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Wave propagation in nonhomogeneous almost nonlinear
thin elastic rods

W. FRYDRYCHOWICZ (WARSZAWA) and M. C. SINGH (CALGARY)

WAVE propagation in a thin nonhomogeneous almost nonlinear elastic semi-infinite rod sub-
jected to a time-dependent velocity impact is studied. Similarity transformations are used
to transform the equation of motion and the boundary condition at the impacted end and
the similarity characteristic relation is applied for locating the wave front, to obtain a similarity
representation in the form of a boundary value problem. A solution of the similarity represen-
tation has been obtained in the form of power series. Restrictions on the parameters of the
problem and relations among them have been determined. The stress distribution in the rod
is evaluated and graphically represented.

Rozwazono propagacje fal w cienkich niejednorodnych prawie nieliniowych pretach péinie-
skoficzonych poddanych dziataniu zaleznego od czasu impulsu predkoéci. Dla przeksztalcenia
rownania ruchu i warunku brzegowego na uderzonym koficu preta zastosowano transformacje
podobienstwa, a zwigzek pomiedzy charakterystykami i zmienna transformacji wykorzystano
do lokalizacji frontu fali, otrzymujac reprezentacj¢ podobiefistwa w postaci zagadnienia brze-
gowego. Rozwigzanie dla reprezentacji podobiefistwa przedstawiono w postaci szeregu potego-
wego. Okre$lono ograniczenia dotyczgce parametréow zagadnienia i zwigzkéw migdzy nimi.
Wyznaczono i przedstawiono graficznie rozklad naprezen w precie.

PaccMOTPEHO pacmpocTpaHeHHe BOJH B TOHKMX HEOIHOPOMHBLIX IOYTH HeTHHEHHBLIX MoJIy-
GeCKOHEUHBIX CTEP)KHAX, MONBEPIHYTHIX NEHCTBHIO 3aBHCHAIIErO OT BPEMEHHM MMITYJIBCA CKO-
pocti. Jlna npeoOpa3soBaHWA ypaBHEHHA NBHYKEHHA M TPAaHHYHOIO YCJIOBHA HA yAapeHHBIM
KOHIlE CTEP>KHA MPHMEHeHo npeobpasoBaHme NogoOusa, a COOTHOLIEHHE MEXIY XapaKTepHCTH-
KaMi a mofo6HeM MCIONB30BAHO [JIA JIOKANM3auMy (POHTA BOJHBI, NOJIyYasd NpeICTABIIEHHE
nofobuaA B BHAE KpaeBoi sagaum. Pemienwe [UiA IIpe[cTaBlieHHs MOLOOHsA IpECTABIIEHO B
BHJe cTeneHHOro psga. OmpefeseHbl OrpaHHYEHMsi, KAaCAIOIIMECS MNAPAMETPOB IpobGieMbl
M cBaAsell Mexay HumH. OIpeneneHo W NpencTaBieHo rpadHYecK pacupeeeHHe HANpsKe-
HUil B cTepiHe.

1. Introduction

THE PROBLEMS of wave propagation in nonlinear [1, 2] and linear nonhomogeneous rods
[3] have been dealt with by various techniques; however, no literature seems to be available
on propagation of disturbances in rods which are simultaneously nonhomogenous and
nonlinear. An attempt has been made in this study to deal with such a problem by the
similarity analysis. Similarity transformations [4, 5] are determined from the equation
of motion, the boundary and the initial conditions. The similarity characteristic relation
[2] is applied to locate the wave front in the similarity coordinate. Using similarity trans-
formations and the similarity characteristic relation a similarity representation is obtained
of the original system of equations. This representation consists of a nonlinear, non-
homogeneous ordinary differential equation along with a well-defined boundary condition
at the origin and another boundary condition at the point defined by the wave front.
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The location of the wave front in terms of the similarity coordinate is dependent, in general,
on the slope of the unknown similarity function at the front. Assuming the parameter
of the material nonlinearity of the rod to be close to unity, i.e. considering the material
to be homogeneous — almost nonlinear, the condition at the wave front is rendered inde-
pendent of the slope of the unknown function and the nonlinear differential equation of
the similarity representation becomes expressible as a linear ordinary differential equation
with variable coefficients. The representation so obtained for the almost nonlinear rod
is solved to obtain the solution in the form of power series. The results for displacement
and stress distribution in the rod are at first expressed in terms of nondimensional quan-
tities and then graphically presented for visual inspection.

2. Basic equations and similarity representation

The constitutive relation for an elastic nonlinear nonhomogeneous semi-infinite thin
rod is assumed to be in the form
1

(2.1), o= E(x)e?, x=20, ¢g>0,
where
(2.1), E(x) = Eyx".

The equation of motion for the above case assumes the form [2]

1-g 1

E, ou\* ou E, , [ ou )" _ 9%
2.2) g—q“‘("_c??) e (“é? =
xz20, t=20, g¢g>0.

In the above equations x is the coordinate along the axis of the rod, t is the time, o
is the stress normal to the cross section of the rod, e is the strain, E(x) is the modulus of
elasticity, g is the mass density. E,, n and g are material parameters; E, and » are associa-
ted with the nonhomogeneity and g is associated with the nonlinearity of the rod. J and
V. are parameters of the velocity impact. In Eq. (2.2) and in the subsequent equations
the compressive stress is assumed to be positive.

The boundary condition for a time-dependent velocity impact applied in the direction
of the x axis is assumed to be

(2.3) ‘Z—T(x =0,0)=V.t% t>0.

The condition at and beyond the wave front is
2.9 u(x > x,(),t)=0, t>0,
where x = x,,(t) defines the wave front. The initial conditions are

2.5 u(x,t=0=0, x>0,

du
F(X,‘=0)=O, x>0.
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Itmay be noted that Egs. (2.5) are redundant as Eq. (2.4) implies Eq. (2.5); and Eq. '(2.5);
follows consequently there from.
The similarity transformations for Eqs. (2.2)-(2.4) are obtained on the basis of [2, 6]

as
= V.t F(n), 0<x<x, t>0,
@.6) u ()
= 0’ X = Xws > 0.,
1+g—-ng
T+
@.7) n= 2, O<x<xm, 130,
=0, forx=1t=0, by definition,
where
A o
q+1 I+q
K .ei) 11
Eu Vc
(2.8)
- kg
m=1+46 TR

On the basis of Egs. (2.6), (2.7), the equation of motion (2.2) can be written in terms of
the similarity function F(n) and its derivatives as

14+q Tmig 1

e Ak —nd\® na?
“2 l(%) R _mz"z] F’(")_(quwnq) T

x [=F'())* —m(m—28—1)nF'(n)— 8(8+1)F@) =0,

0<9<ny.
where 7, is given by Eq. (2.11),.
The boundary condition assumes the form

(2.10) F(n = 0) = 1-}(5—

The similarity characteristic relationship is employed to express the condition at the wave
front (2.4) in the form [2]

(2.11), F(n =1, =0,
where
@11, mo=(222) " Lipaa
and
1+g

qg>0, m>0, n<——.
q
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3. Similarity solution of a non-homogeneous and almost nonlinear rod

For an almost nonlinear rod we assume that the parameter g assumes values close to
unity such that

l-q

3.1 (-F) 7 ~1.

It is understood in Eq. (3.1) that the slope of the similarity function F(n) is not zero
and does not tend to infinity at any point 0 < 9 < 7,. With the above approximation,
the similarity representation given by Eqgs. (2.9)-(2.11) assumes the form

1iq lig =
(B2, [(A+g—ng) * n—(>1+q) * m*p’|F"(n)+ [ng*(1+g—nq)*
l+q l+q
—(1+9) * mm=28—1)72IF'()—(1+q) © 8(1+8)nF(n) =0,
0 < n < Nws
|
(3.2), Fin=0)= 135’
(3.2); Fp=n,)=0
where
1+a
1 [1+q—ng\ ™
62, AR (L
and
(3.3) g>0, m>0, ucl—;q.

Equation (3.2), is a linear ordinary differential equation of the second order with variable
coefficients with the points

(3.4, =0,
and
1+q
1 l+q~—nq) =
(3.4), n=t— (h_l:q— ’

as its regular singular points,
Equation (3.2), can be expressed in an operational form as
(3.5), LF =0,
where the differential operator L is
1+q I+q 1
(3.5, = [(1+g-ng) * n—(1+q) ° m*|D*+[ng*(1 +q—ng)*

1+g 1+4q

—(l+q) ¢ m(m—20—1)2]D—-(1+q) ? 8(1+9)
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and D is an ordinary differential operator,

d
(3.5)5 D = o
It may be noted that the equation represented by Eq. (3.5), is a linear ordinary differ-

ential equation of the second order with variable coefficients. It has regular singular
1+¢

; 1{14+g—nq
pointsatn = Oand 9 = + ;(—W
by expressing F(n) in terms of power series. However, on the basis of the nature of the
differential operator L and the presence of a regular singular point at the origin, we can
make use of a relevant theorem to solve the problem directly. For convenience, the the-
orem is stated below in terms of the notation used in this paper. For an original statement
of the theorem and its proof the reader is referred to KAprLAN, [7] page 369, theorem 5.

THEOREM. Consider the differential operator
(3.6), L = ao(n)D*+a,(n) D +a;(1),
where ao(n), a;(n), a,(n) are polynomials without a common factor. Let the differential
equation LF = 0 have a regular singular point at n = 0.

Let

(3.6); L(n") = fn'"*"+g)n' "> (k > 0),
where f(I) # 0. Then h = 0 or —1, f(I) is a polynomial in | of the second degree, and g(I)
is a polynomial in | of a degree at the most 2. The substitution

(3.6)3 - Fa) =1 D) e,

3=0
in the differential equation leads to the indicial equation f(I) = 0 and to a two-term recursion
Sformula for the c;. If 1,, 1, are the roots of the indicial equation and (I,—1,)[k is not an
integer or zero, then two linearly independent solutions F,(n), F;(n) are given by

(3.6)4,5 Fi(n) = ¢, 1), Fi(n) = ¢(n, L),
where

2¢
) . Its solution can be obtained, in principle,

_ e gAY .. gl (s— 1))
(%% $tr. 1) = ,?:ng O R o+ 20 . fa+50 }

If g(n) is of the degree O or 1, the solutions are valid for all n except perhaps n = 0. If g(I)
is of the degree 2, then the solutions are valid for 0 < |n| < a, where

1/k
36,00 =%, f0=fre, s =gt
L]
A comparison of Eqgs. (3.5) and (3.6), gives the coefficients
itg Itg
ao(m) = [(1+g—ng) * n—(1+q) * m*n’],

1 lig

(3.7 a;(n) = [ng*(1+9—ng)? —(1+9) ? m(m—28—1)y?],
1+q

a () = —(1+g) * 8(1+3)n,

4 Arch. Mech. Stos. nr 4/82
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which do not have a common factor. Moreover, as already mentioned, Eq. (3.5) has
a regular singular point at the origin, = 0. Thus the above theorem is applicable to the
solution of the equation. Now, making use of Eq. (3.5); we construct

1
(3.8) L") = (1+g—ng)* I[(1+g—ng)l+ (1 +g)(ng—1)]
1+e
X' =1 +q) ¢ [M2—m26+1)I46(5+1)).
Setting

39) Lr) = fy* -+,

and on the basis of comparison of Egs. (3.8) and (3.9), we obtain
1

f0) = (1+g-ng)* I[(1 +q—ng) I+ (1 +g)(ng—1)],

14
(3.10) g = —(l+q)-_"q_[m213—m(2d+1)!+6(8+l)],
h= -1,
k=2.
The roots of the polynomial f{(/), Eq. (3.10);, on the basis
@.11), =0,
are obtained in the form
(3.11), L =0,
and
3.11)s A s s i

1+g—ng
From Egs. (3.11),,; it may be noted that

(3.11), L4y #1, for n 7&%.

Thus we can apply the above theorem directly to obtain two linearly independent solutions
of Eq. (3.2),. Accordingly, the first solution F; () can be written as

- 2(0) [g(z) [ g(zts—l))]
(3.12) Ft) =1+ g;( 1)y [ o5 | 55 2|
With the help of Egs. (3.10),,, we can write
1
(3.13), f(25) = 2(1+g—ng)? s[(1 +q—ng)(2s—1)+ng?],
and
l+q

(3.13), g6s—1)) = —(1+g) ¢ [8—2m(s—1)+1][8—2m(s—1)].
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From Egs. (3.13),,, we can write

A+e
- g26-D) _ _ (1+9) * [3-2m(s—1)+1][8—2m(s—1)]
' f(2s) 2s(1+q—nq)'e[(1+q—nq)(2s—1)+ng?]
Making use of Eq. (3.14) in Eq. (3.12), the first solution is obtained as
l1+g s
(1+q) ¢ 8(é+1)

s!(1+q—nqg)’? (1+9—ng+nq?)

(6—2m+1)(6—2m) (6—4m+1)(6—4m) (6—2m(s—1)+1)(8—2m(s—1))
B(1+g—ng)+ng®] [5(1+q—ng)+ng*] [2s—1)(1+g—ng)+ng?]
The second solution F,(n) assumes the form

G15)  F) = 1+;n” 5

- - 2
(3.16) F(p)=n 'tT™ 1+Z( D rd =g
f(—+2)
l+q—nq
1+g—ng —ng? ) (1+q ng — nq N )]
xg( 14+g—ng g 14+qg— el A
1+g—ng—ng? 1+g— nq—nq l
f( 1+g—ng +4) f( 1+g—ng 2’)
where, as before,
l+q nq nq 1+q
g( +2(s— 1)) —~
(3.17) I+g-ng ) L
1 1+g—ng—ng* nq ng* +2s "~ 2s(1+q—ng)'”e
l+qr nq

2
(o—zm(s—l) m’””q—n"qﬂ m)(d—m(Zs—l)-i—lr:inq)

[2s+1)(1 +g—ng)—ng’]
Substituting Eq. (3.17) into Eq. (3.16) and simplifying, the second solution can be written as
H_q 5

x

1+g-ng—ng*

q
3 1 _ 1+q —-ng ! M__-
(3.18) Fy(p) =19 1+ 24 2’s1(1+g—nq)*l®

_mng* N\, . mng? )
(d+l+q—m}+1 m)(é m+l+q—nq

[3(1+g—ng)—nq®]
mng? 3 mnq> )
(6—3m+m+l)(ﬂ 3m+l+q_m;
[5(1+g—ng)—ng?]
2
(z&—2m(s—1)+H’_"""jr +1- )(é—m(ﬁ—l)+1mnq)
h [(28+1)(1+q —ng)—nq?] '

x
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It follows from the stated theorem that the solutions F;(7) and F,(#) are convergent
for

(3.19), 0<|g <a,
where
L+q 112 1+q
1/k 1 2 q o 2q
(3.19), g |7 | E-ND ) (—-—Hq "q)
£o ks 1+g m
—(l+g) * m?
As in this problem 7 > 0, the series are convergent for
Bt 5
1 +q—nq) 1
(3.20) 0<gy< ( +q P

Now we investigate the convergence of the similarity functions F;(#n) and F,(n) at
the boundary points. It is readily seen that F; () is convergent at the point # = 0. However,
at the other point

1+93—ng q
.2 = = »
B2 ( 1+g )

its convergence needs to be investigated and also that of F,(n) at both the end points. The
well-known d’Alembert’s criteria of convergence cannot be used here as the limit of the
ratio of two consecutive terms of the series tends to unity. Cauchy’s criteria is also inap-
plicable as, in this case, the root of the ratio of two consecutive terms equals unity in the
limit. Applying Rabbe’s criteria of convergence [8], we obtain at the point #,,

(14+g—ng)(m—1—208)—mng?
2m(l+4q9—ngq)

(1
(.22) fim s(%—l)%—z) -

§=+00

for the series of F; (), Eq. (3.15), and

Q. fa,., ) )_‘ (2y+1+5m)(1 + g—nqg) —mng?
P2 B (% —1)+2)= - B s

for F,(n), Eq. (3.18). In the above equations a, and a,,, are two consecutive terms of
the series under consideration and

+2,

L.
1+g—ng

For convergence, setting both the limits less than unity, the following inequalities
are obtained at the point 7,,:
(3.29) (1+q—ng)(1+28+m)+mng* > 0,

and

(3.23), y =6+

(3.25) 1+4g—ng >0, m>0, ¢q>0, n#%.
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The series for F,(n) converges at the origin = 0 if

14+g—ng—ng*

—1 7 >
l+g—ng

Making use of Eq. (2.8), in Eq. (3.24) and combining Egs. (3.25) and (3.26), we obtain
the following inequalities:

(3.26) 0.

1—
(1+g—ng)(1 +2a)+(1 e S| )(1 +q—ng+ng?) > 0,
1+g
(3.27) i
o, 1-1-:5]_@r >0, ¢g>0.
q I+¢q

The general solution of Eq. (3.2), in terms of two linearly independent functions
F(n) and F,(n) can be written as

(3.28) F(n) = CFi(n)+CoF2(n),

where the functions F,(n) and F,(n) are given by Egs. (3.16) and (3.18), respectively.
C, and C, are constants to be determined from the boundary conditions. Making use
of the boundary condition (3.2),, the value of C, is obtained as

1

3.29 e e
3:29) G 1+6

On the basis of the boundary condition (3.2);, we obtain

Fi(n)
3.30 = - falw)
B:30) €2 = =+ 9K

where 7, is given by Eq. (3.2),. Thus, on the basis of Eqs. (3.29) and (3.30), the solution
(3.23) can be written as

_ | _ Fw)
@b ”mfﬁfh@ amﬁm4
for
b s
29
1 (14+g—ng
(3.32) 0<n< ;(W) s

and under the condition that the parameters n, ¢ and § must satisfy the inequalities (3.27).
Furthermore, it may be remembered that the solution holds for the values of g close to
unity.

3.1. Special cases

Case 1. Nonhomogeneous linear elastic rod

g=1, n<l.
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On the basis of the expressions (3.15) and (3.18), the values of F, () and F,(7) assume the
following form in this case [9]:

% 1
i 3'__"___
(3.33), Fl(n)—l’fg_;’? @—-n)'s!

. B+13(-1)(3-2) ... [8—(25-I[8—2(s—1)]
G—n)(5—2n) ... [(C—m)s+n—1] b

n _ n
1+2 = u)‘s' (6+ —n()3(j2n;+ 2—n)

and

(3.33), F@) = ‘""

[R—n)s+1—n] ]

Equation (3.31) remains valid for 0 < 9 < e

and (3.33),

are convergent when the parameters satisfy the inequalities

(3.349), (n—4)—-22-n)éd <0
and
(3.34), n<l.

Case 2. Homogeneous linear rod subjected to time-dependent velocity impact
g=1, n=0, 48#0.
Functions F,(n) and F,(n) assume the simplified forms as [9]
a+ '?)1+a +(1—- ’?)H‘

Fjl(’?)’u-ﬂ = p) ’
(335 148 __ (1 _.N\1+8
FZ(’?)[I:O - (1 +??)2(l +(;) ’?) = £
giving
(3.36) FO) = g5 (-0,

for0<y<1,d>—1.

4. Displacement and stress distribution in the rod

The displacement u(x, ¢) at a point is given by Eq. (2.6). The stress at a point in the
rod is given on the basis of Eqgs. (2.1) as

au '

4.1) a(x, t) = E(x)ells = Enx"(-— E-) .
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The displacement gradient is obtained from Egs. (2.6) and (2.7) and substituted in Eq.
(4.1) to obtain the stress distribution as
1 - e MR
_(1+g—ng la e Grg-naag DG~ Tre-nan
“4.2) o(x,t) = o VK t

n
X7 1+q-ng Eo x;(_Fr (ﬂ))“‘-
Making use of the similarity transformation, relation (2.7), we obtain

(I+gm
tﬂ !+'—3§
“4.3) X" = ( x
Substituting (4.3) in (4.2), we obtain the stress in terms of % and ¢ as
14 g—ng—ng® 1+
@4)  olx, 1) = E, Vg OHeroa ( S 1e-5 qm})
1 m{l+q)(ng—1) nq
@+D—
% ¢ 7Y Tre-naq n 1+q—ng (—F'('q)) la,
where
_ 1 [ R L ]
4.5) Fm) =3 [F1('}) ;T F(m|.
The derivatives in Eq. (4.5) are given by
o l+g
, _ (1+q) d(3+1)
= 28-1
9 Fi(n) ZZm 2's1(1+q—ng)""* [(1+g—nqg)+ng?)

sm]
o (8=2m+1)(3—2m) (3—4m-+1)(3—4m) (8—2m(s—1)+1)(8—2m(s—1))
B(+g—ng)+ng?] [5(1+g—ng)+ng®] =~ [(2s—-1)(1+q—ng)+ng®]

and

o Y
1+9—ng—ng* +Z(2Hl+q ng— nq)

IO S
4.7 i) =79 '™

L _mng* . )( o mng®
(1+q) ("""‘1+q'—1r:qv'l'l m]\d m+1+q—nq

" S +q—ng)™ B +g—nq)—ng?

(d—Zm(s—-l)-i- i WO m)(a —m(2s— 1)+H'_"q’f‘fnq)l_

14+g—ng

X (s +1)(1 +9—ng)—ng?]

It may also be noted that in Eq. (4.4)

ng
e == _ 1 (1+g—ng—ng*) F,(n.)
= o T RO = i T ar gy R
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We can express the above relations in nondimensional form for convenience in the evalu-
ation of numerical results. For this purpose we set

- t
4.9 x=-£ and t=z,

where ¥ and ¢ are dimensionless, x, and 7, have the same dimension as x and ¢ respect-
ively, otherwise they have nonzero but arbitrary magnitudes. On this basis we obtain the
following nondimensional expressions:

u(x, 1)

(4.10) i et = 191 F(x),
_ a(%, 1)
@4.11) [ (ra)i-ng) [@+D) m(1+q)(m:—n]
EDVSMK 14q-ng tc q (1+g-nq)
where
1+q
4.12) F=F— =,

(,g)m
K

On the basis of Eq. (4.4), (4.5), (4.8) and (4.12) the nondimensional stress distribution
assumes the form

FARTI .. . 1
4.13) o= [L; 1+e=ny (1+q—m1—nq ) Fa(m)] N =0
1+6 1+q Fz(??w) ’ ’

mng? ng?
(1+g—nq) _(‘“'1'"' 1+q—nq) 1+:—ﬂq -
= e “+q t 1 F(m| » n#0.

On the basis of Eqgs. (4.13) and (4.5) the results can be numerically evaluated.
In the case of a nonhomogeneous linear rod, the stress distribution assumes the form

n
o4 ———
1 Fa A Fi{nw)
g =i ,
=% @

Mty =l T =y
21 F@, =n#0.

When, in the above case, Eq. (4.14), the velocity impact is constant, 8 = 0, the stress
distribution becomes

n=0,
(4.14) -

n

_ _2=m F (,? ) 2{2 n)
@.15) G2t (1=n) il 1-( )]
= Fom 2=
In the relation (4.13) there is no discontinuity for 7 at the point %,, = ;n. However,

2

7" the derivative of (x> 1) for u tending

in the neighbourhood of the point 7,, = 2 3

to #,, from the left side is
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3n—4
L - s dn(l—-n)y 2 )2 -
) i 2-n _
(4‘16)1 a (‘Iu} n) (tfll) (Z—N)SFZ(??W) [1 ( 2-“ ?? ’
and
(4.16), lim  @(fe,n) = —00, for O0<n<l1.

For n = 0 the limit equals zero. Equation (4.16), and the property (4.16), imply that
for 0 < n < 1 the curves in Fig. 9 sharply tend to zero in the neighbourhood of the point
-

—n ; : S R s
and they are perpendicular to the x-axis at point X,, = (9, fr) 2" .

2

2
Nw =

5. Numerical results

On the basis of the results obtained in the previous section, numerical evaluation of
the similarity function F(n) and the nondimensional stress o has been carried out.

Equations (3.26) to (3.28) give the general solution of the similarity representation
under the restrictions on the parameters imposed by Egs. (3.3)y,,, (3.24) and (3.25).
In the evaluation of numerical results the values of n, 4 and ¢ are assumed to be non-
-negative, for convenience.
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0.75

0.50

0.25
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Fig. 1

In Fig. 1 the similarity function F(%) is plotted against 7 for varying ¢ and fixed § = 0,
and n = 0.5. For ¢ = 1, the results hold for a linear nonhomogeneous rod and agree with
those previously obtained for this case [9]. At y = 0, F(») is independent of n and g and
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depends only on 8. Thus, for 8 = 0 the value F( = 0) remains fixed at unity. The value
of F(n = n,) = 0 as required by the continuity condition at the wave front, however,
7w itself being dependent on the parameters n, 3 and g, varies with ¢ even though » and

F(n)
06

FiG. 2.

Flxn)
0.6 —

8=10,n=05
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d are fixed. There is gradual change in the curves F(n) with the gradual change in the
values of g around g = 1 as can be seen in Fig. 1.

Figure 2 shows the variation of the similarity function F(z) for a homogeneous, n = 0,
nonlinear rod subjected to time dependent velocity impact, 8 = 1. Here the variation
of F(n) for varying ¢ around g = 1 is not only gradual but also small as can be compared

Fln)
1.00
830,q=1I.1
075 n=0
n=0.05
n=0.10
n=025
n =0.50
n=0.75
0.50
0.25
1 | ! | ] N | ]
'I?
Q00 0.2 04 06 08 1.0
FiG. 4.
1.06
™ n=0.5,q=1.1
0.75
0.50
‘0.25
] L 1 7

0.00




452 W. FryDrycHOowicz and M. C. SINGH

for the three curves ¢ = 0.9, 1.0 and 1.1, respectively. Also, it may be observed in com-
paring Figs. 1 and 2 that whereas in Fig. 1, for a fixed #, F(n) decreases with increasing
q, in Fig. 2 it is just the reverse, i.e. F(n) increases with increasing q.
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Figure 3 presents the variation of F(») against 5 for a nonhomogeneous, n = 0.5,
time-dependent velocity impact, § = 1.0 and varying ¢. For values of # less than 0.4,
approximately, the effect of nonhomogeneity dominates in the sense that variation of
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F(n) is in accordance with Fig. 1, whereas for values of # greater than that of about 0.4
its variation is like that in Fig. 2, that is, the effect of 4 dominates. Figure 4 shows the
variation of the similarity function against the similarity variable for é = 0, constant
g = 1.1 and varying n. The results are in harmony with those for a linear rod having the
same values of § and n but g = 1, [9].

Finally, in Fig. 5 the variation of F() is shown for fixed n = 0.5 and ¢ = 1.1. For
varying 4, in this case again, the behaviour is in accordance with that expected when
compared with the results for » = 0.5 and ¢ = 1 [9]. The last three figures, 6, 7, and 8
show the variation of nondimensional stress & against the nondimensional coordinate x.
Figure 9 presents the stress distribution for a nonhomogeneous linear rod subjected to
time-independent velocity impact.

In conclusion, similarity transforms and similarity-characteristic relations have been
applied to obtain a nonlinear similarity representation for a nonhomogeneous nonlinaer
semi-infinite rod. Assuming the parameter of nonlinearity of the problem g close to unity,
the similarity representation is rendered linear and its solution is obtained in the form
of power series. For the values of ¢ = 1, the series gives a solution for the nonhomogene-
ous linear elastic rod. When the nonlinear representation is solved numerically, it
agrees with the series solution for values of g close to unity. Restrictions on the physical
and impact parameters have been obtained in the form of an inequality on the basis of
the criterion of convergence of the power series of the solution.
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