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Application of dynamical system methods to flow processes
of dissipative solids

P. PERZYNA (WARSZAWA)

THe pURPOSE of this paper is to apply dynamical system methods to the investigation of sta-
bility of a flow process of dissipative solids. The material of a body is described within the frame-
work of the modified material structure with internal state variables. The internal imperfec-
tions are also taken into consideration. To describe the effects of transport phenomena (kinetics
of imperfections) the evolution equations for the internal state variables are postulated in the
form of -partial differential equations. An isothermal flow process of dissipative solids with
internal imperfections is described by means of the dissipative dynamical system methods.
The criteria of discontinuous solution and criteria of bifurcation are discussed. The problem
of stability of an equilibrium intrinsic state is also investigated. The first and second Liapounov
methods are used. The particular forms of the Liapounov function are assumed. It has been
proved that the criteria of asymptotic stability of an equilibrium intrinsic state are stronger
than those required by the thermodynamic inequality.

Celem pracy jest zastosowanie metod ukladow dynamicznych do zbadania stabilnosci
procesu plynigcia cial dyssypatywnych. Material ciala jest opisany w ramach zmodyfi-
kowanej struktury materialnej 'z parametrami wewnetrznymi. Uwzgledniono réwniez wewne-
trzne imperfekcje materialu. W celu opisu efektéw zjawisk transportu (kinetyki imperfekcji)
rownania ewolucji dla parametréw wewnetrznych sa postulowane w postaci rownan réznicz-
kowych czastkowych. Izotermiczny proces plyniecia cial dyssypatywnych z  wewnetrznymi
imperfekcjami zostal opisany za pormhoca metod dyssypatywnych ukladéw dynamicznych.
Przedyskutowano kryteria rozwigzan niecigglych oraz zagadnienie bifurkacji. Zbadano zagad-
nienie stabilnosci stanu réwnowagi wewnetrznej. Wykorzystano pierwsza i druga metode
Lapunowa. Przyjeto szczegélne postacie funkcji Lapunowa. Wykazano, ze kryteria asympto-
tycznej stabilnodci stanu réwnowagi wewngtrznej sg silniejsze od warunkéw wynikajacych
z postulatu termodynamicznego.

Lemsio paGoTh! ABNIACTCA NPEMEHEHHE METOR MHHAMMUCCKHUX CHCTEM JULA HCCNIeOBAHMSA yCTOl -
YMBOCTH NpOLIECCA TEYEHHS AMCCHIATHBHBIX Tejl. MartepHan Tena ONMCHIBAETCA B paMKax
moanGHELMPOBAHHAK MATEPHANILHON CTPYKTYPhI C BHYTPEHHHMH NapaMeTpaMu. Y UHTLIBAIOTCA
TaloKe BHYTDCHHHE HecoBepineHcTBa (medekTnl) MaTepuana. I ONMHCaHWA sIBJIEHWiI mepe-
HocA (KHHEeTHKH AedeKToB) YpaBHEHHA 3BOJIOIHMH BHYTPEHHHX MapameTPOB IPEATIONAraloTcs
B BHJI¢ YPaBHEHHIl B YACTHBLIX NMPOM3BOMHBLIX. M30TepMuuecKHii mpolecc TeYeHHA AMCCHIA-
THBHBIX TeJI C BHYTPEHHHMH fedeKTaMH OMHCBHIBAETCA C HCHOILIOBAHHEM METOMOB AMCCHIIA-
THBHBIX [JHHAMHYECKHX cHCTeM. OGCY)KIaloTCsA KPUTEPHH DaspLIBHBIX PELIEeHHil H BOMPOCHI
Gudypranun. HMscnenyrorcss BODpoChl YCTONUHBOCTH COCTOAHHS BHYTDEHHEIO DPABHOBECHS.
Hcnomesyiores mepBhlif B BTOpoit Meroan! JIsamyHoBa. IIpHHMMAIOTCA ChHeLMANBHbIE BHAObI
byt JIamysosa. IloxaskIBaeTcs, YTO KPHTEPHH ACHMIOTOTHYECKOH YCTOWYMBOCTH paB-
HOBECHOI'0 COCTOSTHHS — CHJIbHEE YCJIOBHIl, BBITEKAIOLIMX H3 TEPMOAHHAMHYIECKOrO IIOCTYJIaTa.

1. Introduction

THE MAIN objective of the present paper is to apply the methods of a dynamical system
to the investigation of stability of a flow process of dissipative solids.

The application of dynamical system methods to problems of continuum mechanics
has been given in many papers (cf. A. A. MovcHAN [15], V. I. Zusov [20], J. E. GILBERT
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and R. J. Knops [4], J. K. HALE [6], J. C. WiLLEMS [19], M. E. GURTIN [5] and R. J. KNOPS
and E. W. WiLkes [12]). In our considerations we shall follow mainly the presentation
of J. E. GiLBERT and R.J. Knops [4] and R. J. Knops and E. W. WILKES [12].

The material of a body is described within the framework of the modified material
structure with internal state variables (cf. Refs. [17, 18]). The aim is to include in the
description the imperfection effects generated by migration, nucleation and growth of
voids during an inelastic flow process. To describe effects of transport phenomena we
postulate the partial differential evolution equations for the internal state variables as-
sumed.

In Sect. 2 the description of an isothermal flow process for dissipative solids with
internal imperfections is presented. Section 3 focusses on the discussion of the modified
material structure with internal state variables. The formal mathematical definition of
the internal state variables is given. A physical interpretation of the definition proposed
is presented and the difference between the modified and classical formulations of the
internal state variable material structure is discussed. :

In Sect. 4 an isothermal flow process for dissipative solids with internal imperfections
is described within the framework of dissipative dynamical system methods.

In Sect. 5 the criteria of discontinuous solution and criteria of bifurcation (branching
of solution) are discussed. The criteria of discontinuous solution are investigated by
means of an auxiliary function (Liapounov function). The Liapounov function introduced
is interpreted by using a notion of the storage function defined for a dissipative dynamical
system. An equilibrium solution and an equilibrium intrinsic state are defined. The cri-
teria of bifurcation are discussed by means of the uniqueness theorems for the process
considered.

Section 6 is devoted to the problem of stability of equilibrium intrinsic states. The
first Liapounov method is used to examine the evolution of the intrinsic states. A topo-
logical concept associated with continuity is emphasised.

In Sect. 7 the criteria of stability of an equilibrium intrinsic state are investigated by
means of the second Liapounov method. The particular form of the Liapounov function
is assumed. The criteria of stability are stated for two cases. The first when a set of solution
functions is endowed with the properties of the metric space, and the second for the metric
generated by the norm in a Hilbert space.

Section 8 focusses on the discussion of the criteria of stability obtained for an equi-
librium intrinsic state. It is pointed out that the criteria of asymptotic stability obtained
are stronger than those required by the thermodynamic postulate.

2. Flow process for dissipative solids

In what follows we shall consider only pure mechanical processes. Therefore tem-
perature is assumed to be constant in time and uniformly distributed in a body 4, cf. Fig. 1.

The isothermal flow process for dissipative solids with internal imperfections is de-
termined in the material description by:
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0B

JIXt)= D= const
X€B, te[0d]
Fic. 1.

(i) the constitutive equation for the Piola-Kirchhoff stress tensor
@2.1) T = T(0),
where o denotes the intrinsic state which is given by the pair — the strain tensor field
E and the field of internal state vector a, i.e,
2.2 c=(E,a)eX
and ¥ denotes the intrinsic state space.
Basing on the previous results (cf. [17, 18]), we can write
(23) T = 2009£%(0),
where ¥ denotes the free energy constitutive function and g, is the mass density in the

reference configuration;
(ii) the evolution equation for the internal state variable in the form

2.4) 20X, 1) = La(X, 1)+1(0),

where & is a linear spatial differential operator, f is a nonlinear function of ¢ and 9,
denotes differentiation with respect to time;
(iii) the equation for the strain tensor E, i.e.

@.5) E= %(H+H"+HTH),

where H = Vxu denotes the displacement-gradient;
(iv) the Cauchy equation of motion in the form

(2.6) Div(FT)+gob = 00,v,

where F is the deformation gradient and v = &,u is the velocity vector field;
(v) the initial values

2.7 uX,0) =0, vX,0 =vX), aX,0) =a’X)

for X e 4;

9 Arch. Mech. Stos. nr 4/82
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(vi) the boundary conditions

uX, ) =u'(X,1),

(2.8) adna(X, 1)+ba(X, 1) = 0,

for (X? t) e 08 x [0, dp], where n is the unit outward normal vector on %, u', a, b are
bounded functions on ¢4 x [0, dp].

By the solution ¢ = {u, v, @} we understand such functions u, v and a which satisfy
Egs. (2.3)-(2.6) with the initial-boundary value conditions (2.7)-(2.8). The solution ¢
describes the isothermal inelastic flow process for a given body 4.

3. Discussion of a modified material structure with internal state variables

The purpose of introducing internal state variables to the material structure is as
follows;

1. They are used to describe the internal dissipation of a material.

2. They represent a very suitable way of describing the internal changes of a ma-
rterial. The internal changes are caused by the following phenomena:

(i) internal arrangements of dislocations in solids(*);

(ii) arrangements of point defects (migration, generation and annihilation of vacancies
and interstitials) in the material of a body(?);

(iii) distribution of imperfections (migration, nucleation and growth of voids, cracks,
etc.) in solids.

In every case the transport phenomena (kinetics of dislocations, point defects and
imperfections) play an important role. To describe effects of transport phenomena we
have to introduce partial differential evolution equations for the internal state variables
assumed(®).

3. They play a very important role in the description of dooperative phenomena (sy-
nergic effects) in solids.

4. There exists the possibility of interpreting the internal state variables in the phenom-
enological theory basing on statistical methods used on the microscopic level.

It is useful to have the mathematical definition of the internal state variables as follows:

DEFINITION 1. A vector valued function a( -, ") is called the internal state variable for
a body & if and only if

(i) it satisfies the evolution equation in the form

(3.1 ga(X,t) = Aa(X, 1),

where A = ¥+ f, < is a spatial differential operator and f is d nonlinear Junction defined
on 2 with values in ¥, ie. f: Z — ¥ ,;

(*) This interpretation of the internal state variables was also suggested by J. KesTIN and J. R. RicE
[11].

(?) For a thorough discussion of point defects and transport phenomena see C. P. FLYNN [2].

(®) The concept of the description of transport phenomena in solids within the framework of the
internal state variable material structure was introduced in Ref. [17].
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(ii) it satisfies the initial condition

(3.2 aX,0) = a’X), Xea;
(iii) the domain of the differential operator & is defined by (*)
(3.3) Dom¥ = {ae#:ad,a(X, t)+ba(X,?) =0 for XeiB},

where ¥ denotes a real Hilbert space.

This definition is very general and when the differential operator % vanishes, then
it reduces to the classical formulation(®).

It is noteworthy that the boundary conditions which restrict the domain of the spatial
differential operator & are of the homogeneous type, that is with zero boundary values.
This feature is very important and is connected with the physical interpretation. of the
internal state variables. Experiment also suggests this theoretical assumption. It is clear
that the internal state variables can describe the dissipative mechanisms of such a nature
that are independent of boundary values for those variables. In other words, by means
of internal state variables we can describe only typical internal mechanisms (dissipative
phenomena) which are not controlled directly through the boundary of a body. They
can be controlled only by means of other state variables like deformation (or temperature
for thermodynamic processes).

Let us focus our attention on the constitutive equations and the evolution equations
postulated by the modified material structure with internal state variables, i.e. Eqs. (2.1)
and (2.4) together with the initial values (2.7); and the boundary conditions (2.8), for
the internal state variable a. So we have a set of equations as follows:

= (EX, 1), a(X, 1)),
T = T(0),
(3.4) da(X, 1) = La(X, 1)+£(0),
a(X,0) = a°X), Xe4a,
ad,a(X, )+ba(X, 1) =0, (X,1)edBx[0, dy].
Let us assume that we start our analysis from a given intrinsic state o, at time £ = 0
and we suppose a deformation process P = Ey,y, consistent with the boundary condi-

tions (2.8);. At the end of this process we have a new intrinsic state ¢ which is determined
by the evolution function as follows

(3'5) o= 6(0‘0, EIIO':]) = (E(X, ")! 3(E[0.11: aO( ¥ )’ a, b’ 3@)),
(%) It is noteworthy that the spatial differential operator % in general has the form
£,
» =%
-?n

and some of %, vanish identically.
(%) Cf. with the proposition given first by B. D. CoLeMAN and M. E. GURTIN [1].
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where § denotes the solution functional of our evolution problem. The stress tensor T
at particle X at the end of the supposed deformation process, i.e. at time ¢ is determined
by
(3.6) T(X, 1) = T(EX, 1), §(Ero.n» a%(-), 2, b, 08)).

The classical formulation can be obtained by the assumption .# = 0, then
g = 3(00s Ego,1) = (E(X; ), 3(E[0,r1! G(X))) ’

T(Xs t) = T(E(X, r)’ ;}(E[O,II’ ao(x)))'

So, for the modified material structure the constitution of a material at particle X
does depend on the history of the deformation Ey,;, and the initial value a®( -) in a whole

body # as well as on the boundary conditions given by a, b and the shape of the body
IR itself.

(3.7)

4. Flow process as a dynamical system

Let 7 be a subset of R* (for our purposes we can assume J as an interval [0, dp]),
and let o/ (R*, ¢) define a set of solution function space. By ¢ we denote the set of values

R‘

®(t)

dr (QIT),9"(T))

S o=

{0,9°]

[ ~ 4“-.\.
5 ! :'f S
g
T feerorem
L
s

FiG. 2.
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of the solution functions. So, ¢ € Z(R*, ¢) and ¢:R* — ¢. For each 7€ and
¢ € Z(R*, ¢) we introduce a notation ¢, for the translate of ¢ defined on R* by

(4.1) e(t) = p(z+1), teR%
We may treat our flow process as a dynamical system corresponding to a triple

(R*, 7, ¢), cf. R. J. Knops and E. W. WILKES [12].

DEFINITION 2. A dynamical system is a set Z(R*, @) of functions defined on R* taking
values in ¢ such that

(i) @, € LR, ¢) whenever p e A (R*, P) and 1 € T ;
(i) lim @, (t) = ¢(7), p € L(R*,9), T€T.
=0
We can say that the function ¢ is the solution and the motion is the translate g,.

Similarly to [12] we define the trajectory as the set of all pairs'(r, 7:(1)) for 1eR*,
that is as a graph of the motion, cf. Fig. 2, and the orbit as the projection of the trajectory
onto ¢, that is the set of values pry(¢.(?)).

Let ¢(7) be the subset of ¢ defined as follows
4.2) $(1) = {p(0): p e LR, $), 7€ T < R*}.

We shall call ¢(0) the set of initial values of the motion ¢, for our process.

To define the neighbourhood of a solution ¢ € &/(R*, ¢) we shall use the metric d.
In some circumstances it is necessary to indicate both the set of the solution functions
and the metric. In this case we shall write &Z4(R*, ¢).

The inelastic flow process defined by Egs. (2.3)-(2.8) is dissipative, so we can define
for our dynamical system the function
(4.3) :EZxB > R*

which is called the internal dissipation function. Basing on the previous results (cf. Ref.
[17, 18]) we have

(4.4) (e, X) = —3'-; 3. ¥ (0) - [La+1(0)] (X) = 0.
The internal dissipation function i can be used to define the storage function

fy

@.5) S,,(01) = Si,(00)+ [ Ho)dt,

o

where [ty, 1;] = [0, dp), cf. J. C. WiLLEMS [19] and M. E. GURTIN [5].
It will be convenient to introduce a nonlinear operator T(.) such that

(4.6) o) = T, 9(7),

i.e. ¢, defined by Eq. (4.6) is an element of &/4(R*, ¢) for any ¢(7) e (), and T, is
a mapping T¢y: ¢(7) - Z4(R*, §).
The nonlinear operator T, is defined by Egs. (2.3)-(2.8).



530 . P. PERZYNA

5. Criteria of instability of inelastic flow process
5.1. Criteria of discontinuous solution. Liapounov function

DEFINITION 3. A solution ¢ € o/4(R*, ¢) is said to be Liapounov unstable if and only
if for some v € T, the mapping T.) from ¢(7) to A 4(R*, ¢) is discontinuous at ¢ with respect
to the neighbourhoods of @ induced on ¢(z) and o 4(R*, @) by d, and d, respectively.

This means that a process described by the solution ¢ is unstable if and only if for
at least one instant = € 7, there exists a positive real number & such that for each positive
number J there exists a ¢*(7) € ¢(7) such that

(5.1) d(p(),9'(®) <8 and d(p., e} 2 ¢,
where @} (¢) = T,¢'(7) and

(5.2) d(g, @) = f;lfd(%(f), P2 (1)

and ¢, ¢' € 4R, ).

We have now the fundamental theorem of instability (cf. J. E. GiLBERT and R.J.
Knops [4] and R. J. Kones and E. W. WiLKES [12]):
THEOREM 1. A solution ¢ € o 4(R*, ¢) is unstable if and only if there exist positive de-
finite functions (Liapounov functions)
(5.3) _ Vees TET, teR*  definedon ¢$x¢
such that
(i) the mapping T, from ¢(z) to v,(R*, @) is discontinuous at ¢ for some €T ;
(ii) the identity mapping 1 is continuous from H4(R*, d) to v, (R*, $); where

(54) Vr(‘Pﬂ ‘p:) — i:tg Vr.l(tpt(t), t}?:(f))
These conditions have the following mathematical from
@) VV/A V d(e®),9'@) < A V(g 9}) > &
6T 5>04d>0 p'(r)ed(r)
(i) A NV d@ ¢d) < £ = Vi(ge, 91) < 7.

n>0{(n7)>0
Consistently with the inelastic flow process formulated, one may assume (%)

63 Veulppi®) = [ {|‘i"(¢,(r))—‘?(¢:(r))|+%ea|v=-vﬂ} av.

.
DEFINITION 4. An element ¢* = {u*, 0, a*} of L4(R*, @) is an equilibrium solution
if and only if
(5.6) V=0u*=0, Ja*=0
and a* is determined in a body & by the solution of the boundary value problem
La*(X)+F(E*(X), a*(X)) =0,
adya*(X)+ba*(X) =0 for Xeda,
and E*(X) is given by Eq. (2.5) with H = Vxu*.

(®) Cf. with the proposition given first by M. E. GUrTIN [5].

(5.7)
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DEFINITION 5. The intrinsic state o* = (E*(X), a*(X)) is called an equilibrium state
provided a*(X) is given by the solution of the boundary value problem (5.7).

In many practical cases we are interested in the investigation of the flow process near
the equilibrium solution ¢* = {u*, 0, a*} (or near the equilibrium intrinsic state o* =
= (E*, «*)).

It is convenient to introduce the Liapounov function as follows

(5.8) Ve, (9:00), 9*) = f{["i}(%(f))“'i’(qo*)]+%govz} av.
g b

This function has very important properties. It vanishes at the equilibrium solution
p* and it has a very simple interpretation by using the storage function S(c).

5.2. Criteria of bifurcation. Branching of solution

The solution ¢ € &/ (R*, ¢) of the inelastic flow process in said to be unique if for each
TET

(5.9 ¥(7) = ¢()
implies
(5.10) ve() = Teyp(z) = (1) = Tep(z), v€7, teR*.

There exists a connection between Liapounov stability and uniqueness.

Rl-

Fi1G. 3.
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A. A. MovcHAN [15] proved the theorem (cf. also J. E. GiLBerT and R.J. KnNoPS
[4]) as follows.

THEOREM 2. If ¢ € o/ (R*, ¢) is Liapounov stable, then it is unique.

An immediate consequence of the uniqueness theorem is that nonuniqueness of a sol-
ution automatically implies its instability.

Let us consider the solution
(5.11) P:(t) = T.p(7) € L(R*, §)
of the inelastic flow process. For some particular value # = z* the solution ¢ is not unique.
Starting from the point {z*, ,(¢*)} on the trajectory we can expect more than one sol-
ution, cf. Fig. 3. So we have at {t*, .(7*)} branching of the solution. In other words the
mapping ¢ — T;p(7) is a nonsingle-valued (multi-) function.

The criterion of bifurcation (branching of solution) is connected with the uniqueness
theorems for the process considered, cf. W. Kosmiskr [13].

The criteria of bifurcation have been broadly investigated by R. HiLL [7-9]. See the
review papers by R. HiLL [10] and by J. P. MiLEs [14].

6. Stability of equilibrium intrinsic states

Let the set 2(R*, X) define an intrinsic state function space with £ as the set of values
of its functions, i.e. ¢ € Q(R*,2) and o:R* — X, We also introduce a notation ¢, for
the translate of ¢ defined on R* by

6.1) o.(t) = ae(z+t), teR*, 71e7.

It is straightforward to use the dynamical system methods to investigate the evolution
of an intrinsic state ¢ during the inelastic flow process of a body 4.

Let us focus our attention on the motion (evolution) generated by small perturbations
of the internal state variable & around the equilibrium value a*, Hence we consider the
evolution of the intrinsic state @ defined by (7)

6.2) X, 1) = (E*X), a(X, 1)), ¢eLl(R*I),

where E*( ) denotes the equilibrium distribution of the strain tensor field in a body 4.
DErFINITION 6. A dynamical system corresponding to a triple (R*, T, T) is a set
QR+, 3) of Junctions defined on R* taking values in 3 such that
(i) @ €Q2(R*, ) whenever G QR*,Z), reT;
(ii) lir.r; ,(t) =o(z), ceRQR*,3), reT;
=

(iii) the function o is subjected to the restriction as follows

(6.3) da(X, 1) = LaX, 1)+ 1H(E*X), a(X, 1)),
with
(6.4) aX,0) = a°(X), Xeg;

() It is noteworthy that E* is fixed in what follows, so % corresponds to the so-called E* -section of
Z denoted usually by g < I (cf. W. NoLL [16]).
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(iv) the domain 2 of the differential operator £ is specified by the assumed properties
Jor solution o and restricted by the boundary condition

(6.5) adpa(X, +ba(X,t) =0, X,1)edZx|[0,ds).
Let i(r) be the subset of X defined as follows
(6.6) 3(z) = {a(z):0 € Q(R*, 3),reT < R+ }

We shall call £(7) the set of initial values of the intrinsic state &,, cf. Fig. 4.

FiG. 4.

The mapping T, defined by
6.7) ' T#,: Z(7) » QR+, )
is the fundamental evolution operator, i.e.
(6.8) o.(2) = T¢yo(2).
For the internal state variable a we can write
(6.9) a(X, 1) = Téeao(- ).

The evolution operator T¢, is determined by the evolution equation (6.3) and the
boundary condition (6.5). '
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By £24(R*, X) we shall denote a set of functions of intrinsic state (solutions) provided
d is a metric. If this metric is generated by the norm in a Hilbert space o, then 2, (R*, %)
denotes a set of solutions.

An open ball with the centre in ¢, and the radius r is the set in 24(R*, ) and is defined
as follows:

(6.10) K (@, r) = {0 € Qy(R*, Z):d(0,, 0) < r}.
Similarly in £2,.,,(R*, Z) we have
(6.11) Ko, r) = {7 € 2,.,(R*, I):|la—a’|| < r}.

DEFINITION 7. A subset & of Q4(R*, X) is said to be a neighbourhood of &, € Qi(R*, %)
if and only if there exists a positive number r such that K (G,,r) S A .

We can now introduce the definition of Liapounov stability (basing on the first Lia-
pounov method).

DEFINITION 8. An equilibrium intrinsic state 6* € Qy(R*, ) is said to be Liapounov
stable if and only if, for each t € R*, the mapping T, from 2(7) to 24(R*,3) is continuous

(6it)T) [GrltlT+t)

______ R*

Tt t)
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at ¢*. That is, for each T € " and t € R* and for each positive real number ¢, there exists
a positive real number & which depends on t.and & such that

(6.12) d(c* 5(7)) < 8= d(3*, ) < ¢
for 6%, 7 € 24(R*, Z) and
(6.13) d(c*, 7;) = m;pd(&*, a:(1)).

It is clear that for a given dynamical system an equilibrium intrinsic state may be
stable for one choice of metric but not for another (cf. R. J. Knops and E. W. WILKES
[12]).

Equivalent formulation of the definition of stability may be given in terms of neigh-
bourhoods.

DEFINITION 9. An equilibrium intrinsic state a* € Q4(R*, Z) is said to be stable relative
to the set (Z, d;, d) if and only if the map T¥, from () to QR*, Z) is continuous at *
with the neighbourhoods of &* in 2(t) and Q(R*, Z) defined respectively by d, and d (cf.
Fig. 5).

To have the most practical means of establishing sta.bihty conditions we shall use
the theorem as follows:

THEOREM 3. A sufficient condition for the equilibrium intrinsic state c* € Q(R*, T) to
be Liapounov stable is that d, and d satisfy the inequality

(6.14) d(o* c.(r)) < M. (t)d.(c* o(z)), teR*
for each r € 7 and o € (R, E), where M (t) is a bounded real function on R*.

CoroLLARY 1. If M,(¢) is independent of 7 € 7, then ¢* is uniformly stable.
COROLLARY 2. If M,(¢) tends to 0 as ¢ — co, then o* is asymptotically stable.

7. Criteria of stability of equilibrium intrinsic state

In order to give precise formulation of the second Liapounov method in a manner
appropriate to investigate the evolution of the intrinsic states during an inelastic flow
process, we introduce the Liapounov functions.

Let V,,,, where 7 € 7, t € R*, be positive-definite functions defined on = x Z. Addi-
tionally we denote by 2y (R*, ) the set of functions 2(R*, Z) provided with the distance
measure defined by

(7- 1) vt(a.l ’ a2) = ?::B v‘r. t (alt(t) E] 6‘27(‘))3 El. 3 Ez € 'Q(R+ ’ E)

The neighbourhoods in Z(7) and Q24(R*, ) are still defined by d, and d, respectively.

We now regard Qy,(R*,3) as being a set intermediate between Z(7) and Q4(R*, )|
and we consider the mappings

(i) T¢, from Z(7) to Qyv,(R*, Z) and defined by Eq. 6.7);

(ii) the identity mapping I from Qy,(R*, E) to 24(R*, ).

It is clear if T¢, is continuous at &, from Z(z) to Qv (R*,Z) and I is continuous at
&, from Qv (R*, ) to Q4(R*, ) then T% is continuous at &, from X(z) to L4(R*, Z),
cf. Fig. 6.
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When this holds for each = € 7, then @, is obviously stable. Conversely, if 7, is stable,
one such function V,,, always exists as can be seen by setting V, , equal to d on TxZ,

Application of direct Liapounov conception to an equilibrium intrinsic state ¢* leads
to the following theorem.

THEOREM 4. The equilibrium intrinsic state ¢* EQ(R+ X) is stable > if and only if there
exist positive-definite functions V., ,, where t e R*, T € T, defined on Ix3 Sfor which

(i) given a real positive number &, there exists a real positive number 6(e, t) such that

(7.2) d(c*,5(7)) < 6= V,(6*,0:) < &, GEQR*,Z);
(ii) given a real positive number n, there exists a real positive number x(n, T) such that
(7.3) VIG*, ) < x=>d(@*, )< 7, GeQ(R,Z).

V. 1. Zusov [20] and A. A. MovCHAN [15] prescribed the exact manner in which con-
dition (i) of Theorem 4 is to be satisfied. After R. J. Knops and E. W. WILKES [12] we
name these conditions (iii) and (iv):

(iii) given a real positive number ¢ there exists a real number 8(e, T) such that
(7.4)- d.(c*, 5(7)) < 8= V,,0(0%, (7)) < &;

(iv) Vi, (6%, 0.(t)) are non-increasing with respect to t.

From Theorem 4 we have corollaries as follows:

CoRrOLLARY 3. The equilibrium intrinsic state ¢* is uniformly stable if and only if
the conditions (i) and (ii) of Theorem 4 hold uniformly in 7. '

CoroLLARY 4. The equilibrium intrinsic state * is asymptotically stable if and only
if the condition (i) holds together with the condition

(7.5) limV,, (3%, (1) = 0.
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To investigate the problem of evolution of intrinsic state o generated by small disturb-
ances of an internal state variable & around its equilibrium value a* corresponding to
the state ¢* = (E*, a¥*), we postulate

(7.6) V.34 5.0) = [ [¥(@0)-¥@E]av,
@

where li\"(&,(t)) denotes the value of the free energy function ¥ at a.(1).
The proposition (7.6) is a particular case of the previously postulated Eq. (5.8).
The assumed Liapounov function V., in the form (7.6) is continuous at o* if and
only if

(1.7) sup
teR+

i

‘ J [‘i’(&,(r))—-ﬁ’(&*)]di’rg ¢y d2(3(1), 7%)

for all o.(¢) € K(¢%, r), where ¢, is a positive number.
The function V;,, is positive-definite if and only if

(1.8) inf [ ¥ @5.0) —¥@9]aV 2 ¢,d%(3.(1), 5%)
teR+ g

for all o;(¢) € K(o*, r), where c, is a positive number.
We also assume the condition

(7.9 srip\'&.r = sup [ 12.¥(-)- .0 ,01dV < —Bd*(5.(1), 5*)
teR+ teR* g

for all o.(t) € K(o*, r), where f is a positive number.
If the conditions (7.7)—(7.9) hold, then the conditions (i)-(iv) of Theorem 4 are valid
together with the condition

(7.10) limV, (o.(), %) = 0.
f=+00
Thus, the conditions (7.7)-(7.9) are sufficient to assure the asymptotic stability of the

equilibrium intrinsic state o*.
If a metric d is generated by the norm in a Hilbert space #, i.e.

(711)  d (@), o¥) = supllen(t) —a*]| = sup (ax(1) ¥, 03(0)—a*)! 1
= sup[ [ @~ah) @~ a)av] ",
then the conditions (7.7)-(7.9) take the following form:
(7.12) sup | J [ &%, ()@, a9]ar| < 7, sup| (1) —a*| %,
(1.13) inf J [P(E*, (1)) P (E*, a¥)]dV = & suplja () —a*|1%,

(.14)  supV, , = sup [ [02¥(EX, a(1))- 8, 05()]dV < —Fsup|ler,(r)—a*|I?
freR+ reR+ g teR+

for all a7(z) € K(a*, r), where ¢,, ¢, and g are positive numbers.
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The criteria of asymptotic stability of an equilibrium intrinsic state (7.12)-(7.14) can
be compared with those obtained in the previous paper of the author [18] by means of
the analytical theory of semi-groups (®). The criteria (7.12)-(7.14) have direct physical
interpretation and it seems they have a more applicable character.

8. Discussion and conclusions

In the presentation of.the first Liapounov method applied to the investigation of the
evolution of the intrinsic states emphasis was laid on the fact that stability is a topological
concept associated with continuity. This method was based on examining the evolution
process directly.

On the other hand the essential features of the second Liapounov method lie in the
fact that the criteria of instability of a flow process are determined by means of the Lia-
pounov function whose properties are established directly without recourse to the sol-
utions themselves. The second Liapounov method was applied to the investigation of the
discontinuous solution of an isothermal flow process for dissipative solids with internal
imperfections as well as to the analysis of the criteria of stability of an equilibrium intrinsic
state.

The advantage of the second Liapounov method lies in the fact that we can obtain
important informations on the behaviour of a flow process without solving the very com-
plicated initial-boundary-value problem.

It is noteworthy that the criteria obtained for the asymptotic stability of an equilib-
rium intrinsic state (7.7)-(7.9) or (7.12)-(7.14) are stronger than those required by the
second law of thermodynamics in the form of the Clausius-Duhem inequality (cf. the
inequality (4.4)).
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