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Plane channel flows with surface mass transfer 
and velocity slip on moving walls 

A. SZANIAWSKI (WARSZAWA) 

EXACT integrals of the Navier-Stokes equations. are used to describe laminar, steady, plafle 
flows of a viscous, incompressible fluid in channels with porous, moving walls. At the walls 
the Beavers-Joseph slip conditions are assumed. The problem is reduced to find successively 
two functions fulfilling ordinary differential equations of the fourth and second order and 
satisfying six boundary conditions. The solution is obtaine4 in the form of power series expan­
sions .with an iteration scheme for their coefficients. 

Do opisu laminarnych, ustalonych, plaskich przeplyw6w cieczy lepkiej i nie8cisliwej w kanalach 
o porowatych i ruchomych 8ciankach wykorzystane s~ scisle rozwi~zania r6wnan Naviera­
Stokes'a. Na 8ciankach kanalu przyjmowane s~ warunki poslizgu Beaversa-Josepha. Problem 
jest sprowadzony do kolejnego wyznaczania dw6ch funkcji spelniaj~cych zwyczajne r6wnania 
r6i:niczkowe czwartego i drugiego rz~du oraz sze§c warunk6w brzegowych. Rozwi~nie otrzy­
mane jest w formie szereg6w pot~gowych, z podaniem schematu iteracyjnego dla ich wsp6l­
czynnik6w. 

C l{CJiblO OllHCaHHH JlaMHHapHbiX, YCTaHOBHBIIIHXCH llJIOCKHX TeqeHHii: BH3KOH H HeC>KHMae­

MOH >KHAKOCTH B KaHaJiax C nopHCTbiMH H llO~BH>f<HbiMH CTeHI<aMH 6biJIH HCllOJib30BaHbi TQq­

Hble pemeHHH ypaBHeHHii Hasbe-CToKca. ,Il.na CTeHOK KaHaJia 6hiJIH npHHHTbi ycnoBHH CKOJib­

meHHH EHBepca-)l(oae<t>a. 3a~aqa cso~cH: K oqepe~oMy onpe~eJieHHIO ~Byx <l>YHKI..{HH:, 

BbffiOJIHHIOI.QHX o6bNHble ~<l><l>epeHI..{HaJibHbie ypaBHeHHH qeTBepTOrO H BTOporo nopH~Ka, 
a TaK>Ke meCTL rpaH~IX ycnosHH:. PemeHHe nonyqeHo B BH~e creneHHbiX pH~oB, c npH­

se~eHHeM HTepal{HOHHOH CXeMbl MH HX K03<l><l>Hl{HeHTOB. 

Introduction 

LAMINAR, steady, plane flows of a viscous, incompressible fluid in an infinite channel 
with permeable, longitudinally moving walls is considered (Fig. 1). Through the walls 
the fluid is uniformly filtrated and on its surface the velocity slip may occur, according 
to the slip condition formulated by G. S. BEAVERS and D. D. JosEPH [1]. The flow ·will 
be described by such solutions of the Navier-Stokes equations, which may be expressed 
by functions of one variable only. Such solutions are called exact integrals of the Na­
vier-Stokes equations [2]. 

The study of flows in channels with porous walls has been developed for about 30 
years. Also the particular exact integrals of the Navier.:....Stokes equations are here often 
applied. 

For symmetric flows in channels with permeable and immovable walls A. BERMAN 

in 1953 [3] presented a solution by means of a function of one variable, fulfilling an ordi­
nary differential equation. The-analysis of this solution, mainly computed nummerically, 
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310 A. SZANIAWSKI 

w.as continued by R. M. l'ERRIL [4, 5] ~nd others. F. WHITE, B. F. BARFIELD and 
M. J. GOGLIA [6] found for it the power series expansion. The slip velocity · conditions 
on the wall was introduced by E. M. SPARROW, G. S. BEAVERS and L. Y. HUNG [7]. 
Other particular solutions, with uniform cross-flow in the channel, were presented by 
A. BERMAN in 1958 [8] for channels with a longitudinal pressure gradient but with immo­
bile walls and by K. ·R. CRAMER [9] and by C. M. LILLEY [10] for one moving wall but 
without the pressure gradient. An extension of the first Berman solution for channels 
with moving permeable walls is presented in [11]. Now the influence of the slip velocity 
condition is additionally taken into account. 
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FIG. 1. 

The study of flows in channels with porous walls finds various practical applications. 
It is applied also in the research of two-phase flows through pipes [12]: the condensation 
of the gaseous phase on the walls is here described by the suction effect through the wall 
surface. The influence of moving walls and of the veloci~y slip condition arises in another 
practical application in the textile industry. Analysing the formation of chemical fibres, 
th~ hydrodynamic interaction of multifilament bundle with the surrounding fluid is of 
practical importance and may be an object of theoretical interest. The bundle of fibres 
may often be considered as a mnving porous wall of a channel [13, 14] and, due to high 
porosity of the bundle, on its surface the velocity slip condition should be taken into 
account. This . slip condition seems to be particularly important for bundles formed by 
a row of fibres which may be considered as a porous membrane with very high porosity 
and with velocity slip on its surface [15]. 

FIG. 2. 
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PLANE CHANNEL FLOWS WITH SURFACE MASS TRANSFER AND VELOCITY SLIP 311 

Following A. BERMAN [3], R. M. ,TERRIL [4, 5] and others, it will be assumed that 
the cross-flow veloci~y depends only on the distance from the channel's wall and by means 
of this assumption e~act integrals of the Navier-Stokes equations may be obtained. These 
integrals are. determined by two functions of one variable for which, after [6], the solution 
in the form of power series expansions will be found. 

As an example for the obtained results, the flow in a channel with one impermeable 
wall at rest will be analysed (Fig. 2). 

1. General solution 

Let us introduce a Cartesian system of coordinates x, z, with the z-axis parallel to the 
walls of the channel (Fig. 1 ). By u and w we will denote the coordinates of the fluid vel­
ocity. The Navier-Stokes equations of the plane, steady flows are 

~+ ow = 0 
ox oz ' 

(1.1) u ~~ + w ~ = - op +v( ·a2~ + o2u), 
OX oz (!OX ox2 oz2 

OW ow op (o 2w o2w) 
u Tx +waz = - _(!OZ +v ax2 + oz2 ' 

where pis the pressure and vis the kinematic coefficient of viscosity. We assume that the 
density (! and the coefficients of viscosity v and p, = (!V are constant. 

For our problem the velocity components u, w should fulfill the following boundary 
conditions on the walls of the channel: · 

(1.2) 
u(O, z) = u_, 

ow(O, z) 
w(O, z) -w_ = ~-a ox , 

u(a, z) = u+, 
ow(a, z) 

w(a, z) -w+ = -~+a ox , 

when~ . a is the channel's width, u_, u+ -the filtration velocities through the walls, 
w _ , w + - the longitudinal wall velocities and ~- , ~+ are the nondimensional constants 
characterizing the slip conditions [1]. For "- = "+ = 0, no slip occurs and the veloc­
ities of walls are equal to the velocities of the adjacent fluid. 

Assuming u = u(x), in a way shown in [2-7, 11], an exact integral of the stated prob­
lem may be obtained and it may be presented in an nondimensional form by means of the 
formulae 

(1.3) au = 01p = U(~) 
v oc ' 

aw 
V 

X 
~=-, 

a 
z c =-, 
a 

01p 
-a[= -CU'(~)-ll'Wi~) 

+R_W _(~) -R+W +(~), 
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312 A. S:ZANIA WSKI 

where 
Il' _ a3op(x, 0) 

- p:voz ' 
Il" - a4iJ2p(x' z) . 

- p:voz 2 ' 

(1.4) R = ~w- R _ aw+ R = a(u++u_) 
- ' +- ' s . ' R 

_ a(u+ -u_) 
o-, , , 

"' 
are constants, 1p(~, ~) is a nondimensional stream function, U(E) fulfills a nonlinear 
differential equation 

(1.5) U"'- UU" + (U')2 = ~Il" 

with. four boundary conditions 

U(Q) = Rs~Ro, U'(O) -x_ U"(O) = 0, 

(1.6) 

U(1) = Rs+Ro, U'(I)+x+U"(1) = 0; 
2 

after finding U(~), the functions W _(E) and W + (E) fulfill the homogeneous linear equation 

(1.7) W~-uw:+U'W± =0 

with the unhomogeneous boundary conditions 

(1.8) 
W_(O)-x_W~(O) = 1, W_(l)+x+W:(O = 0, 

and Wp(~) fulfills the unhomogeneous linear equation with the homogeneous boundary 
conditions 

-
(1.9) Wp(O)-x_ W~(O) = Wp(I)+x+ W~(l) = 0. 

It may be verified, by introducing Eq. (1.3) 'into the Navier-Stokes equations (1.1) and 
into the boundary conditions (1.2), that this solution js really an exact integral of the 
stated problem. 

The longitudinal velocity w and its mean value w may be divided into four parts (1.3). 
Only the first part ~[U(O)- U(I)] of awf, changes with ~' the remaining parts are oq ~ 
independent and contain, as factors, the mean values W±, Wp defined by the formula 

1 

(1.1 0) W= f W(~)dE. 
0 

· If II" =I= 0, the constantll' may be eliminated by choosing the origin z = 0 in the point, 

where op(x, 0)/oz = 0. Also the function Wp(E) and its mean value Wp may be obtained 
by means of the simple formulae · 

(1.11) Wp{~) = U~(D~) ' WP = ~~ ' []" =I= 0. 
Wp 

In Eqs. (1.3) the first term - ~U'(n and the second term -Il' Wp(E) of aw/P are strictly 
correlated: their sum does not depend on the choice of z = 0. 
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PLANE CHANNEL FLOWS WITH SURFACE MASS TRANSFER AND VELOCITY SLIP 313 

· Since four boundary conditions (1.6) are not needed to be satisfied by U(~) fulfilling 
the differential equation (1.5) of the third order only, the pressure constant 

(1.12) -II" = U"' -UU" + (U')2 = U"'(O) -U(O)U"(O)+ [U'(0)]2 

may be not arbitrary and it should depend on the solution U(~). Differentiating Eq. (1.5), 
the constant If" may be eliminated and to determine U(~) we obtain the fourth order 
equation 

(1.13) U'"'-UU"' + U'U" = 0, 

with four boundary conditions (1.6). 
Now our problem has been reduced to be solved in two steps. In the first step the so­

lution U(~) of the fourth order nonlinear ordinary differential equation (1.13) with four 
boundary conditions (1.6) should be found. This solution describes the flow in a channel 
with permeable but not moving walls. In the second step the influence of the motion of 
walls is taken into account by means of two functions W_(~) and w+a) which fulfill 
the homogeneous linear equation (1.7) and unhomogeneous boundary conditions (1.8). 

A property of invarianc)' of Eq. (1.13) with respect to the transformation -

(1.14) 

should be mentioned. If%'(~) fulfills Eq. (1.13) and A. .is an arbitrary constant, it is easy 
to verify that U(~) defined by Eq. (1.14) should also fulfill Eq. (1.13). This property of 
inyariancy is useful to obtain some particular solutions U(~). · 

It is easy to verify that introducing 

(1.15) W = U'(1) -U'(O), 

into Eq. -(1.7) we obtain Eq. (1.13), what means that W = U" is a particular solution of 
Eq. (1.7). This solution, in linear .combination with another linearly independent solution 

/ 

of Eq. (1.7), could be used to obtain W± fulfilling Eq. (1.7) and satisfying the bound~ry 
conditions (1.8). Ho~ever, by using power series expansion, the application of the sol­
ution (1.15) will be rather not necessary. 

2. Power series expansion 

We will- assume the solution U(~) in the form of the power series expansion 

00 

(2.1) U(~) = }; an~", an = rtn/n! 
n=O 

Intr<i>ducing it into Eq. (1.13) and comparing the like powers of~' we find for higher order 
coefficients the recurrent formulae 

n=l 

(2.2) 
k(k-1)(2k-n-1) 

an = n ' ~.:._--,--,--:..,....:----,--=----.:.,..,- a a -. n(n -1)(n -2)(n -3) k n,-k-l -
k=O 

7 Arch. Mech. Stos. nr 3/82 
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314 A. SZANIAWSKI 

(2.2) 
(cont.] 

n-2 

= a.a._,+ ;.t [(n~ 1)-4(~=ma.a._._,- _l-~-1)· n~3 (=~!)a;;, 
n = 4, 5, 6, .... 

taking into account that the first coefficients, a0 , a1 , a2 , a 3 , should be considered as four 
arbitrary constant~. These constants should be deter_mined by four boundary conditions 
(1.6). 

Not all coeffici~nts an must be different from zero. We may obtain some particular 
solutions U(~) of Eq. (1.13) with the following, not vanishing, coefficients an. 

(0) Only two coefficient a0 , a 1 may not vanish. The obtained linear function U = 
= a9 +a1 ~ will not be the main object of our interest here. 

{1) Not vanishing odd coefficients 
n-1 

(2.3) ">•-t = ;~ m~=~) -4(~~=~)]a>•-t a>•->•-t _I+ ~-I)" n ~3 (2: ~n a;_, 

n = 3,4,5, .. ~ 

with oc1 , oc3 arbitrary give a solution U(~), which describes the flow symmetric with 
respect to the ~-axis. 

(2) Not vanishing coefficients 

(2.4) 

n = 2, 3, 4, ... 

with only one arbitrary constant oc2 and with oc0 = oc1 = cx 3 = 0 give a solution U( ~), 
for which -11" = cx3 - oc0 oc2 +a~ = 0 and U(O) = U' (0) = 0 · (left impermeable wall). 

(3) Not vanishing coefficients 
n-1 

;2 [(:~=n -4(:~=ma .. _,a •. _ •• _, 
k=l 

(2.5) 

1 + ( -1)" 2 (4n - 5) 2 
- 2 2n-3 2n-4 aln-t:> 

n=2,3,4, ... 

with only one arbitrary constant tX3 and with oc0 = oc 1 = a2 = 0. The obtained par­
ticular solution U(~) fulfills also the boundary conditions U(O) = U'(O) = 0 on the left 
wall and the symmetry to the C -axis. 
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PLANE CHANNEL FLOWS WITH SURFACE MASS TRANSFER AND VELOCITY SLIP 315 

After finding U(;), we may seek the second unknown function W±(;). We will assume 
W±(;) also in the form of the power series · expansion 

00 

(2.6) W±(;) = 2; b±n;n. 
k=O 

Introducing it into Eq. (1.7) and comparing like powers of;, we obtain for higher order 
coefficients the recurrent formula 

n-1 

(2.7) b = ~ 2k -n + I b 2 3 4 
±n ,L_; n(n-I) an-k-1 ±k' n= '' , ... 

k=O 

with b±0 , b± 1 , as arbitrary constants which should be determined by the boundary condi­
tions (1.8). The functions W ± ( ;) describe the relative distribution of the velocity compo­
nents, due to the motion of walls. Their mean values (l.IO) are defined by the formula 

1 00 

(2.8) w± = J W±(;)d; =}; kb:~ . 
0 k=O 

Introducing the power series expansions (2.I) and (2.6), we assumed tacitly that these 
series are convergent. Their convergence has not been proved as yet in general, and it 
was the object of interest in a particular case only. For the case of symmetrical flow Rs = 0, 
without velocity slip "- = "+ = 0, F. M. White proved the convergence of the series 
expansion with odd coefficients (2.3). For uniform cross flow R0 = 0 and U = const, 
the exact solutions W±(;), Wp(;) in closed form may be obtained (cf. [8, 9, IO], and 
3.2), and the convergence of their power series expansions is evident. It seems that for 
moderate values of Ro these ~~ries should be convergent, t.oo. · 

3. Particular cases 

3.1. No cross ftow U = 0 

The first step solution U = 0 fulfills obviously Eq. (l.I3) and the boundary condi­
tions (1.6). In the second step Eqs. (1. 7) and (1.9) are reduced to the simple form W~' = 0, 
w;' = ~I, and their solutions, fulfilling the boundary conditions (1.8), are 

(3.I) 

W = 1-1+x+ 
o - 1 +x_+x+' 

1 
2 +x+ 

w± = -:-----
o 1 + "- + "+ ' 

We will denote these particular solutions by the index zero. 

7• 
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316 A. SZANIA WSKI 

These solutions describe for "- = "+ = 0 the well-known "classical" plane Couette 
and Poiseuille flows. For not vanishing "-, "+ they take into account the influence of 
slip conditions at the walls. 

3.2. Uniform cross flow U = const 

For RD = 0, we find immediately the first step solution in the closed form 

(3.2) U Rs t Jl" = 0 .· = T =cons, 

This solution describes the uniform cross flow with the constant pressure gradient 
op(x, z)foz = (p:vfa3)II' = const. Then, the second step solutions W±(;), Wp(;) may 
be expressed by one auxiliary function 

(3.3) 

The mean values W±, Wp are here determined by the formulae 

2 ±Rs R 
+ - (e 2 -1) -1 + ___!. " - Rs - 2 =J= 

Rs R Rs 
e±T -1 + __!_ ("' e±T +u ) - 2 "'± =J= 

(3.4) 2 Rs [ Rs ( 1 ) ( 1 )] Rs (eT -1)(1+u-+u+)- eT 2+"- + 2+"+ 

- 2 - ~·F~(~ +•c)~+-G +~+)"-] 
U'P = Rs ------------------R~.------R--~R~s---------------------

-(e 2 -1)--f(e 2 "++u_) 

The diagrams of W + , Wp versus Rs are shown in Fig. 3 and in Fig. 4 some exa·mples 
are given of longitudinal velocity distributions V(;), W+(;). 

The solutions W± (;) describe a generalized "Couette-type" flow, due to the motion 
of walls. For "- = "+ = 0 they were found in · 1959 by K. R. CRAMER [9] and C. M. 
LILLEY [10]. The solution Wp(;) describes a generalized "Poiseuille-type" flow, due to the 
constant pressure gradient /I'. For "- = "+ = 0 it was found in 1958 by BERMAN [8]. 
The influence of the slip condition on the right hand side wall was taken into account 
in [14]. 
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318 A. SZANIAWSKI 

3.3. One Impermeable wall 

In previous cases the same result could be obtained by means of the power series 
expansions (2.1) and (2.6), but it was possible to avoid it. Let us consider now a particular 
case of channel flow with the left wall E = 0 impermeable U(O) = 0, fixed R_ = 0 and 
without the velocity slip ~- = 0 (Fig. 2). For given R = RD = Rs and ~+, we will assume 
U(~) and W+(~) in the form of the power series (2.1) and (2.6), and we should find the 
arbitrary constants a0 , a1, a2 , a3 , b+ 0 , b+ 1, from the boundary conditions (1.6) and (1.8). 

From two conditions (1.6) U(O) = U~(O) = 0 and from the conditions (1.8) W+(O) = 0 
we find immediately 

(3.5) 

The remaining conditions (1.6) give the relations 

00 

(3.6) Xn[l+(n-l)"+]a,. = 0, 
n=2 

for two arbitrary constants a2 = a.2 /2~ a3 = a.3/6. The constants a.2 , a.3 allow to deter­
mine from Eq. (2.2) the following coefficients: 

a.o = a.1 = a.4 = 0, 
a.s = -a.~, 

a.a = -a.~, 

a.u = -27a.~-16a.~, 

a.6 = - 2a.2 a.3' 

a.9 = -4a.~ a.3' 

a.12 = -181a.~a.3, 

a.7 = -2a.~, 

a.1o = -l6a.2a.~, 

a.13 = - 840a.~ a.~' 

After finding a2 ,a3 ,a, ... the coefficients b+ 1,b+ 2 ,b+ 3 , ••• of theW+(~) develop­
ment are obtained by means of the formulae 

00 

(3.7) -/-- = 2 (1 +n"+){3,., b+n = f3nb+ 1, n = 1, 2, 3, ... 
+ 1 n=l 

where, taking into account Eq. (3.5), the ratios {3,. = b+,.jb+1 are determined by the recur­
rent formulae 

n-3 

(3.8) {3,. = 2 2~(~~~: an-k-1 {3k, n = 4, 5, 6, ... , P1 = 1, fl2 = {33 = 0. 
k=1 

Since computing the explicit formulae (3.8) and (3.7) for the W+ (E) coefficients does 
not .present essential difficulties, the main problem consists now in finding, for given R 
and ~+ values, the coefficients a2 , .a 3 , a4 , ••• of U( E) development. These coefficients ful­
fill an infinite system of equations: the recurrent formulae (2.2) and the boundary condi­
tions (3.6), and they are included there in an implicit form. Computing such a system 
of equations presents some difficulties and to avoid them we will here apply an inverse 
method. This method consists in making a convenient choice of necessary arbitrary con­
stants and in finding afterwards the corresponding values of R and "+ . 
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Applying the inverse method, let us introduce an auxiliary function 
00 

(3.9) 0/1(~) = 2 On~n' 
n=O 

fulfilling Eq. (1.13), with a0 = a1 = 0 and a2 , a3 chosen arbitrarily. By means of the 
recurrent formulae (2.2) we find the higher order coefficients a4 , a5 , a6 , ••• , which are 
needed to determine CW(~). The function 0//(~) does not satisfy all homogeneous boundary 
conditions (1.6) but, according to Eq. (1.14), we may introduce a solution U(~) = .A/fi(A.~), 

which already should satisfy all homogeneous conditions (1.6) and mainly the condition 
U' (I)+~- U" (1) = 0. In consequence, A. should fulfill the equation 

(3.10) OU'(A.) + xOU"(A.) = o, x = A.x+, 

with the constant x given. The coefficients a1 , a3 , a4 , ••• of the series expansion of U(~) 
are now found from 

(3.11) 

So, for the conveniently chosen constants a2 , a3 and x, we may find consecutively: 
Ol/(~) from Eq. (2.2), A. and~+ = xfA. from Eq. (3.1) and U(~) from Eq. (3.11). According 
to Eqs. (3.6) and (1.12), the Reynolds number R and the pressure constant -Il'' are 
now 

(3.12) -Il" = 6a3. 

In computing procedures the developments used here are, obviously, trunc~ted to N 
terms, in dependence of the accuracy needed. After finding U( ~), we obtain from Eqs. 
(3.8) and (3.7) all needed coefficients b+ 1 , b+ 2 , b+ 3 , ••• of the series expansi~n W+(~) 
also with the required accuracy. The mean value W + is determined by the formula (2.8). 
Afterwards we may find all other quantities· characterizing the ' flows in the considered 
channel. 

To explain the method introduced, let us consider an example with no slip condition 
"- = ~+ = 0 and with the assumed coefficients cx0 = a1 = cx2 = 0, cx3 = 1. For this 
case we may apply the series expansion (2.1) with the not vanishing coefficients cx3 , ex;, ... 
... ~4N-t determined by Eq. (2.5). The first, obtained by Eq. (2.5), coefficients a4n-t = 
= ii4n_tf(4n-1)! up toN= 15, are given in Table 1. In this way we determine the trun­
cated function 

N 

011'(~) ~ 2 (4n-1)a4n-te4n-2, 
n=l 

then from the condition (3.10) OU'(A.**) = 0 we find A.** = 3.3314172 and, from Eq. (3.11), 
we obtain the coefficients a!:_ 1 of the solution U**(~) ofEq. (1.13), satisfying the boundary 
conditions U**(O) = U**'(O) = U**"(O) = U**'(l) = 0. The quantities characterizing 
the considered example are here denoted by two stars. The first not vanishing coefficients 
aJ*, a~*, ... a!;_ 1 are also given in Table 1. From Eq. (3.12) we find the constants R** = 

= 13.1190807 and (-II'')** = 123.173166. 
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Table 1. 

n 14n-ll 04n-1 a::-t h!,.*-3 

3 1/3! 20.528861 -0.304111 
2 7 -2/7! -6.020488 0.624310 
3 11 -16/11! -0.749053 0.203433 
4 15 -16. 133/15! -0.374573 0.194210 
5 19 -256. 2819/19! -0.168198 0.142025 
6 23 -512. 978931/23! -0.067706 0.084585 
7 27 -5.340360. l0-17 -0.022971 0.039814 
8 31 -1.141956 · 10-19 -0.006050 0.013892 
9 35 -1.486414 ··10-22 -0.000970 0.002850 

10 39 8.701190 · 10-26 0.000070 -0.000256 
11 43 1.137304 · 10-27 0.000113 -0.000502 
12 47 3.376016 · 10- 30 0.000041 -0.000220 
13 51 4.69308.3 · 10- 33 0.000007 -0.000044 
14 . 55 -4.472999 · 10- 36 -0.000001 0.000006 
15 59 -4.446887 · to- 38 -0.000001 0.000009 

· To obtain the function W!*(~) descfibing the influence of the motion of the right 
wall, we may apply the formulae (3.8) and (3.7), or, more convenient for this particular 
example W!*(O) = U**"(O) = 0, the formula (1.15) giving 

W+**(z:) = C**U**"(l:), b** (4 1)(4 2) ** C** ~ ~ +(4n-3) = n- n- a4n-1 ' n = 1, 2, ... 

with C** = -2.468973 · I0- 3 found from the condition W!*(l) = 0. The coefficients 
b!~, b!;, ... b!t4N_ 3> are also g~ven in Table 1. The velocity distributions U**(~)/R, 
.- U**'(~)/R, W!*(~) are presented in Fig. 5. 

In an analogous way, by choosing conveniently different values of a 2 , a 3 and u, we 
may obtain different values of R, -Il", W+ and different solutions U(~), W+(~). The 
obtained diagrams of -Il" and W+ versus R for"+ = 0 and"+ = 0.2 are given in Fig. 3. 
_8ome illustrative examples of the velocity distributions U(~)/R, - U'(~)/R, W+(~) are 
presented in Fig. 5 for"+ = 0 and in Fig. 6 for "+ = 0.1. For II" = 0 we may intro­
duce Ci2 = 1, Ci3 = 0, and for"- = "+ = 0, we obtain A.* = 2.71001918, R* = 6.30387476. 
The coefficients ii3n-l = a3n_ 1f{3n-1)!, a:n-t = A.* 3 na3n_ 1 (n = 1, 2, 3 ... 11) are pre­
sented in Table 2. 

By means of the velocity distribution U'(~)/R we describe the generalized "Poiseuille­
type" flow and by W+(~) the generalized "Couette-type" flow. The relative distribution 
of transversal velocities is given by U(~)/R. Neglecting slip effects "- = "+ = 0, we 
obtain in the limiting case R--. 0 the well-known Couette and Poiseuille velocity distri­
butions W +(~)--. ~, U'(~)/R--. ~(1- ~)/2. 

It should be emphasized that by increasingR the pressure conconstant Il" goes through 
its extremal value ll" and then, for R = R*, Il" changes its sign. For R --. R*, the mean 
value W+ (Fig. 3) of the velocity distribution W+(~) (Figs. 5 and6) tends to infinity, what 
provokes losing stability of flow. 
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Table 2. 

n 13n-11 ajn-1 a:n-1 

2 1/2! 9.951467 
2 5 -1/5! -3.301056 

. 3 8 -1/8! -0.195538 
4 11 -27/11! -0.106139 
5 14 -951/14! -0.034069 
6 17 -51465/17! -0.008994 
7 20 -3355857/20! - -0.001706 
8 23 -5.874818" 10- 1 S -0.000145 
9 26 7.435121· 10- 17 0.000036 

10 29 1. 730927 . 10-18 0.000017 
11 32 1.311331 · 10- 20 0.000003 

4. .Final remarks 

The flow in a channel with a uniform surface mass transfer on moving walls is mainly 
determined by the cross flow effects. Two Reynolds numbers RD and Rs, related to filtra­
tion velocities across 'the walls, are the main constants characterizing the flow properties. 
Together with "- and "+ they determine the transversal velocity component U(e), the 
longitudinal velocity components: of -the generalized "Poiseuille-type" flow 

{ 

-II' Wp(e), 

-lW<~>+ IT' w,ml = _ (c + ~:,) U'<~>. II'' =F 0, 

and of the generalized "Couette-type" flow W±(e), and the second derivative of pressure 
II''. The superposition of all these effects according to Eq. (1.3) describes the resulting 
flow field. The functions U(e), WP(e), W±(e), and the pressure constant II" depend on 
RD, Rs, "-, "+, only, the constants R_, R+, II' enter in. Eq. (1.3) only as multiplicative 
factors. 

The exact sofution presented by Eq. (1.3) is a particular integral of the stated problem. 
The functions U(e), Wp(e), W± (e) entering in Eq . . (1.3) are here found either in closed 
form (cf. 3.1 and 3.2) or in the form of power series .expansions (cf. 2). They could 
be also found ny numerical integration. As we consider only a particular solution, the 
following questions may arise. Does this solution exist and is it unique for all values of 
RD, Rs, "- , x+? Is it stable in respect to possible unsteady perturbations of flow? Are 
the introduced power series ·convergent? Answering these quesitons is not our aim here. 
However, already here it may be expected that not for all values of RD is the considered 
problem correctly posed. 

Even for RD = Rs = "- = "+ = 0, when we obtain the well-known Couette and 
Poiseuille laminar flows, their stability depends on the Reynolds number Re = 111'1/12. 
Although the mathematical problem for the steady, plane flow is here correctly poseq, for 
higher Reynolds numbers Re the flow becomes unstable and the turbulence appears. 
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For RD = 0 the solution in closed form (3.2), (3.3) exists and its uniqueness does not 
seem to be questionable. This solution describes laminar flows with parallel stream lines. 
It could be presented in the form of convergent power series expansions also. But the 
problem to determine the conditions for losing stability of flow remains open for further 
investigation. 

The mathematical correctness of the stated problem seems to be also valid for moderate 
values of RD, where viscous effects are predominant. For higher values of RD, where the 
influence of inertia forces becomes important, this correctness seems to be rather doubtful. 
By increasing RD he pressure consta11t Il" reaches for R = R the extremal value fi", 
then, for R = R*, where Il" goes thrqugh zero, the amplitude of W± (~) tends to infinity 
(fig. 3) and tbe mathematical problem is incorrectly posed. As for II" = 0 and RD = 
= R~ =1= 0 the function W(~) = U'(~) fulfills the homogeneous equatjon (1.7) with the 
homogeneous boundary conditions (1.9), so the solutions W±(~), Wp(~) should be not 
unique. In consequence, in the vicinity of Il" ~ 0, RD ~ R~ small changes of the pressure 
gradient Il' or of the wall velocities R_ , R+ ·should provoke very large changes in the 
velocity field~ what means that an instability of flow may here be expected. . 

The main aim of this work was to find some exact solutions describing the laminar 
flows in channels with moving walls. It seems that these solutions may be approximately 
valid for flows with the moderate Reynolds number RD. The problems of existence, 
uniqueness and stability of these solutions were not the object of interest here and they 
are open for further investigations. 
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