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Stationary singular surfaces in materials with scalar internal 
variables 

E. MATSUMOTO (KYOTO) 

IT IS SHOWN that there can exist stationary discontinuity surfaces of the second deformation 
gradient in a three-dimensional material with scalar internal variables. Explicit expressions for 
the growth and decay of the discontinutites are obtained. For a material with an unknown 
number of scalar internal variables, a method is proposed to find a lower bound for the number 
of the scalar internal variables, by observing the variation of such aiscontinuities. 

Wykazano, Ze w tr6jwymiarowym materiale ze skalarnymi zmiennymi wewn~trznymi mog~ 
istniec stacjonarne powierzchnie nieci~glosci drugiego gradientu deformacji. Otrzymano jawne 
wyrai:enia na wzrost i zanikanie nieci'lglo8ci. Dla materialu o nieznanej liczbie skalarnych 
zmiennych wewn~trznych zaproponowano metod~ znajdywania kresu dolnego dla liczby ska­
larnych zmiennych wewn~trznych drog~ obserwacji zmiennosci takich nieci'lglosci. 

.IJ:oKa3aHO, 'tlTO B TpeXMepHOM MaTepHa.rre CO CKaJIHpHbiMH BeyTpeHHHMH nepeMeHHbiMH MoryT 
cy~ecraoaaTL cra~oHapHbie noaepXHOCTH pa3pbiBa BToporo rpaAJieHTa ~ecl>opMal.\HH. Ilo­
JIY'tleHbi HBHbie Bblpa>KeHHH ~ poCTa H HC'tle3aHHH pa3pbiBa . .IJ:nH MaTepHaJia C HeH3BeCTHbiM 
KOJIH'tleCTBOM CKaJIHpHbiX BHyTpeHHHX nepeMeHHbiX npe~JIO:>KeH MeTO~ HaXO:>K~eHHH HR:>KHeH 
rpaHH ~ KOJIH'tleCTBa CKaJIHpHbiX BeyTpeHHHX nepeMeHHbiX nyTeM Ha6JIIOI{eHHH nepeMeH­
HOCTH TaKHX pa3pbiBOB. 

1. Introduction 

INTERNAL variables are adopted in the constitutive equations of several classes of materials, 
e.g. (elastic-) plastic materials, chemically reacting materials, mixtures, materials 'With 
phase transitions etc. In general, internal variables can not be observed directly, so that 
it is important to analyse various behaviours of the materials in order to verify concerned 
assumptions on the constitutive equations. Acceleration waves in materials with internal 
variables have been studied in [1-6], whileshock waves have been investigated in [3] and 
[7]. Since the histories of external variables should be known to solve the differential 
equations for the internal variables, the materials with internal varia.bles may be regarded 
as special types of materials with memory, cf. [8] and [9]. Acceleration and shock waves 
in materials with memory have been studied in [10-14]. 

All the waves analysed above were singular surfaces or singular points which have 
nonvanishing velocities. On the other hand, recently the author [15] has ~hown that 
there may exist stationary singular points in a one-dimensional material with internal 
variables. 

This paper considers a three-dimensional material with scalar internal variables. 
In the next section the constitutive equations are given, and proved is the existence of 
tationary singular surfaces across which the spatial derivatives of the deformation gradient 
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and the internal variables are discontinuous. Section 3 derives and solves the amplitude 
equations for the discontinuities across the stationary singular surfaces. As shown in [5], 
the amplitude of an acceleration wave in a three-dimensional material with internal vari­
ables is governed by a Bemoulli's differential equation. Hence the variation of the ampli­
tude is characterized by only two parameters independently of the number of the internal 
variables. In the meantime, the amplitude of a stationary singular surface is governed 
by a system of linear first-order differential equations, where the number of parameters 
equals the square of the number of the internal variables. Thus the variation of the ampli­
tude of the stationary- singular surface is· much more intricate than that of the accelera­
tion wave. In Section 4, for a material with an unknown number of scalar internal vari­
ables, a method is proposed to find a lower bound for the number of the internal variables, 
by observing the amplitude of a stationary singular surface, i.e. the jump of the second 
deformation gradient across the surface. 

2. Constitutive equations and existence of stationary singular surfaces 

A material with scalar internal variables is described by the constitutive equations 

(2.1) 

(2.2) 

T" = cf»(F, a), 

i = ~(F, a), 

where T" denotes the Piola-Kirchhofi' stress, F the deformation gradient, and a is the 
column vector of N scalar internal variables. A superposed dot means . the partial. differ­
entiation with respect to time. We assume that cl» and~ are continuously -differentiable 
with respect tor their arguments. When the external forces do not exist, the balance law 
of linear momentum is given bY. 

(2.3) 

where v denotes the velocity and f!11 the material density in a reference configuration. 
We consider a plane S which may be propagating in the material and which satisfies 

the following conditions: 
(i) The displacement u, F, v and a are continuous with respect to the time and the 

coordinates. 
(ii) The first derivatives of v, F and a suffer finite jump discontinuities across S in 

a time interval. 
(iii) Each of v, F, a and the jumps of their first derivatives are uniformly constant over 

S at any instant. 
In this paper we call S simply a singular surface. The first-order compatibility con­

ditions for v, F and a across S become then 

(2.4) [v'] = U2e1
, [F1

1] = - Ue'nh [P1
1 ,K] = e1n1 ng, 

(2.5) [acx] = - UIP, [a«,J] = ba.nJJ 

where 

(2.6) 
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and where [ ·] denotes the jump of a quantity, n is a unit normal on S, U the speed of 
S in the n direction. Here and henceforth Latin indices run from 1 to 3, and Greek ones 
from 1 to N. If U = 0, S is called a stationary singular surface. If U =I= 0, S is an acceler­
ation wave. 

Substituting Eq. (2.1) into Eq. (2.3), we get 

(2.7) 

where we have omitted all the arguments of functions for simplicity. Taking the jump of 
Eq. (2.7) across Sand using Eqs. (2.4)h3 and (2.5)2 yield 

(2.8) 

where 

(2.9) 

The Q is called the instantaneous acoustic t~nsor corresponding to F, a and n. The jump 
relation of Eq. (2.2) across S becomes by use of Eq. (2.5)1 

(2.10) Ulfl- = 0. 

Thus there are two possibilities: In the case when U = 0, S is a stationary singular surface, 
where b need not vanish. Then Eq. (2.8) reduces to 

(2.11) Q',e"+R'a.ba. = 0. 

In the other case when b = 0, Eq. (2.8) takes the form 

(2.12) 

Thus in order for S to be a singular surfac,e, eH U 2 must be a real and nonnegative eigen­
value of Q and e must be a real eigen vector of Q belonging to the eigenvalue. A positive 
eigenvalue corresponds to an acceleration wave, and a null eigenvalue to a stationary 
singular surface. Hence we see that there may exist two types of stationary singular ·sur­
faces in the material . The first type can always exist whatever value Q takes, but the second 
type can exist only when Q has a null eigen value. 

According to the discussions [16, 17] about acoustic tensors for elastic materials, in 
general the eigt?n values of the acoustic tensors need not be real, nonnegative or posftive. 
If the acoustic tensors have null eigenvalues, stationary singular surfaces may also exist 
in the elastic materials. Henceforth we assume that the acoustic tensor Q does not have 
any null eigenvalue, and hence we consider the first type of stationary singular surfaces 
only. 

3. Growth· and decay of amplitudes of stationary singular surfaces 

The second-order compatibility conditions for v, F and a across a stationary singular 
surfaceS are given by 

(3.1) 
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(3.2) [i1J,Kl = ( :
1 

e') nJnx.. [ti",J) = ( :
1 

b") nJ, 

where ~~~~ meaps the time differentiation of a jump quantity. Differentiating Eq. (2.2) 
with respect to XJ and taking the jump of the result across S, by use of Eqs. (2.4h and 
(2.5)2 we get 

(3.3) 

where 

(3.4) 

Multiplying Eq. (3.3) by nJ ana using ;Eq. (3.2h yields 

(3.5) 

Since we have assumed that Q does not have null eigenvalues, the characteristic equation 
for Q has no null roots: 

(3.6) detQ ¥- 0, 

which implies that Q is invertible. Multiplying Eq. (2.11) by Q-lqi and then substituting 
the result into Eq. (3.5) to eliminate e, we obtain a system of linear differential equations 
for b: 

(3.7) 

where 

(3.8) CXp = -AcxPQ- 1 P 1Rip+UXp. 

When F and a are known in time at S, by the definition C is also known in time, where 
recall that F and a are assumed to be uniformly constant over S at each instant. Then 
under the initial condition 

(3.9) 

Eq. (3. 7) can be solved as 

(3.10) 

where 
t t T1 

(3.11) pcxp(t) = ~cx{J+ f ccxp(t)dr+ I ccx,(rl) f CYp(r2)dr2d't'J + .... 
to to to 

Let A. denote the least upper bound of IIC.( ·)11 in [t0 ,'t]. Then Eq. (3.11) implies that for 
each t ( ~ t0 ) 

(3.12) IIP(t)ll ~ eJ.<t-to>. 

Substituting Eq. (3.10) into Eq. (2.11) and then multiplying the result by Q-lqi' we get 

(3.13) 
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where note that Q and Rare known matrices in time. From Eqs. (3.10), (3.12) and (3.13) 
we have the following theorem: 

THEOREM 1. JfQ does not have any null eigenvalue for every t ~ t0 , e andb are bounded 
for each t ~ t0 • 

In a special case where cl» and ~ are linear in F and a, or where F and a are constant 
in time at S, from Eqs. (2.9), (3.4) and (3.8) C reduces tb a constant matrix C0 • Then 
P given by Eq. (3.11) takes the form: 

(3.14) P(t) = eU-Io)Co. 

Let ft be the minimum of the real parts of all eigenvalues of C0 • Then it is well known 
that there is a positive number M such that 

(3.15) JJe(l-to)CoJJ ~ MetJ(t-to). 

Notice that Q and R are constant matrices in this case. Thus Eqs. (3.10), (3.13), (3.14) 
and (3.15) are combined to imply the next theorem. 

THEOREM 2. Suppose that cl» and ~ are linear in F and a, or that F and a are constant 
in time at S. If Q does not have any null eigenvalue, and if the real parts of all eigenva/ues 
of C0 are negative, then e and b tend to 0 as t -+ oo. 

4. Determination of a lower bound for the number of scalar internal variables 

Consider a material with an unknown number of scalar internal variables, which has 
the constitutive equations (2.1) and (2.2). We assume that cl» and ~ are linear in F and a, 
or that F and a are constant in time at a stationary singular surface S. Let e denote a com­
ponent of e, then from Eqs. (3.10), (3.13) and (3.14) it can be represented in the form 

(4.1) e(t) = C • (e<t-to)Cob0), 

where b0 and care constant vectors in RN and C0 -is a constant N x N matrix. The expression 
(4.1) is of the same form as that for the jump of the second deformation gradient across 
a stationary singular point in a one-dimensional material with internal variables [15]. 
Thus we can apply the method proposed there to find a lower bound for the number of 
i_ntemal_-variables. In what follows we shall review the procedure briefly. Differentiating 
Eq. (4.1) at t = t0 , we get 

(4.2) 

where 

(4.3) 

e1 = c · (C0
1b0 ) (i = 0, I, ... ), 

Let g( ·) denote the minimal polynomial with degree K( ~N) of C0 , then it follows from 
the definition that 

(4.4) 

where d0 , ••• , dx- 1 are constant scalars. Multiplying Eq. (4.4) by C0
1b0 from the right 

and by c from the left, and then using Eq. (4.2), we get 

(4.5) 
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Next suppose that we can· determine the time derivatives e1 up to and including the L-th 
order by observing the stationary singular surface .. Consider a system of linear equations 
for (y0 , ••• , Yn- 1) for each n = 1, 2, ... , L: 

(4.6) e1y 0 +et+ 1 Y1 + ... +et+,.- 1 Yn-1. = et+n (i = 0, 1, ... , L-n). 

If L ~ K, from Eq. (4.5) the e.quations (4.6) for n = Khave the solution 

(4.7) (yo, ···, Yx-1) = (-do, ···, -dx-1). 

Conversely, if Eq. (4.6) has no solutions for every n up to and including a positive integer 
N', N' should be smaller than K and hence the number of internal variables, N, is larger 
than N'. For each n = 1 , 2, .. . , L, define 

(4.8) 

(4.9) 

Then the above assertion can be expressed as the next theorem. 
THEOREM 3. IfN' is the maximum integer such that rank Gn :/=rank Hnfor every n ~ N', 

then the number of the internal variables is larger than N'. 
So far we have paid our attention to a component of the jump quantities ei = [Fi J ,K] rr' nK. 

If we observe other components of e1 or other stationary singular surfaces in the same 
material, Theorem 3 may give several lower bounds for the number of the internal vari­
ables. In this case we may employ the maximum of the lower bounds as the most accurate 
lower bound for the number of the scalar internal variables of the material. 
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