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Application· of dynamical system methods to flow processes 
o( dissipative solids 

P. PERZYNA (WARSZAWA) 

THE PURPOSE of this paper is to apply dynamical system methods to the investigation of sta­
bility of a flow process of dissipative solids. The material of a body is described within the frame­
work of the modified material structure with internal state variables. The internal - imperfec­
tions are ·also taken into consideration. To describe the effects of transport phenomena (kinetics 
of imperfections) the evolution equations for t~e internal state variables are postulated in the 
form of -partial differential equations. An isothermal flow process of .dissipative solids with 
internal imperfections is described by means of the dissipative dynamical system methods. 
The criteria of discontinuous sol~~ion arid criteria of bifurcation are disc~d. The problem 
of stability of an equilibrium intrinsic state is also investigated. The first and second Liapounov 
methods are used. The particular forms of the Liapounov function are assumed. It has been 
proved that the criteria of asymptotic stability of an equilibrium intrinsic state 'are stronger 
than those required by the thermodynamic inequality. · 

Celem pracy jest zastosowanie metod uldad6w dynamicznych do zbadania stabilnosci 
procesu plyni~ia cial dyssypatywnych. Material ciala jest opisany w ramach zmodyfi­
kowanej struktury materialnej 'z parametrami wewn~trznymi. Uwzgl~niono r6wnie:i wewn~ 
trzne imperfekcje materialu. W celu opisu efekt6w ~awisk transportu (kinetyki imperfekcji) 
r6wnania ewolucji dla parametr6w wewn~trznych 54 postulowane w postaci r6wnan r6:inicz­
kowych . C7Jl8tkowych. Izotermiczny proces plyni~ia, cial dyssypatywnych z · wewn~trznymi 
imperfekcjami zostal opisany za pom~ metod dyssypatywnych uldad6w dynamicznych. 
Przedyskutowano kryteria rozwi~ niecillglych oraz zagadnienie Qifurkacji. Zbadano zagad­
nienie stabilno8ci stanu r6wnowagi wewn~trznej. Wykorzystano pierwsZll i druill metod~ 
Lapunowa. Przyj~to szczeg61ne postacie funkcji Lapunowa. Wykazano, :ie kryteria asympto­
tycznej stabilno8ci stanu r6wnowagi wewn~trznej Sll silniejsze od warunk6w wynikaj,cych 
z postll;latu termodynamicznego. 

UeJILIO pa6on.I HBJUieTCH npHMeHeHHe MeTO~ AHH8MH'IeCKHX CHCTeM AJU1 HCCJie~oBaHHH ycroii­
'liHBOCl'H npol.lecca TeqeHHH ,miCCHD8THBHbiX ru. MaTepH8JI TeJia OnHCbm&eTCH B p8M1<8X 
MO.mf~HI.lHPOBaHHaii: M&TepHam.Hoii CTpYKTYPbi c B~HYTPeHHHMH nap&MeTpllMH. Y~IBaiOTCH 
TaiOI<e BHyTpeHHHe HecosepmeHCTBa (~~ei<Tbi) MaTepH8Jia. ~ pnHcaHHH HBJieHHii nepe­
Hodl (KHHeTHKH ~e~I<TOB) yp&BHCHHH 3BOJUOI.lHH BHyrpelmHX nap8M~OB npe~OJiar&IOTCH 
B B~e ypaBHeHHii: B q&CTHbJX npoH3Bo~. H30Tep~eCI<HH npoJ:.lecc TeqeHHH ,m~ccHna­
THBHbiX TeJI C Buyrp~ ~e~eKT&MH OnHCbffi8eTCH C HcnOJIL30BBHHeM MeTO~OB ,miCCHna­
THBHbiX ~ecKHX CHCTeM. 06cy>f<,D;aiOTCH l<pHTepHH p83pbiBHbiX pemeHHii H BOIIpOCbl 
6H~YPK8LlHH· lf3CJie.rzyiOTCH BOnpoCbi ycroii'liHBOCTH COCTOHHHH BuyrpeHHero p8BHOBeCHH. 
HcnoJIL3yroTCJI_ nepBblii H sropoii MeTO~I .llimyHosa. IlpHHHMaroTcH cnel.lHam.m.Ie B~I 
~~ .llimyHosa. .D;oK83hm&eTCJI, ~o HpHTepHH • acHMnTO~ec:Koii ycroii'liHB<;>CTH pas­
HOBeCHoro COCTOHHHH- CH11L~ee YCJIOBHii, BbiTel<aiOIIniX iH3 TepMO,Ami&MHlleCI<OrO nOCTyJI8T8. 

1. Introduction 

Tlffi ~ objective of the present paper is to apply the methods of a dynamical system 
to the _investigation of stability of a flow process of dissipative solids. 

The, .application of dynamical. system methods to problems of continuum mechanics 
has been given in many papers (cf. A~ A. MoVCHAN' (15], V. I. ZUBOV [20],, J. E. GILBERT 
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and R. J. KN'oPs {4], J. K . HALE [6], J. C. WILLEMS [19], M. E. GURTIN [5] and R. J. KN'OPS 

and E. W. WILKES [12]). In our considerations we shall follow mainly the presentation 
of J. E. GILBERT and. R. J. KNOPS (4] and R. J. KNOPS and E. W. WILKES (12]. 

The material of a body is described within the framework of the modified material 
structure with internal state variables (cf. Refs. [17, 18]). The aim is to include in the 
description the imperfection effects g€nerated by ~igration, nucleation and growth of 
voids during an inelastic flow process. To describe effects of transport phenomena we 
postulate the partial differential evolution· equations for the internal state variables ·as­
sumed. 

In Sect. 2 the description of an isothermal flow process for dissipative solids with 
internal imperfections ·is presented. Section 3 focusses on the discussion of the modifi' d 
material structure with internal state variables. The formal mathematical definition of 
the internal state variables is given. A physical interpretation of the definition proposed 
is presented and the difference between the modified and classical formulations of the 
internal state variable material structure is discussed. 

In Sect. 4 an isothermal flow process for dissipative solids with internal imperfections 
is described within the framework of dissipative dynami'?ll system methods. 

In Sect. 5 the criteria of discontinuous solution and criteria of bifurcation (branching 
of solution) are discussed. The criteria of discontinuous solution are il).vestigated by 
means of an auxiliary function (Liapounov function). The :Liapounov function introduced 
is interpreted by using a notion of the storage function defined for a dissipative dynamical 
system. An equilibrium solution and an equilibrium intrinsic state are defined. The cri-· 
teria of bifurcation are discussed by means of the uniqueness theorems for the process 
considered. 

Section 6 is devoted to the problem of stability of equilibrium intrinsic states. The 
first Liapounov method is used to examine t~!e evolution of the intrinsic states. A topo­
logical concept associated with continuity is emphasised. 

In Sect. 7 the criteria of stability of _an equilibrium intrinsic state are investigated by 
means of the second Liapounov method. The particular form of the Liapounov function 
is assumed. The criteria of stability are stated_ for ~wo cases. The first when a set of solution 
functions is endowed with the properties of the metric space, and the second for the metric 
generated by the norm in a Hilbert space. 

Secti~n 8 focusses on the discussion of the criteria of stability obtained for an equi­
librium .intrinsic state. It is pointed out that the criteria of asymptotic stability obtained 
are stronger than those required by the thermodynamic postulate. 

2~ ·Flow process for dissipative solids 

In .what follows we shall consider only pure mechanical processes. Therefore tem­
perature is assumed to be constant in time and uniformly distributed in a body !M, cf. Fig. 1. 

The isothermal flow process for dlssipative solids }Vith internal imperfections is de­
termined in ·the material description by: 
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~ ( X , t I = ~ • = cons t 

X € B I t € [O.dp J 
FIG. 1. 

(i) the constitutive equation for the Piola-Kirchhoff stress tensor 

(2.1) T = T(<t), 

525 

where <1 denotes the intrinsic state which is given by the pair - the strain tensor fieid 
E and the field of internal state vector ex, i.e. 

(2.2) 0' = (E, ex) E ~ 

and ~ denotes the intrinsic state space. 
Basing on the previous results (cf. [~ 7, 18]), we can write 

(2.3) 

where V denotes the free energy constitutive function and eo is the mass density in the 
reference configuration; 

(ii) the evolution equation for the internal state variable in the form 

(2.4) 

where .!l' is a linear spatial differential operator, f is a nonlinear function of 0' and a, 
denotes differentiation with respect to time; 

(iii) the equation for the strain tensor E, i.e. 

(2.5) E = ~ (H+HT +HTH), 

where H = Vxu denotes the displacement--gradient; 
(iv) the Cauchy equation of motion in the form 

(2.6) Div(Fr)+eob = eoorv, 

where F is the deformation gradient and v = at u is the velocity vector field; 
(v) the initial values 

(2.7) u(X, 0) = 0, v(X, 0) = v0 (X), ex(X, 0) = ex0 (X) 
for X EBB; 

9 Arch. Mech. Stos: nr 4/82 
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(vi) the boundary conditions 

(2.8) 
u(X, t) = u1 (X, t), 

ao0 CI{X, t)+be~(X, t) = 0, 

P. PERZYNA 

for (X~ t) e o(JI x [0, dp), where n is the unit outward normal vector on o(JI, u1 , a, b are 
bounded functions On o(JI X [0, dp). 

By the solution q; = {u, v, Cl} we understand such functions u, v and Cl which satisfy 
Eqs; (2.3)-(2.6) with the initial-boundary value conditions (2. 7)-(2.8). The solution q; 
describes the isothermal inelastic flow process for a given body f!l. 

3. Discussion of a modified material structure with internal state variables 

The purpose of introducing internal state variables to the material structure is as 
follows; 

1. They are used to describe the internal dissipation of a material. · 
2. They represent a very suitable way of describing. the internal cha.nges of a ma­

•terial. The internal changes are caused by the following phenomena: 
. (i) internal arrangements of dislocations in solidse); 

(ii) arrangements of point defects (migration, generation and annihilation of vacancies 
and interstitials) in the material ·of a body e); 

(iii) distribution of imperfections (migration, nucleation and growth of voids, cracks, 
etc;) in solids. 

In every case the transport phenomena (kin~tics of dislocations, point defects and 
imperfections) play an important role. To describe effects of transport phenomena we 
have to introduce .partial differential evolution equations for the internal state variables 
assumed(3). 

3. They play a very important role in the description of dooperative phenomena (sy­
nergic effects) in solids. 

4. There exists the possibility of interpreting the internal state variables in the phenom­
enological theory basing on statistical methods used on the (microscopic level. 

It is useful to have the mathematical definition of the internal state variables as follows.: 
DEFINITION 1. A vector valued function e~( ·, ·) is called the internal state' variable for 

a body fJl if and only if 
(i) it satisfies the evolution equation. in the form 

(3.1) o,e~(X, t) = Ae~(X, t), 

where A = !l' + i, !l' is a spatial differential operator and i is d nonlinear function defined 
on :l: with vldues in "Y,., i.e. -f: :I: -+ "Y,; 

(1) 'This interpretation of the internal state variables was also suggested by ] . KEsTIN and J. R. RICE 

[11]. 

(2) For a thorough discussion of point defects and transport phenomena see C. P. FLYNN [2]. 
(l) The concept of the description of transport phenomena in solids within the framework of the 

internal state variable material structure was introduced in Ref. [17]. 
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(ii) it satisfies the initial condition 

(3.2) cx(X, 0) = e~0(X), X e g.J; 

(iii) the domain of the differential operator !l' is defined by (4) 

(3.3) Dom!l' = {e~ e Jt': ao,.e~{X, t)+be~(X, t) = 0 for X~ ()g.J}, 

where :/f denotes a real Hilbert space. 

This definition is very general and when the differential operator !l' vanishes, then 
it reduces to the classical formulation(5). 

It is noteworthy that the boundary conditions which restrict the domain of the spatial 
differential operator !l' are of the homogeneous type, that is with zero boundary values. 
This feature is very important and is connected with the physical interpretation. of the 
internal state variables. Experiment also suggests this theoretical assumption. It is clear 
that the internal state variables can describe the dissipative mechanisms of such a nature 
that are independent of boundary values for those ·variables. In other words, by means 
of internal state variables we can describe only typical internal mechanisms ( dissipative 
phenomena) which are not controlled directly through the boundary of a body. They 
can be controlled only by means of other state ·variables like deformation (or temperature 
for thermodynamic processes). 

Let us focus our attention on the constitutive equations and the evolution equations 
postulated by the modified material structure with internal state variables, i.e. Eqs. (2.1) 
and (2.4) together with the initial values (2. 7)3 and the boundary conditions (2.8h for 
the internal state variable ex. So we have a set of equations as follows: 

(3.4) 

a = (E(X, t), a{X, t)), 

T = T(O'), 

.o,cx(X, t) = !l'a(X, t)+f(a), 

ex (X, 0) = cx0 (X), X e g.t, 

aoncx(X, t)+ba(X, t) = 0, (X, t) E ()g.fx [0, dp). 

Let us assume that we start our analysis from a given intrinsic state a 0 at time t ~ 0 
and we ~oppose a deformation process P . = E£0 ,,1, consistent with the boundary condi­
tions (2.8)1 • At the end of this process we have a new intrinsic state a which is determined 
by the evolution function as follows 

~ ' 
(3.5) G = e(O'o, E[o,tJ) = (E(X, t), ~(E[O,tJ' a 0

(· ), a, b, ()g.t)), 

e) It is noteworthy that the spatial differential operator !Z' in general has the form 

and some of !I! 1 vanish identically . 
. (

5
) Cf. with the proposition given first by B. D . CoLEMAN and M. E. GuRTIN [1]. 
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where (Y denotes the solution functional of our evolution problem. The stress tensor T 
at particle X at the end of the supposed deformation process, i.e. at time t is determined 
by 

(3.6) T(X, t) = T(E(X, t), ~{Ero,th a 0
(. ), a, b, oPA)). 

The classical formulation can be obtained by the assumption !l' = 0, then 

a= e(oo, Ero,tJ) = {E(X, t), (Y{Ero,th a(X))), 

T(X, t) = T(E(X, t), (Y{Ero,t1, a 0 (X))). 
(3.7) 

So, for the modified material structure the constitution of a material at particle X 
does depend on the history of the deformation Ero,t1, and the initial value a 0 ( ·)in a whole 
body 14 as well as· on the boundary conditions given by a, b and the shape of the body 
oPA itself. 

4. Flow process as a dynamical system 

Let ff be a subset of R + (for our purposes we can assume ff as an interval [0, dp]), 
and let d (R +, ~) define a set of solution function space. By c/J we denote the set of values 

FIG. 2. 
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of the solution functions. So, cp E d(R +, 4>) and cp: R + ~ lj>. For each 1: E f7 and 
cp E d (R +, 4>) we introduce a notation cpT: for the translate of cp defined on R + by 

(4.1) cp.(t) = cp(-r:+t), t ER+. 

We may treat our flow process as a dynamical system corresponding to a triple 
(R +, f7, cjJ), cf. R. J. KNOPS and E. W. WILKES [12). 

DEFINITION 2. A dynamical system is a set d (R +, 4>) of functions defined on R + taking 
values in 4> such that 

(i) ffJ1: E d(R +, 4>) whenever cp E d(R +, 4>) and r: E f7; 
(ii) limcplt) = cp(-r:), cpEd(R+,cjJ), r:Eff. 

~0 -

We can say that the function cp is the solution and the motion is the translate cpT. 

Similarly to [12] we define the trajectory as the set of all pairs. ( t, tpT{t)) for t ER+, 
that is as a graph of the motion, cf. Fig. 2, and the orbit as the projection of the trajectory 
onto 4>, that is the set of values pr t~J( qyT:(t) ). 

Let 4>( -r:) be the subset of 4> defined as follows 

(4.2) 

We shall callcjJ(O) the set of initial values of the motion cpT: for our process. 

To define the neighbourhood of a solution cp E d(R +, 4>) we shall use the metric d. 
In some circumstances it is necessary to indicate both the se{ of the solution functions 
and the metric. In this case we shall write d d(R +, 4> ). 

The inelastic flow process defined by Eqs. (2.3)-(2.8) is dissipative, so we can define 
for our dynamical system the function 

(4.3) 

which is called the internal dissipation function. Basing on the previous results (cf. Ref. 
[17, 18]) we have 

(4.4) 

The internal dissipation function f can be used to define the storage function 

lt 

(4.5) St
1
(ul) = Sr

0
(<1o)+ j i{a)dt, 

to 

where [t0 , t 1 ) c (0, dp], cf. J. C. WILLEMS (19] and M. E. GURTIN [5]. 

It will be convenient to introduce a nonlinear operator T<·> such that 

(4.6) 

i.e. cp"' defined by Eq. (4.6) is an element of dd(R+, cjJ) for any cp(-r:) Ecp(-r:), and T<·J is 
a mapping T0 : 4>(-r:) ~ dd(R+, cjJ). 

The nonlinear operator T0 is defined by Eqs. (2.3)-(2.8). 
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5. Criteria of instability of inelastic flow process 

5.1. Criteria of discontinuous solution. Liapounov function 

P. PERZYNA 

DEFINITION 3 . . A solution q; E dd(R+, </J) is said to be Liapounov unstable if and only 
if for some -r: E f/, the mapping T (·)from </J( -r:) to d d(R +, <P) is discontinuous at q; with respect 
to the neighbourhoods of q; induced on </J(-r:) and dd(R +, </J) by d.r and d, respectively. 

This means that a process described by the solution q; is unstable if and only if for 
at least one instant 7: E f/, there exists a positive real number e such that for each positive 
n urn ber d there exists a q;1 

( -r:) E <P ( -r:) such that 

(5.1) dT(q;(-r:), q;1 (-r:)) < d and d(q;n g;;) ~ e, 

where q;i(t) = Ttq;1 (-r:) and 

(5.2) d(q;, q;i) = supd(q;T(t), q;i(t)) 
· teR+ 

and q;, q;1 E d d (R +, <P ). 

We have now the fundamental theorem of instability (cf. J. E. GILBERT and R. J. 
KNOPS [4] and R. J. KoN'PS and E. W. WILKES [12]): 

THEOREM 1. A solution q; E d d(R +, <P) is unstable if and dnly if there exist positive de­
finite functions (Liapounov functions) 

(5.3) VT. 0 -r: E f/, t E R + defined on <fJ x <fJ 

such that 
(i) the mapping T<·> from </J(-r:) to dvT(R+, </J) is discontinuous at q; for some -r: E f/; 
(ii) the identity mapping I is continuous from d d (R +, <P) to d vT(R +, <fJ); where 

(5.4) VT(({Jn q;i} = sup VT,t (q;-r(t), q;i(t) ). 
teR+ 

These conditions have the following mathematical from 

(i') V V 1\ V d-r(q;(-r:), q;1 (-r:)) < flA Y-r(({J-r, q;i} ~ e; 
re:T s>O d>O q> 1(r)e4>(r) 

(ii') 1\ V d(q;n q;i} < C => V-r(({Jn q;;} < 'fJ· 
7]>0 ,(,.,, r)>O · 

Consistently with the inelastic flow process formulated, one may assume (6 ) 

(5.5) VT,, ('PT(t), <p~(t)) = J {l>i'('PT(t) )-lf.- (<p:(t) )I+~ £?oiV2 -vfl} dV. 
~ . 

DEFINITION' 4. An element q;* = {u*, 0, a*} of dd(R+, </J) is an equilibrium solution 
if and only if 
(5.6) v* = atu* = 0, ata* = 0 

and a* is determined in a body f!l by the. solution of the boundary value problem 

(5.7) 
!l'a*(X)+f(E*(X), a*(X)) = 0, 

aaua*(X)+ba*(X) = 0 for X E af!l, 

and E*(X) is given by Eq. (2.5) with H = Vxu*. 

(
6

) Cf. with the proposition given first by M. E. GuRTIN [5]. 
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DEFINITION' 5. The intrinsic state a'~ = (E*(X), a.*(X)) is called an equilibrium state 
provided a.*(X) is given by the solution of the boundary value problem (5.7). 

In many practical cases we are interested in the investigation of the flow proc~ss near 
the equilibrigm solution cp* = {u*, 0, a*} (or near the equilibrium intrinsic state a* = 
= (E*, a.*)). 

It is convenient to introduce the Li~ounov function as follows 

(5.8) 

This function has very important properties. It vanishes at the eq~ilibrium solution 
cp>~: and it has a very simple interpretation by using the storage function S(a). 

5.2. Criteria of bifurcation. Branching of solution 

The solution cp E .91 (R +, 4>) of the inelastic flow process in said to be unique if for each 
7: E g" 

(5.9) 

implies 

(5.10) 

There exists a connection between Liapounov stability and uniqueness. 

FIG. 3. 
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A. A. MOVCHAN [15] proved the theorem (cf. also J. E. GILBERT and R. J. KNOPS 
[4]) as follows. 

THEOREM 2. Ifcp E d(R+, cf>) is Liapounov stable, then it is unique. 

An immediate consequence of the uniqueness theorem is that non uniqueness of a sol­
ution automatically implies its instabiJity. 

Let us consider the solution 

(5.11) 

of the inelastic flow process. For some particular value t = T* the solution cp is not unique. 
Starting from the point { T*, cp.,:( T*)} on the trajectory we can expect more than one sol­
ution, cf. Fig. 3. So we have at { T*, cp-r:( t"*)} branching of the solution. In other words the 
mapping t-+ Ticp(T) is a nonsingle-valued (multi-) function. 

The criterion of bifurcation (branching of solution) is connected with the uniqueness 
theorems for the process considered, cf. W. KosrNSKI_ [13]. 

The criteria of bifurcation have been broadly investigated by R. HILL [7-9]. See the 
review papers by R. HILL [10] and by J. P. MILES [14]. 

6~ Stability of equilibrium intrinsic states 

Let the sef .Q(R +, ~) define an intrinsic state function space with ~ as the set of values 
of its functions, i.e. a E .Q(R +,~)and a: R + -+ ~. We also introduce a notation ar: for 
the translate of a defined on R + by 

(6.1) C!r:(t)=C!(T+t), tER+, t"Ef/. 

It is straightforward to use the dynamical system methods to investigate the evolution 
of an intrinsic state a during the inelastic flow process of a body f!J_. 

Let us focus our attention on the motion (evolution) generated by small perturbations 
of the internal state variable a around the equilibrium value a*. Hence we consider the 
evolution of the intrinsic state a defined by (') 

(6.2) a(X, t) = (E*(X), a(X, t)), a E.Q(R+,~), 

where E*( ·) denotes the equilibrium distribution of the strain tensor field in a body 81. 
DEFINITION 6. A dynamical system corresponding to a triple (R +, fl, ~) is a set 

.Q(R +, ~) of functions defined on R + taking values in ~ such that 
(i) ii-r: E .Q(R +,:f) whenever ii E .Q(R +,:f), t" E !T; 
(ii) lim ar:(t) = a( T), a E .Q(R +, ~), T E !T; 

t-+0 . 

(iii) the function a is subjected to the restriction as follows 

(6.3) 81a(X, t) = !l'a(X, t)+f(E*(X), a(X, t)), 

with 

(6.4) a(X, 0) = a 0 (X), X E 81; 

(')It is noteworthy that E* is;fixed in what follows, so ~ corresponds to the so-called E* -section of 
~ denoted usually by ~E* c ~ (cf. W. NoLL [~6]). 
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(iv) the domain p) of the differential operator 2 is specified by the assumed properties 
for solution a and restricted by the boundary condition 

(6.5) aona(X, t)+ba(X, t) = 0, (X, t) Eo@ X [0, dp]. 

Let~( r) be the subset of~ defined as follows 

(6.6) 

We shall call~( r) the set of initial values of the intrinsic state aT, cf. Fig. 4. 

TRAJECTORY 

ORBIT 

FIG. 4. 

The mapping T~~) defined by 

(6.7) 

is the fundamental evolution operator, i.e. 

(6.8) 

For the internal state variable a we can write 

(6.9) a(X, t) = T~>ao( · ). 

The evolution operator Ti.> is determined by the evolution equation (6.3) and the 
boundary condition (6.5). 
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By .Qd(R +, ~) we shall denote a set of functions of intrinsic state (solutions) provided 
d is a metric. If this metric is generated by the norm in a Hilbert space :Yt', then .Q11 • 11 (R+, f) 
denotes a set of solutions. 

An open ball with the centre in a0 and the radius r is the set in .Qd(R +,~)and is defined 

as follows: 

(6.10) 

Similarly in .Q 11 • 11 (R +,~)we have 

(6.11) K@o, r) ={a E.Q 11 • 11 (R+, ~):11«-«0 11 < r}. 

DEFINITION 7. A subset .;V oj.Qd(R +, ~) is said to be a neighbourhood ofa0 E .Qd(R +, ~) 
if and only if there exists a positive number r such that K @0 , r) s;;; .!V. 

We can now introduce the definition of Liapounov stability (basing on the first Lia­
pouno_v method). 

DEFINITION 8. An equilibrium intrinsic state a* E .Qd(R +, ~) is said to be Liapounov 
stable if and only if, for each t ER+, the mapping T~> from f( -r) to .Qd(R +, ~) is continuous 

FIG. 5. 
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at a*. That is, for each r E !!/ and t E R + and for each positive real number s, there exists 
a positive real number d which depends on r , and s such that 

(6.12) dr(a*, i1(r)) < d => d(i1*, ii.r) < s 

for a*, a E .Qd(R+' ~)and 

(6.13) d(a*, a-r) = supd(a*, a-r(t)). 
teR+ 

It is clear that for a given dynamical system an equilibrium intrinsic state may be 
stable for one choice of metric but not for another (cf. R. J. KNoPs and E. W. WILKES 
[12]). 

Equivalent formulation of the definition of stability may be given in terms of neigh­
bourhoods. 

DEFINITION 9. An equilibrium intrinsic state a* E .Qd(R +, ~) is said to be stable relative 
to the set ~, dr, d) if and only if the map Ti.> from ~( r) to .Q(R +, ~) is continuous at a* 
with the neighbourhoods of a* in ~(r) and .Q(R+, ~)defined respectively by <1-r and d (cf. 
Fig. 5). 

To have the mpst practical means of establishing stability conditions we shall use 
the theorem as follows: 

THEOREM 3. A sufficient condition for the equilibrium intrinsic state a* E .Q(R +, ~) to 
be Liapounov stable is that d-r and d satisfy the inequality 

(6.14) 

for each r E !!/ and a E .Q(R +, ~), where M-r(t) is a bounded real function on R +. 

COROLLARY 1. If M-r(t) is independent of r E !!/, then a* is uniformly stable. 
COROLLARY 2. If M-r(t) tends to 0 as t-+ oo, then a* is asymptotically stable. 

7. Criteria of stability of equilibrium intrinsic state 

In order to give precise formulation of the second Liapounov method in a manner 
appropriate to investigate the evolution of the intrinsic states during an inelastic flow 
process, we introduce the Liapounov functions. 

Let V-r.r' where rE !T, t ER+, be positive-definite functions defined on ~ x ~- Addi­
. tionally we denote by .f.?vT(R +, ~) the set of funcdons .Q(R +, :t) provided with the distance 
measure defined by 

(7.1) 

The neighbourhoods in ~(r) and .Qd(R+,'~) are still defined by d-r and d, respectively. 
We now regard .f.?vt(R+,~) as being a set intermediate between ~(r) and .Qd(R+,~) 

and we consider the mappings 
(i) Tt.> from ~(r) to .f.?vT(R+,~) and defined by Eq. (6.7); 
(ii) the identity mapping I from .f.?vT(R +, ~) to .Qd(R +,:f). 
It is clear if Ti. > is continuous at a1 from ~( r) to .f.?vT(R +, ~) and I is continuous at 

a 1 from .f.?vT(R+,~) to .Qd(R+,~) then Tie> is continuous at a1 from ~(r) to .Qd(R+, ~), 
cf. Fig. 6. 
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FIG. 6. 

When this holds for each 1: E :!T, then 0'1 is obviously stable. Conversely, if0'1 is stable, 
~ne such function Vt",t always exists as can be seen by setting Vt>,t equal to d on~ x~. 

Application of direct Liapounov conception to an equilibrium intrinsic state a* leads 
to the following theorem. 

THEOREM 4. The equilibrium intrinsic state a* E .Q(R +, ~) is stable if and only if there 
exist positive-definite functions V t",, where t E R +, 7: E :T, defined on ~ x ~ for which 

(i) given a real positive number s, there exists a real positive number ~( e, 7:) such that 

(7.2) dT(a*, C1(7:)) < ~ => V.(a*, aT) < e, a E .Q(R+, f); 

(ii) given a real positive number 'YJ, there exists a real positive number u(rJ, 1:) such that 

(7.3) ve(a*, CTT) < U => d(a*, aT)< 'fJ, a E .Q(R +,f). 

V: I. ZuBOV [20] and A. A. MovcHAN [15] prescribed the exact manner in which con­
dition (i) of Theorem 4 is to be satisfied. After R. J. KNoPs and E. W. WILKES [12] we 
name these conditions (iii) and (iv): 

(iii) given a real positive number e there exists a real number ~(e, 7:) such that 

(7.4) . dT(a*, C1(7:)) < ~ => VT:,o(a*, a(7:)) < e; 

(iv) Vt>,t(a*, aT(t)) are non-increas[ng with respect to t. 
From Theorem 4 we have corollaries as follows: 
CoROLLARY 3. The equilibrium intrinsic state a* is uniformly stable if and only if 

the conditions (i) and (ii) of Theorem 4 hold uniformly in 7:. · 
CoROLLARY 4. The equilibrium intrinsic state a* is asymptotically stable if and only 

if the condition (i) holds together with the condition 

(7.5) li~ vT,t(a*, aT(t)) = o. 
f-+00 
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To investigate the problem of evolution of intrinsic state 0' generated by small disturb­
ances of an internal state variable a around its equilibrium value a* corresponding to 
the state a* = (E*, a*), we postulate 

(7.6) vT,t(a*, <r"'(t)) = f [~(a"'(t))-7(a*)]av, 
fiB 

where 7(aT(t)) denotes the value of the free energy function 'i' at a"'(t). 
The proposition (7.6) is a particular case of the previously postulated_Eq. (5.8). 
The assumed Liapounov function V-r,t in the form (7.6) is continuous at a* if and 

only if 

(7.7) 

for all aT(t) E: K{<T*, r), where c1 is a positive number. 
The function V;~ t is positive-definite if and only if 

(7.8) 

for all o-;(i) E K(a*, r), where c2 is a positive number. 
We also assume the condition 

for all O'T(t) E K(a*, r), where {J is a positive number. 
If the conditions (7.7)-(7.9) hold, then the conditions (i)-(iv) of Theorem 4 are valid 

together with the condition 

(7.10) lim VT,t(O'-r(t), <T*) = 0. 
t-+00 

Thus, the\conditions (7.7)-(7.9) are sufficient to assure the asymptotic stability of the 
equilibrium intrinsic state a*. 

If a metric d is generated by the norm in a Hilbert space .Jl', i.e. 

(7.11) d (a.,;(t), a*) = supll«-r(t)-a*ll = sup (a.,;(t)- a*, CX:(t)-a*)1
'
2 

teR.+ teR+ 

then the conditions (7.7)-(7.9) take the following form: 

(7.12) sup\ J [-ir(E*, a.,;(t))-7(E*, a*)]avj ~ c1 suplla-r:{t)-a*ll 2
, 

teR. + fJJ teR + 

(7.13) inf f rY(E*, a;(t})-7(E*, a*)]dV ~ c2 supllalt)-a*ll2 , 
teR+ 91 teR.+ 

for all ~(t) E K(a*, r), where c1-, c2 and pare positive numbers. 
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The criteria of asymptotic stability of an equilibrium intrinsic state (7.12)-(7.-14) can 
be compared with those obtained in the previous paper of the author [18] by means of 
the analytical theory of semi-groups (8). The criteria (7.12)-(7.14) have direct physical 
interpretation and it seems they have a more applicable character. 

8. Discussion and conclusions 

In the presentation of. the first Liapounov method applied to the investigation of the 
evolution of the intrinsic states emphasis was laid on the· fact that stability is a topological 
concept associated with continuity. This method was based on examining the evolution 
process directly. 

On the other hand the essential features of the second Liapounov method lie in the 
fact that the criteria of instability of a flow process are determined by mearis of the Lia­
pounov function whose properties are established directly without recourse to the sol­
utions themselves. The second Liapounov method was applied to the investigation of the 
discontinuous solution of an isothermal flow process for dissipative solids with internal 
imperfections as well as to the analysis of the criteria of stability of an equilibrium intrinsic 
state. 

The advantage of the second Liapounov method lies in the fact that we can obtain 
important informations on the behaviour of a flow process without solving the very com­
plicated initial-boundary-value problem. 

It is noteworthy that the criteria obtained for the asymptotic stability of an equilib­
rium intrinsic state (7.7)-(7.9) or (7.12)-(7.14) are stronger than those required by the 
second law of thermodynamics in the form of the Clausius-Duhem inequality (cf. the 
inequality (4.4)). 
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