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Ray methods in multidimensional gasdynamics 

C. P. KENTZER (LAFAYETTE) 

THE CHARACTERISTIC determinant leads to a hodograph transformation which interchanges 
the dependent and independent variables. The characteristic coordinates N = (n,, nx, ny, "•:) 
are conjugate to (t, x, y. z) and satisfy the Hamiltonian equations. This establishes the ray form 
of gasdynamics analogous to geometrical mechanics. A one-to-one correspondence between 
differential operators and multiplication by the components of N is observed. Gasdynamics 
is interpreted as wave mechanics in the limit cJf zero wavelength, thus suggesting an extension 
of the ray formulation to statistical fluid mechanics. 

Wyznacznik charakterystyczny prowadzi do transformacji hodografu zamiemaJ(lCej zmienne 
zalezne i niezalezne. Wsp6lrz~dne charakterystyczne N = (n1 , nx, ny, n,:) S'l sprz~zone 
z (t, x, y, z) i spelniaj(l r6wnania Hamiltona. Nadaje to gazodynamice postac promieniowl! 
analogiczn(l do mechaniki geometrycznej. Stwierdza si~ jedno-jednoznaczn'l odpowiedniosc 
operator6w r6zniczkowych oraz mnozenie przez skladowe N. Gazodynamik~ interpretuje si~ 
jako mechanik~ falow(l w granicznym przypadku zerowych dlugosci fal co sugeruje rozszerze­
nie sformulowania promieniowego na statystyczn(l mechanik~ cieczy. 

XapaKTepHcrHqecKHH onpeAeJIHTeJib npHBOAHT K npeo6pa3oBaHHIO roAorpa<f>a, 3aMeHRIO­
~eMy 3aBHCHMhie H He3aBHCHMbie nepeMeHHbie. XapaKTepHcrHqecKHe KOOPAHHaTbi N = 
= (nr' nx' ny' nz) COIIpR>KeHbl c (t' X' y' z) H YAOBJieTBOpRIOT ypaBHeHHRM raMHJlbTOHa. 
3To npHAaeT ra30AHHaMHKe nyqesoii BHA aHanorHqHhiH reoMeTpHqecKoii MexaHHKe. KoH­
craTHpyeTcR OAHO-OAH03Ha~oe COOTBeTCTBHe AH<f><f>epeHQHaJibHbiX onepaTOpOB H YMHO­
>J<eHHe qepe3 CO(..'TaBJIRIOI..QHe N. ra30AHHaMHKa HHTepnpeTHpyeTCR I<aK BOJIHOBaR MeXaHHI<a 
B npeAeJibHOM cnyqae HyneBbiX AJIHH BOJIH, qTo npeACI<a3biBaeT pacumpeHHe nyqesoii <t>op­
MYJIHpomm Ha craTHCTHt.Ieci<yro MexaHHKY >KHAKOCTH. 

1. Introduction 

THE THEORY of characteristics for multidimensional inviscid gasdynamics provides an 
exact connection between gasdynamical fields on the one hand and classical particle 
mechanics on the other. Further, the theory establishes a rigorous operator formalism, 
a one-to-one correspondence between differential and algebraic multiplication operators. 
These latter aspects of gasdynamics have not yet received enough attention, especially 
in view of the fact that the ray formulation of classical gasdynamics appears amenable 
to an extension to a stochastic wave theory. 

The aim of this paper is to display the special role of the components of the character­
istic normal both as the natural coordinates and as multiplication operators. The primitive 
variables will be expressed by a hodograph-like transformation in terms of the character­
istic coordinates (the components of the characteristic normal), the latter, and the posi­
tion coordinates, satisfying a set of Hamiltonian equations. Thus a formal connection 
between gasdynamical fields, wave motion and Hamiltonian particle mechanics is estab­
lished. This connection, it is believed, will provide a starting point for an extension of 
the classical mechanics of gases to a new form of statistical fluid mechanics. 
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2. Theory of characteristics 

In regions of space-time where the solution is continuous, the equations of conserva­
tion of mass, momentum and energy may be put in the form 

o -, e l 
: 1 u = 0, 

Di~lp 

(2.1) 0 
D 

(! Dt' 

D 
eV., Dt' 

0 ypV·, 

where (!-mass density, u- fluid velocity vector, p- pressure, DIDt = olot+u ·V­
substantial derivative. 

In the theory of characteristics we specify a parametric equation of a path, t = t(s), 
x = x(s), and substitute Pt = PsSt, Px =· PsSx, etc., thus changing the system (2.1) to 

(2.2) l
(sr+n ·Vs), 

0 ' 
. 0 ' 

eVs · 
e(sr+u ·Vs), 

ypVs · 

0 . ] { es l Vs Us . = 0. 
(sr+u·Vs) Ps 

Here we note, for further reference, the one-to-one correspondence between the dif­
fe_rential operators a I ot, V' operating on (!, u, p, and the multiplication operators Sr, Vs, 
operating on the total derivatives es, Us, Ps. This correspondence applies only if the system 
(2.2) yields a nontrivial solution, that is, if and· only if the determinant of the coefficient 
matrix in· the system (2.2} vanishes, 

(2.3) 

where a2 = y Pie- square of the speed of sound, y- ratio of specific heats. 
All the factors of the above characteristic determinant are homogeneous in derivatives 

of the parameter s. We may, therefore, change the scale and units of s arbitrarily. For 
instance, one may normalize s so that Vs = n - space component of the characteristic 
normal, In I = I, and then sr = nr -time component of the characteristic .normal, the 
latter obtained as a function of u, n, a and by equating each factor of the determinant 
to zero separately, 

nr = -u · n, and nr = -(u · n+alnl). 

The homogeheity of the determinant (2.3) implies that, by a change of scale and units, 
we may associate the frequency w and wavenumber k, or the energy H and momentum p, 
with -nr and n, respectively. Consequently, we have 

w = u · k, w = (u · k+alkl), 

H = u · p, H = (u · p+alpl), 

and the theory of characteristics for the case of the equations of gasdynamics may be 
paraphrased in the language of wave theory or the language of particle mechanics. Like-
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wise, methods and results of the wave theory or of particle mechanics may be utilized 
directly. In particular, we would like to restate here the result reported by LIGHTHILL [1], 
namely, that if a ray is defined by the equation 

dx ow 
dt ok 

with time t as a parameter, then along such a ray 

dk -ow dw ow 
dt - 8X' dt = at' 

where, in general, w = w(k, x, t). Thus the disturbances (discontinuities in the normal 
derivatives es, us, Ps) propagate according to the Hamiltonian equations of motion. The 
Hamiltonian equations enable one to construct the rays if the flow field is known, that is, 
if u = u(x, t), a = a(x, t) are known simultaneously with k(x, t) and w(k, x, t). 

Since the vanishing of the appropriate factor of the determinant (2.3) is necessary 
for the existence of the disturbance, and since such factors are linear in u, a and in k, w, 
we proceed as follows. It was shown by RusA.Nov [2] that an independent set of five charac­
teristic relations for (2, u, p may be obtained using the conservation of the entropy stat­
ement, 

(2.4) PfeY = const on 
dx · 
dt= u, 

and four additional relations corresponding to the quadratic factor in Eq. (2.3) written 
for four different waves. The quadratic factor, factored out into linear factors, written 
out for four wavenumber vectors k(r>, r = 1, ... , 4, k<r> = lkl<r>, gives 

(2.5) 

Provided that the end points of the unit vectors n(r> = k<n jk(r>, r = 1, ... , 4, do not lie 
in a common plane, the determip.ant of the matrix in the relations (2.5) does not vanish 
and one may solve uniquely for the vector (u1 , u2 , u3 , a) at points of intersection of the 
four rays. Then, with a2 = ypfe and the entropy relation (2.4) written along a fifth ray, 
all of the field variables, viz. e, u, and p, may be expressed as functions of the characteristic 
coordinates (nr, n), or ( -w, k), or ( -H, p), enabling one to proceed with the simultaneous 
solution of the Hamiltonian equations. 

We note that (u1 , u2 , u3 , a) may be obtained as a function of space time (x, t) only 
after the network of the characteristic rays is constructed by integration of the set of Hamil­
tonian equations. This is to be expected since in the nonlinear .case the dependent vari­
ables and the characteristic coordinates are coupled and must be solved for simultaneously. 
The new result of the present paper is the hodograph transformation (2.5) which is a linear 
algebraic system in both the primitive and the characteristic variables and not a non­
linear partial differential equation. 
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The invertible relation (2.5) is in a nature of hodograph transformation exchanging 
the roles of the dependent and the ind~pendent variables. This transformation is unex­
pectedly simple as a consequence of the use of the characteristic coordinates rather than 
the conjugate coordinates x and t. A numerical method based on the ray formulation 
of gasdynamics was proposed by the author [3]. An example of a three-dimensional time­
dependent solution using the proposed method was calculated by I. H. PARPIA [4]. The 
main advantage of the ray formulation is that it involves integration of a system of or­
dinary differential equations in the Hamiltonian form, and that it allows for the construc­
tion of the flow field and, simultaneously, of the wave fronts with due regard to the domain 
of dependence of the solution. 

For completeness we give below an independent set of characteristic relations cor­
responding, according to RusANOV [2], to a given choice of the orientation of the space 
component of the characteristic normal, the unit vector n: 

(2.6) 

D 
Dt (p/r/) = o, 

q· [e ~~ +Vp] = o, 

r·[e ~~ +Vp] = 0, 

[ean· ~~ ±anv·t] ±[~~ ±an·Vp] = 0. 

The vectors q and r are arbitrary non parallel vectors orthogonal to n, e.g. q = c x n, 
r = n x (c x n) with c arbitrary. 

3. Operator formalism in gasdynamics 

In Sect. 2 we have drawn attention to the apparent correspondence between the dif­
ferential and multiplication operators, 

(3.1) I 

0 
Tt +-+ n,, V+-+ D. 

We observe the same correspondence in Gauss' Divergence Theorem, 

j j j V*fdV = j j n*fdA, 
V A 

where * denotes any allowable multiplication, f is a scalar, vector, or a tensor, 01 is a unit 
normal to the surface area A bounding a volume V. 

In regions of space-time where the solution itself is discontinuous, we shall demonstrate 
the same correspondence which holds on surfaces of discontinuity 1:. The surfaces 1: 
are the boundaries between regions G+ and G- in which the solution is continl!lous, dif­
ferentiable, and possesses appropriate limits as 1: is approached from G+ and G- sides. 
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--- --------- --- - - - -- ··-

TRUESDELL _ [5] quotes Hadamard's result that, to the general conservation law in the 
divergence form, 

for a property of a fluid per unit volume, 1p, valid in G+ and c- , and written as 

there corresponds 

which may be written as 

(3.2) (nn n) · [1p, 1p0] = 0 

and which holds only on 1:, the boundary between c+ and a-' and where ["P] = "P+ -
- "P- = jump in tp across 1:. If the fourvector N = (nr, n), which is normal to the hyper­
surface E(x, t), is normalized so that its space component n becomes a unit spatial vector 
normal to the intersection of the hypersurfaces 1: with space, then nr = time component 
of N = - U, where U = the speed of propagation of 1: through space. Thus, if a hyper­
surface of discontinuity exists, then there is a one-to-one correspondence between the 
differential operator ( iJ I ot' V), operating on the fourvecior of densities and their fluxes, 
and the multiplication operator (- U, n) operating on the fourvector 9f differences across 
1: (jumps) of densities and their fl.uxes. 

A typical surface of discontinuity in gasdynamics is a shock wave across which the 
Rankine-Hugoniot jump conditions hold. In a general case of moving shock, these 
conditions take the form of (3.2). 

We have demonstrated here how one may, through the operator formalism and cor­
respondence rules (3.1), pass directly from the differential form of conservation laws 
to the algebraic shock conditions. The converse, namely changing of the shock conditions 
into a differential form of the conservation law by using the correspondence rules (3.1), 
is self-evident. However, the application of the correspondence rules (3.1) to the character­
istic surfaces is not as simple. One of the reasons is the fact that the characteristic relations 
(2.6) contain n explicitly as a parameter, while n will also serve as an operator correspond­
ing to the vector differential operator. We shall adopt the convention that n will denote 
a parameter while k/lkl will be used to denote operators. 

Substituting -w and k for Ojot and V in the characteristic relations (2.6), we obtain 
their algebraic equivalents: 

(3.3) 

( -w+u · k) (p/e,) = 0, 

q · [e( -w+u · k)u+kp] = 0, 

r · [e( -w+u · k)u+kp] = 0, 

ean· [(-w+u·k)u±an(k·u)]±[(-w+u · k)p±an · kp] = 0. 

The first of the above equations is obviously satisfied when the linear factor of the 
determinant (2.3) vanishes, i.e. when (-w + u · k) = 0. Since q and r are orthogonal to 
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o and, therefore, also to k, the. terms q · kp and r · kp drop out and Eqs. (3.3)2 and (3.3)3 

are also satisfied when ( -w+u · k) = 0. Rearranging Eq. (3.3)4 and using k · u = k(o · u), 
o · kp = (k · k)pfk = kp, we have 

(3.4) [ -w+u · k±ak](eao · u±p) = 0. 

On the characteristic surfaces corresponding to the quadratic factor of the determinant 
(2.3), the expression in square brackets vanishes and Eq. (3.3)4 is satisfied. We observe 
tha~ the particular form of Eq. (3.4) arrived at was obtained by moving eao to the right 
of the operator [ ~w +u · k ± ak] and by interpreting o ·V as corresponding to the improper 
operator k = (k · k) 1

'
2

• 

With the extension of the classical gasdynamics to statistical fluid mechanics in· mind, 
we observe that averaging of the characteristic relations (2.6) corresponds to averaging 
of the various factors of the determinant (2.3). This could be accomplished by an intro­
duction of distributions and subsequent integration in wavenumber space. ·In order to 
derive the averaged differential operators formally, one has to determine the rules of the 
ordering of the multiplication operators because the corresponding differential operators 
do . not commute. The particular operand which will give a correct characteristic relation 
is also of interest. We turn now to the problem of deriving the characteristic relations 
(2.6) from the factors of the determinant (2.3). 

The triple linear factor of Eq. (2.3) gives three independent relations corresponding 
to a single choice of the parameter o, viz. Eqs. (2.6)1-(2.6)J. The first of the relations is 
obtained simply by operating with ( -w+u · k) on pfeY and substituting in accord with 
rule (3.1), 

( -ru+u. k)p/e'- (:t +u. v} (p/e'). 

!he projections of the momentum equation onto the two vectors q and r lying in the 
plane normal to o, viz. Eqs. (2.6)2 and (2.6)J may be obtained by a multiplication of 
(-w+u · k) by qe or re on the left and by u on the right. Since q and rare orthogonal 
to k, we may add an arbitrary term proportional to q · k or r · k. The arbitrariness of such 
a term may be removed if one requires that, as shown by RusAN'OV [2], Eqs. (2.6h and 
(2.6h may be written as linear combinations of Eq. (2.6)4 each evaluated for a differen~ 
independent choice of the normal o, e.g. such that q = o 1 -o2 , r = o3 .....:.o4 • Another 
approach is possible. One may treat o in q = c x o = ox c as an operator and write 

0= ilxc·e(-ru+u·k)u+-+c·Vx [e~~] = 0, 

which represents the projection of the curl of the momentum equation on the constant 
vector c. 

To the quadratic factor of the determinant (2.3), viz. Eq. (3.5), 

(3.5) ( -w+u · k)2 -a2k · k = ( -w+u · k+ak) ( -w+u · k-ak) = b, 

where k = lkl, there corresponds the second-order differential equation, the potential 
equation of gasdynamics, viz. 
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(3.6) 

for the velocity potential 4>, Vlj> = u, where the notation (D/Dt)< 2> implies. that the con­
vective velocity u in D/Dt is kept constant when operated upon by D/Dt, that is 

(_!?_)<
2

> = -~ +2u ·V-~- +u · (u · V)V. 
Dt ot 2 at · 

The correspondence rules (3.1) applied to the quadratic factor (3.5) lead directly to 
the second-order differential operator in Eq. (3.6). The choice of the operand follows 
from the recognition of Eq. (3.6) as a familiar equation. However, since Eq. (3.6) is a single 
equation of second order, one has the choice of factoring the operator. in Eq. (3.6), or 
of considering Eq. (3.6) as a matrix equation for a two-component column vector formally 
equivalent to two first-order equations, or to obtain two first-order equations correspond­
ing to each of the linear factors in Eq. (3.5). This task is simplified because we have 
shown earlier that the characteristic relations (2.6)4 are satisfied if Eq. (3.5) holds. It 
suffices to multiply the linear factor (-w + u · k ± ak) on the right by (ean · u ± p) in order 
to obtain Eq. (3..4) which is equivalent to E<(. (3.3)4 • This determines the operand which 
has n as parameter. In order to arrive at Eq. (2.6)4 , we need only to reverse the steps in 
the derivation of Eq. (3.3)4 • We keep the acoustic impedance ea constant, use the cor­
respondence rules (3.1) for the proper operators and treat the improper operator k c:: 

= (k · k) 112 as follows: 

(3.7) 
k(n · u) = k ( ~ · u) = k · u +->V· u, 

k·k 
kp = -k- p = · n · kp +-+ n · Vp. 

With these steps we recover the characteristic relation (2.6)4 • As a consequence we have 
obtained two relations (2.6)4 instead of a single potential equation (3.6), or, what is equi­
valent, we have split the second-order potential equation into two characteristic relations 
corresponding to the same but arbitrary choice of the normal n. 

To simplify the differential equation corresponding to Eq. (3:4), we may write 

(-~~ ±an. v) (eoaon. n±p) = 0, 

which is equivalent to the characteristic relations (2.6)4 if we adopt the convention that 
e0 a0 is kept constant when operated upon, and if we change (n · V)(n · u) to (n · n)(V_· u) = 

=V· u. Unfortunately, the operand used abcve, having an appearance of a Riemann 
invariant, does not remain constant on the rays dxfdt = u ±an. 

The rules (3.7) may be restated in a simpler form: 
The improper multiplication operator k = (k · k) 112 corresponds to the differential 

operator (n ·V) with the proviso that when (n · V) operates on n, then n and V commute, i.e. 

(n · V)n = (n · n)V = V. 
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4. Summary 

The present paper formulates the method of characteristics, Section 2, in the form 
of ray mechanics for the dual purpose of, I) facilitating the computations in multidimen­
sional cases, 2) displaying the analogy (isomorphism) between the Euler's field equations 
of inviscid gasdynamics and Hamiltonian equations of particle mechanics or of the geo­
metrical (ray) wave theory. 

The kinematics of wave motion in gasdynamics determines, it was shown, not only 
the ray network but also the primitive variables as solutions of the Euler's system. The 
characteristic coordinates (components of the characteristic normal) and the primitive 
variables are related linearly, a fact which facilitates computations. The Hamiltonian 
form of the ray formulation implies that gasdynamics, which was shown to be analogous 
to particle mechanics, corresponds to the zero wavelength limit of wave mechanics. Nat­
urally, one is tempted to investigate the possibility of an extention of the deterministic gas­
dynamics to the nonclassical realm of finite wavelengths and statistical theories in a manner 
classical mechanics was extended to wave mechanics. The present formulation provides 
a "classical limit" to which gasdynamic wave mechanics must reduce in the zero wave­
length limit. 

Further, they ray formulation displays a familiar operator formalism, somewhat 
a surprise in a highly nonlinear theory. It is shown in Section 3 that such a formalism is 
intimately related to arid determined by the gasdynamic wave surfaces or by the internal 
fluid boundaries. A set of rules, allowing for a formal passage from differential to al­
gebraic relations, and vice versa, was developed rigorously as a consequence of ray formu­
lation based on the theory of characteristics. The results will be useful as guides in the 
development of a statistical gasdynamics based on probability distributions of gasdynamic 
waves. 
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