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Thermodynamic influences on stationary singular surfaces
in materials with scalar internal variables

E. MATSUMOTO (KYOTO)

STATIONARY singular surfaces may exist in materials with scalar internal variables. This paper
shows that the jump of the second deformation gradient across such a surface behaves, under
thermodynamic influences, as if the number of the scalar internal variables were increased by
one. In other words, the entropy plays the same role as a scalar internal variable on the vari-
ation of the discontinuity. As a result, stationary singular surfaces may also exist in a thermoela-
stic material.

W materiatach ze skalarowymi zmiennymi _wewnetrznymi moga powstawaé stacjonarne po-
wierzchnie osobliwe. W pracy tej wykazuje sig, ze skok drugiego gradientu deformacji na takiej
powierzchni zachowuje si¢ pod wplywami tcrmodynamlcznyml w ten sposob, jak gdyby liczba
skalarowych zmiennych wewnetrznych zwiekszyla sie¢ o jedno$é. Innymi stowy, entropia od-
grywa przy zmianie nieciagloéci taka samg role jak skalarowa zmienna wewnegtrzna. W rezul-
tacie okazuje sig, ze rowniez w materiale termosprezystym moga istnie¢ stacjonarne powierz-
chnie osobliwe.

B marepuanax co CKalNApHLIMH BHYTPEHHMMM IIEDEMEHHBLIMH MOTYT BOSHHKATH CTAL[MOHADHLIE
ocoOble moBepxHOCTH. B 2T0i paboTe nMokaskIBaeTCHA, YTO CKAa4YeK BTOPOro rpagHeHTa Aedop-
MaUMH HA TAKOH NOBEPXHOCTH BEAETCA IO TEPMOAHHAMHUYECKMMH BIIMAHHSMH TaKHM obpa-
30M, KaK OBl YHCJIO CKANAPHBLIX BHYTPEHHHX NEpPEMEHHBLIX YBEeIMUIWIOCh HA exuHmuy. Ipy-
THMH CJIOBaMH, SHTPONMA HIPaeT, NPH H3MEHEHHWH pa3phbiBa, TAKYIO YK€ CAMYI0 pOJib, KaK
CKaJIApHAsl BHYTpPEeHAA nepemeHHas. B pe3yneTaTe OKasbIBAETCH, YTO TOXE B TEPMOYIPYTOM
MaTepHalie MOTYT CYLUEeCTBOBAThb CTallMOHApDHBIE OCOObIE IIOBEPXHOCTH.

1. Introduction

IN THE PREVIOUS paper [1] the author showed that there may exist stationary singular
surfaces in a three-dimensional material with scalar internal variables. In this paper,
thermodynamic influences on such stationary singular surfaces are studied. A thermo-
dynamical theory of materials with internal variables have been developed in [2-4]. Propa-
gating singular surfaces, i.e., acceleration waves in thermoelastic materials with internal
variables, have been investigated in [5] and [6].

This paper employs the constitutive relations considered in [6], where the heat con-
duction is not taken into account and the internal energy is assumed to be a function
of the deformation gradient, the entropy and an arbitrary number of scalar internal vari-
ables: In the next section the constitutive relations are given and a singular surface is de-
fined. Section 3 proves that stationary singular surfaces may exist in the thermoelastic
material no matter whether it has internal variables or not. In Sect. 4 the variation of the
amplitudes of discontinuities across a stationary singular surface is analysed. It is shown
that the jump of the second deformation gradient in a thermoelastic material with N scalar
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internal variables behaves like the one in an elastic material with N+1 scalar internal
variables. In other words, the entropy plays the same role as a scalar internal variable
on the behaviour of the stationary singular surface.

2. Constitutive relations and definition of singular surfaces

The constitutive equations of nonconducting thermoelastic materials with N scalar
internal variables are [2, §7, and 6]

(2.!) = E(F, a, ’7):

A e
2.2) 6=0(F,a,n = F;}"(F; a,7),
(23) T= T(Fs a, 7?) = QFVFE(Fa a, ’?)r»
249 q=0,
(2.5) a= "p(Fs a, 7})’

where ¢ is the internal energy density, % the entropy density, F the deformation gradient,
0 the absolute temperature, a the vector of N scalar internal variables, T the stress tensor,
q the heat flux and p the present density. We assume that ¢ and & are, respectively, once
and twice continuously differentiable with respect to their arguments.

The balance equations are given by

(2.6) eldetF| = o,

2.7 divT +of = oV,

2.8) T =TT,

2.9) oé = tr(TFF-1)—divq+er,

where g, is the constant density in the reference configuration, v the velocity, f the external
body force density, and r the heat supply density. The dissipation inequality for the material
without heat conduction is

(2.10) on+div(q/0)—pr/6 = 0.
Substituting Egs. (2.1)-(2.5) into Eq. (2.9), we can rewrite the balance law of energy as

(2.11) y = %(c-¢+r),

where - means the inner product in the N-dimensional space of internal variables and
(2.12) o= —V,¢.

The dissipation inequality (2.10) is combined with Eqs. (2.4) and (2.11) to yield

(2.13) oY =>0.

It is convenient to represent the balance law of linear momentum (2.'7) in terms of the
first Piola—Kirchhoff stress tensor T,:

(2.149) DivT, +o,.f = o.v,
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where

(2.15) T, = |det FITF-T.

It follows from Egs. (2.3), (2.6), (2.8) and (2.15) that

(2.16) T, = &(F, a, n) = o,Vre(F, 2, 7).

We consider a plane singular surface S satisfying the following conditions:

(i) All of the deformations u, v, F, a and # are continuous with respect to the time and
the coordinates.

(ii) The first derivatives of v, F, a and % suffer finite jump discontinuities across S
in a time interval.

(iii) Each of v, F, a, # and the jumps of their first derivatives is uniform over S at any
instant.

Let us call S simply a singular surface. We further assume that f, r and its spatial
derivative are continuous with respect to the time and the coordinates, and that r is uni-
form over S at any instant.

3. Existence of stationary singular surfaces

The first-order compatibility conditions for v, F, a and 5 across a singular surface
S are given by

(3.1 [0l = U%', [Fjl= —Ue'n;, [Fjxl=e'nng,
(32 [@*] = —Ub*, [a%)] = b%ny,

(3.3) )l = =Ue, [n,4=cn,

where

(3.4 e = [Fj gn'n¥, b = [a%)n’, c=[n]n,

and [-] denotes the jump of a quantity, m a unit normal to S, U the speed of S in the n

direction. Here and henceforth Latin indices run from 1 to 3, and Greek ones from 1 to N.

If U = 0, Sis a stationary singular surface, and if U # 0, S is an acceleration wave.
Substituting Eq. (2.16), into Eq. (2.14) yields

d iJ 3 iJ a iy 5
(3.5) ai*p F§.,+ j:. 0¢J+Tn" 7?..!+9xf‘ = 0.9
Taking the jump of Eq. (3.5) across S and then using Egs. (3.1)-(3.4), we obtain
(3.6 (Q) —0.U?8})e? + Rib*+Roc = 0,
where Q is the acoustic tensor and
_ 3¢U 3¢IJ’ 3¢IJ
(37) Q:’ = a_F-Qan"Q! -Ra= e ny, -Ri) = aﬂ

Notice that 0}, R} and R} depend on F, a and 7 together with n. On the other hand,
the jump relation of Eq. (2.5) across S becomes, by use of Eq. (3.2),,

(3.8) Ub=0.
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It is easy to see from Egs. (2.2) and (2.12) that § and & are continuous across S. From
the assumption, r is also continuous across S, and therefore it follows from Egs. (2.11)
and (3.3), that

(3.9) Uc = 0.

The set of equations (3.6), (3.8) and (3.9) are the propagation conditions which determine
U and the ratios among ¢ and the components of e and b. In view of Egs. (3.8) and
(3.9) there are two possibilities: In the case when U = 0, S is a stationary singular surface,
and b and ¢ need not vanish. Then Eq.' (3.6) reduces to

(3.10) Qhe? +Rib*+ Rhc = 0.
In the other case when b = 0 and ¢ = 0, Eq. (3.6) becomes
(3.11) (0, —0,U?8})e? = 0.

Since e should not vanish for S to be a singular surface, Eq. (3.11) implies that g, U? must
be a real and nonnegative eigenvalue of Q. The cases when the eigenvalue is zero and
positive correspond, respectively, to a stationary singular surface and an acceleration
wave, Thus, as well as in the case of elastic materials with scalar internal variables [1],
there may exist two types of stationary singular surfaces.

As a special case, we consider a thermoelastic material without internal variables.
To do so we may omit, in the consititutive relations and the equations derived from them,
all the quantities associated with internal variables, i.e., a, Y, &, b and R.. In consequence,
we obtain the jump relations (3.6) without the term R: and Eq. (3.9). Using an argument
similar to the one above, it is found that two types of stationary singular surfaces may
also exist in the thermoelastic material.

In what follows we assume that Q does not have any null eigen value and consider
the first type of stationary singular surfaces only. For later discussions it will be convenient
to rewrite Eq. (3.10) as

(3.10) Qle?+RLH* =0,
where Greek indices with primes run from 0 to N, and
(3.12) 5= e,

4. Growth and decay of amplitudes of stationary singular surfaces
In this section we study the variation of the discontinuities e, b and ¢ across a station-
ary singular surface S. The second-order compatibility conditions for a and 7 across

S required for the analysis are

@) O S P

@2 .= (o ¢)
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where /8t means the time differentiation of a jump quantity. Differentiating Egs. (2.5)
and (2.11) with respect to X”, we get respectively

: d
4.3) @y = ag’ F ,+ aﬁ @+ "‘; 55

. 1
4.4 N9 = —?(o'atp“+r)6‘,;+§(dc_;w"+d,1p?,+r,;).

By the assumption o, ¢ and 6 are smooth functions of F, a and 7, so that Eq. (4.4) may
be transformed as

5 1
4.5) N5 = ViFis+ Wu“?:""z’?..r'*F r s
where
0 1 do 1 oye
K — Pl
(46) Vi — (da:'}’““i"') 3Fl o 7] 3F‘ 'P“'i'e uaF; ]

1 dag 1 ayf

@.7) W, = 83 (OB'PG'*' r) _+_ 'pp+'_' Ly oa*’
_ 1. 36 1 o, y
(48) Z= ?(duq’ +r)"'a_,"?" a 'pm+ [} O 317

Taking the jump relations of Egs. (4.3) and (4.5) across S by use of Egs. (3.1)s, (3.2)s,
(3.3), (4.1) and (4.2), and then multiplying the results by n’, we get respectively

4.9) %b“ = A%e®+ B3bP + Bjc,

4.10) —g}- ¢ = AYe’+BRbP+Bdc,

where

(4.11) A% = g;; AS = Ving,
_ o _ oy

(4.12) By =, B=-

(4.13) B3=W,;, B} =2Z.

Here note that by the assumption r,; is continuous across S. By use of Eq. (3.12) we can
rewrite (4.9) and (4.10) as the single equation

(4.14) S = Az B,

where recall that Greek indices with primes run from 0 to N. Comparing Egs. (3.10")
and (4.14) with Egs. (2.11) and (3.5) in [1], we see that the jump associated with the gradi-
ent of the entropy plays the same role as the one of a scalar internal variable and that
the amplitude equations take the same form as those for the elastic material with N+1
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scalar internal variables. Thus we can apply the results of the preceding paper to analyse
the variation of the amplitudes. Eliminating e from Egs. (3.10)’ and (4.14), we obtain
a system of linear differential equations for 5*:

4 s
(4.15) 5 b =G,
where
(4.16) Cy = —AYQr P Rh, + B

At the stationary singular surface S, F, a,  and r may depend on the time, and hence
C is, in general, a matrix-valued function of the time. Then Eq. (4.15) can be solved as

@.17) b*(1) = P0G,

where b8’ are constants and
1 t TL
(4.18) Pyt = 85+ [ CEmdr+ [Ci(ry) [ Ch(ry)drydr, + ...
to to to

Substituting Eq. (4.17) into Eq. (3.10)" and then multiplying the result by Q7 '+, we get
(4.19) e = —Qr "R, Py bY .

Applying Theorem 1 in [1] to this case, we have

THEOREM 1. If Q does not have any null eigen value for every t > t,, e,b and c are
bounded for each t > t,.

Let us consider a special case where F, a, # and r are constant in time at S. Then
from Egs. (4.6)-(4.8), (4.11)-(4.13) and (4.16) C reduces to a constant (N+1)x (N+1)
matrix C,, and Theorem 2 in [1] implies

THEOREM 2. Suppose that ¥, a, n are constant in time at S and that Q does not have
any null eigenvalue. If the real parts of all eigenvalues of C, are negative, e, b and c tend
to zeros as t — .

Next suppose that the number of the scalar internal variables is unknown and that
we can determine the time derivatives ¢; = e®»(8,) (i = 0, 1, ..., L) of a component e?
at a time 7, by observing the S. Define foreachn =1,2, ..., L

e e e Bari

4.20) G =" 2 a0
€L—n €L_nt1 -+ €Ly
e e e,

@21) B, e, e, e Cnr |

| €L—n €L_pn41 -+ €L
Then from Theorem 3 in [1], we have for the thermoelastic material with scalar internal
variables
THEOREM 3. If N’ is the maximum integer such that rank G, # rank H, for every n < N’',
then the number of the internal variables is larger than N'—1. .
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It should be noted that unlike the case of elastic materials with scalar intErnal variables
C does not reduce to a constant matrix when the constitutive functions 6, ¢, ¢ and ¢,
are linear. In fact, C contains the terms 1/62, 1/6 and r, where refer to Eqgs. (4.6)-(4.8),
(4.11)-(4.13) and (4.16).
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