 0.

To obtain_the solution of (3.29) we try to reduce its order. For this purpose we
put 7’ = A(z) which leaves (3.29) into a form which is one order less, that is

(3.30) a1 (1+2e®) ATV 4+ (p— o) A" — p(1+ Ae) A" + (p— 01) A" A = 0.
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Now substituting A (z) = P (z)e® in (3.30) and then P (z) =
resulting expression we get

(1 +A€I) RIII + (3 +4/\ez) RH
+(3+6Xe2) R + (1+4Xe") R

R(z) into the

(331) (8 5]

=p[R"+ - 2Xe") R].

The equation (3.31) is of order three. In order to reduce its order further, we
multiply it by e® and then integrate to obtain

(3.32)

(2-Ae®) R +(1

a1 (1 + Ae®) R" + [(2a;1 + p) + 21 Ae] R

+[a1 +p— (201 — p) Ae®] R =0,

where we have taken the constant of integration equal to zero.
The solution of (3.32) for A = 0 is given by

(3.33) R(z)=Cse™™
The backward substitution gives the value of 7 (z)

+ Cge e tn)/aiz,

2
(3.34) n(z) = —Csz + _’)(L_Cse—(p/aﬂz + C7e® + Cs,

ai +p)

where C, (r = 5, 6, 7, 8) are arbitrary constants. The stream function, the
velocity components and the pressure field in this case are respectively given as

2
a
~Csz + ————Cse

o ~(pfar)e z
3.35 .’E, — + C P + C € + C H
(338)  dlomy) =y Al -+ 8 ! ’
7
3.36 U= )
(3.36) e
337 v = b e R — (B
R3] Tlare '
a3 + C2 + 2Craell~p/o)e
(3.38) P=po— 5P 49 (1- al)cﬂe(hp/a,)z
(a1 —p)
r 2_ ]
C% 2 | PO p o’ —2(p/ar)z _ C7E_§e(1—ﬂ/a1)r
a? i
+a + (-’i = 1) Craell=ple= ||
i R
£ Mpia)e . ) =7 Sl
5 ol — P ai (a1 - p)
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where

o=

(23]
ay +p’

Qg =

u
p—ay’

and the streamline for 9 = (23 is given by the functional form

(3.39)

where

1 2
RS S| o P B C —(1/A)z C-e® C ’
Y - 3 5I+1+A 6€ + Cre" + Cg
Y — v
‘1K
Streamlines are sketched in Fig. 3 for ¢ = A =0, ¢ = 1, u/p
051/p= 0.1, C5 = Cﬁ = 07 = Cg = 1, i,b = 15, 20, 25, 30, 40.
B B
60 | s
/S y=20
40 | 7 PR SUS .. NN
/ =30 B i
20 /[ I// w:40 —
[ i/
‘ Hif
0 / R e
;![I{‘/
| |
20 U’/’,,A_g..*, - w ‘ S ‘
-1 -0.5 0 8.5 1 1.5
X
Fi1G. 3. Streamline flow pattern for
2
_ H . a1 —(p/a1)z x
w(r,y)—p“alw[ Cbm+p(a1+p)cﬁe + Cre” + Cs| .

4. Concluding remarks

In this paper, the analytical solutions of nonlinear equations governing the
flow for a second-grade fluid are obtained by assuming different forms of the
stream function (already used by various authors in different situations). The
expressions for velocity profile, streamline and pressure distribution are con-
structed in each case. Our result indicate that velocity, stream function and
pressure are strongly dependent upon the material parameter a; of the second-
grade fluid. It is shown through graphs that increase in second-grade parameter
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(a1 = 0.15) leads to decrease in velocity and decrease in second-grade parameter
(a1 = —0.5) leads to increase in velocity (see Figs. 4 and 5). Also, the present
analysis is more general and several results of various authors (as already men-
tioned in the text) can be recovered in the limiting cases.

80 | w=15 ~ ]
fres & D3 N

60r  w=20 \\\
r w=25
_n ™. \

40 ¢ =30 e e % &

> | S ™ \

11 - \ N\ |

20 w=40 RRLe

0l |

{ \

-20 - 1 ]
=1 -0.5 0 0.5 .5

FiGg. 4. Streamline flow pattern for negative second-grade parameter for

2
_ ¢ _ o ~(p/a1)z )
w(r,y)wp_alw[ CSI+p(a1+p)Cﬁe + Cre” + Cs| .
o0f T
{ / | d/:lll-)
DO / ///»,_,,,.,-- S TR --»50_. - S
ol S T WSS SR .
> 30 // e ]
| =30
vy | =40
10 //
'/
Vi
) 05 0 05 1 15
X

Fi1G. 5. Streamline flow pattern for positive second-grade parameter for

2
$(2,y) = —E—y+ |-Csz + ——2—_Coe™ ¥/ 4 Cre® + Cs| .
p—a plea + p)
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