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Hamiltonian vortex models in the theory of turbulence 

Yu. N. GRIGORYEV and N. N. YANENKO (NOVOSIDIRSK) 

THE WIDE-SPREAD approach in statistical theory of turbulence is the one using an application 
of statistical or field theoretical methods to dynamic systems generated by Fourier transform 
of Navier-Stokes equations. In this report the possibilities of another apptoach are studied. 
In our consideration the initial dynamic system describes the behaviour of small (point) vortices, 
approximating an instantaneous vorticity field. 

Szeroko rozpowszechnione podejscie w statystycznej teorii turbulencji polega na zastosowaniu 
mechaniki statystycznej tub metod teorii pola do uklad6w dynamicznych generowanych przez 
transformacje fourierowskie z r6wnan Naviera-Stokesa. W pracy om6wiono mozliwosci za­
stosowania innego podej8cia. )N naszym uj~iu pocZ(\tkowy uklad dynamiezny opisuje zachowa­
nie si~ malych (punktowych) wir6w przybli:iajClcych chwilowe pole wirowo8ci. 

IIIHpoKo pacnpocrpaHeHHbiH B CTaTHCTH'!eCKOH TeopHH TYP6yneHTHoCTH no,wc:o,l:{ 3aKJiro'tla­
eTca B npHMeHeHHH MeTO):{OB CTaTHCTH'tleCKOH Mexamnrn HJIH TeOpHH fiOJUI K ):{HHaMH'tleCKHM 
CHCTeMaM, nonyqeHHbiM npeo6paaoaaHHeM ct>ypbe H3 ypaaHeHHii Haabe-CToKca. B pa-
6oTe o6cy>K):{eHbi B03MO>KHOCTH npHMeHeHHa ):{pyroro no,wc:o,l:{a. B HameM no,wc:o,l:{e HCXO):{Haa 
):{HHaMH'!eCKaa CHCTeMa OfiHCbiBaeT noBe):{eHHe MaJibiX (TO'tle'tiHbiX) BHXpeii, npH6JIH>Ka101UHX 
MrHOBeHHOe none 3aBHXpeHHOCTH. 

IN RECENT years in the works of a number of authors [2-7] a system of straightline vortex 
filaments approximating an instantaneous random field of vorticity has been considered 
as a statistical model of two-dimensional hydrodynamic turbulence. ONSAGER [I] was 
the first who pointed out the possibility of such an approach. One can assume that in 
the limit of large Reynolds numbers, when the domains of vorticity are relatively small 
and have the character of random impregnations in the potential flow, this approach in 
general outline reflects correctly the picture of turbulent fluid. Such a model is an alterna­
tive of the spectral models spread in the theory of turbulence. 

The dynamics of vortex lines admits a description in the Hamiltonian formalism 
that allows one to apply the methods of the kinetic theory to the statistical ensemble of 
vortices. In this way a number of results has been obtained, which confirm the pithiness 
of the present model. Thus, in the works [3, 5] the possibility of realization of energy and 
entrophy cascades in the system of straightline vortex filaments was shown on the basis 
of numerical modelling. In a number of works by A. I. Chorin et al. a system of vortex 
filaments has been successfully used for modelling the plane flows of an incompressible 
fluid at large Reynolds numbers. 

The obtained results stimulate further study of the model of straightline vortex fila­
ments as well as the development of a rational model of the point vortices for the three­
dimensional case. 

In the present paper a closed evolutional equation for the vorticity distribution function 
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is deduced and qualitative properties of its solution are studied proceeding from the 
Liouville equation for an ensemble of straightliite vortex filaments with the use of the 
Prigogine-Balescu's diagram technique. Some results for the statistical model of the three­
dimensional turbulence ·are also obtained on the basis of a dynamic system of small 
spatial vortices in an ideal fluid introduced in [9, 10]. 

1. 

Equations of the motion of the system of the N straightline vortex filaments of equal 
circulation intensity " have tlie ·form [11] 

N 

HN =- }:v,b 
i<j 

i,j=1, ... ,N. 

r1 = (x1, Yi) is the radius-vector of the i-th vortex, V1 = of or;, e is the unit vector of the 
normal to the plane of the vortices motion. 

An ~quivalept statistical description of the motion . of the system ( 1.1) is given 
by_ the Liouville equation [12] 

N N 

ofN _ \-, - - - ""' (1.2) Tt = -"ex L.,; V, VIJ(V,-VJ)fN = -" LJ LIJJN = -"LJN., 
i<} I<} 

where fN(f 1 , ••• , r N, t.) is the probability density function of N vortices with the normal­
ization 

(1.3) 

The Hamiltonian HN in Eq. (1.1) contains only the terms of the form Vli and the 
system. of vortex filaments is strongly interacting. This fact excludes a direct . application 
of ordinary methods of statistical mechanics [12, 13] to . Eq. (1.2). 

Let us make use of the Prigogine-Balescu's method modification [14] in the version 
of the resolvent formalism [13]. A system of notations coincides with the one adopted 
in [13]. Fourier analysi~ in the class of the periodical in square of the area Q functions is 
an original apparatus. For the distribution function of NvorticesfN as well as the potential 
of irttervortex interaction let us represent · the expansion ' in Fourier series in the form 

(1.4) 

(1.5) 

N 

fN(i1, ,,,,iN)= .Q-Nleo+ ~
2 2 2' e(k, t)e'1'J+ ... ], 

}=1 k 

V(lrm-rJI) = 4n2.Q-1 _L7V(lll)e-tf<r,.-rJ>, 
f 

k1 = 2n.Q-tf2n1 ; ~ is the integer vector. :The normalization condition (1.3) yields eo = 1. 
Fourier-coefficients ·in the expansion (1.4) are related with the S-vortex distribution 
functions 
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In particular, 

1
. N 

c = tm - - . 
N,D-ooo Q 

By using Eqs. (1.4) and (1.5) one can obtain Fourier-representation of the formal solu­
tion of the Liouville equation (1.2) in the form of a series of the perturbation theory:· 

00 ' 

(1.6) e({k}, t) = (2n)-• f dze- 1
" 2 ( -")" _2 ( ~ r -• < {k} IRo(z) 

n=O {k'} 

X [LRo(z)]"l {k'} > e({k'}' 0). 

Matrix elements in Eq. (1.6) are determined on the basis of the plane waves. In particular, 

(1.7) 
({k} ILl {k'}) = 2 ({k} ILn,JI {k'}), 

n<j 

({k} ILn, 11 {k'}) = 4n2D- 1ex i(k~-kn) V(lk;- knl) i(k; -kn) 

x (}k:+k~-k.-k) . n t5k;-kp. 
p:;;n,J 

The matrix element of ·the undisturbed resolvent R0 (z) in the given case is trivial: 

(1.8) ( {k} IRo(z)l {k'}) = --.!- (}{k}-{k'}' 
lZ 

The structure (1.6), (1.7), (1.8) enables one to use for graphic representations of these 
relations the same .diagrams as in [13].--It follows from the expression (1.7) for the matrix 
element of the interaction operator that in the given case (Cf. [13]) there are three non­
trivial one-vertex diagrams (Fig. 1 ). 

c D £ 

FIG. 1. 

The corresponding matrix elements have the form 

C. (kn, k1 1LnJik~) = 4n2D- 1e X i(k~-kn) V(ik~-knl)ik~~~-k,.-kJ' 

D. (kniLnii k~, k;) = 4n2D- 1e X i(k~- kn) V(ik~- knl) i(k~- "f;J) (}k, -k -k , 
. .. " J " 

E. (kn, kJILnJI k~, 'k;) = 4n2.Q-le X i(k~- kn)V(ik~- knl) i(kn- k;) (}k~+k;-k,.-kJ · 

In virtue of these relations as well as the representation (1.6), the topological indices of 
the vertices C, D, E are equal to 0,.1, 0, respectively, [18]. 

Consider characteristic times for the given model. As the two-dimensional turbulence 
is simulated, one can take the rates e and 'YJ in energy and 'entrophy cascades [15] as char­
acteristics of the stochastization processes. The combination of parameters "' c, 'fJ and e 

6* 
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yields a dimensionless complex r = c112'fJ-tf2s112• The values having the time dimension 
are represented in the forn1 

(1.9) Tm = etf2('>'2C'f})-1f2Fm. 

for m= -1 from Eq. (1.9) we have T; = ('>'c)- 1 and for m = 0, T,. = ('>'2c)- 112s112'fJ-tf2• 

The timeT; is the period of circulation of a pair of vortices at a mean distance c- 112 between 
then1 and naturally is identified with the characteristic time of interaction. The time T,. 
containing rates of cascade processes can be considered as the characteristic time of re­
laxation. The character of dependence T;, T,. on '>'and c was used for the choice of inter­
actions from Eq. (1.6) determining the convective transfer and relaxation. 

Let us consider all possible contributions to e(k, t) of the order ('>'cr('>'2c)m, n, m = 
= 0.1, .... The correspondi-ng diagram representation has the forn1 Fig. 2. Here the rectang­
les denote the infinite sums of all possible prolongations made up from the vertices of 
the type D and "pseudodiagonal" fragments [13] Fig. 3. 

p(k,t)-o<[] +l:aOc-O +2:~ 
FIG. 2. 

n 

~ 
j 
a 

j 

~ 
n b 

j j 

~ n n 
c 

FIG. 3. 

In the second and third groups of contributions the external sums are taken over all 
possible "head" diagrams. A direct summation of contributions (Fig. 2) by the methods 
[13, 16] leads to an equation reversible in the time which does not describe the relaxation 
process to the stationary state and contains diverging terms of the order O(t) at t-+ oo. 
The appearance of divergence is associated with an attempt to describe a strongly inter­
acting system by a succession of binary processes divided in time. The divergence can be 
suppressed if the collective character of the interaction of vortices is taken into account. 
This can be done by means of the renormalization of the Green's function (propagator) 
[14] for which a closed equation arises . thereat. 

Let us consider the following diagram representation of the renorn1alized propagator 
(Fig. 4). Here are considered the contributions of all possible . fragments connected in 
an arbitrary number, which are formed by introducing the elementary diagrams (Fig. 3a, b) 
between the vertices of the type D and C. 

-+-o-+ +··· 

FIG. 4. 
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The corresponding analytical expression of the operator series has the form 

00 

(1.10) G(k, t) = (2.n)- 1 fdze-izt_
1
-. ~ [C/J(k,z)-

1
-. ]"G(k,O}, G(k,O) =I, 

-zz L,; -zz 
11=0 

where I is the unity operator, and 
00 

C/J(k, z) = .2; ('- u)2 <m+ t)(kiL0 [R0 (z)L]2m R 0 (z)Lik). 

After differentiating Eq. (1.10) with respect to time with the use of the propagator re­
presentation (1.10) as well as the convolution theorem for the Laplace transformation, 
we have 

. 00 

(1.11) iJG~, t) = (2n)- 1 f dze-'"<P(k, z) _\z 2 [ <P(k, z) ~iz r · G(k, 0) 
n=O 

t 

= f dOZ(k, t-O)G(k, 0), 
0 

(1.12) Z(k, t) = (2n)- 1 f dze-iztcp(i(, z). 

With the help of the Resibois' factorization theorem [17] the operator series (1.12) 
can be represented in the form 

N 

Z(k, t) = 2 2 ( -u)2(k,ILul k,-1, l1 )G(k,- f, t)G(~, t) (k,-1,, ~IL11 i k,). 
i=l I 

As a result, when passing to the "thermodynamic" limit N-+ oo. Q-+ oo, NjQ-+ c 

we derive the equation for the renormalized propagator 
t 

(1.13) 
ac~, t) = -4n2 u 2 c .[ dOP(k, t-O)G(k:, o), 

0 

P(k, 0) = · f df[el(k-i[) V2(m)elk]G(k-l, O)G(T, 0). 

After similar transformations the corresponding equation of Fig. 2 for e{k, t) takes 
the form 

oe(k t) f - - - - - - - - - --af- = 4n2u2ce x dk1 i(k1 - k) V(ik- k1 1)i(2kt-k)e(kt, t)e(k-kt, t) 

t t 

-4n2 x 2 c J dOP(k, O)e(k, t-0)-4n2u2c J dO J ik1 P1(k, k1 , 0) 
0 0 

(1.14) x e(kb t-O)e(k-kt, t-O), 

P1(k, k1, O) = f die x IV(ili) (f-2l)G(f-I, O)G(i, O)e x (k-i}V(Ift -ITH2~ -f). 

Equations (1.13) and (1.14) are ofnon-Markovian character and yield a closed descrip­
tion of the vortex evolution at times t"' -r,. We shall assume lkl "' IT!, i.e. the character-
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istic dimension of the non uniformities and the effective length of their interaction are close 
what corresponds to the ideas of the phenomenological theory of turbulence. Assuming that 
G{k, t) = G(a:lklt) substitute into Eq. (1.13) G(J, 0) ~ G(k, 0), G(k-l, 0) ~I. 

Thereat Eq. (1.13) is transformed into the equation with the integral of the convolu­
tion type solving which with the help of Laplace transformation one can obtain 

G(k, t) = (a:(klt)- 111(2a:lklt), cx2 = 4n2" 2ca 2 , 
(1.15) 

a2 = J dlV2(ln) [1-cos2(k, l}]lll 2
, a2 > 0. 

J 1 (x) is a Bessel function of the first kind of the first order. Now one can pass on in a usual 
manner [16] to the Markovian form (1.4). Then the contribution of the product of propa­
gators with. regard to Eq. (1.15) is 

00 

(1.16) f dOG(k-l, O)G(l, 0) ~ (tXIn)- 1• 

0 

Returning to the initial variables with the help of the inverse Fourier transformation 

(1.17) J dke11 i e(k, t) = c- 1 [f(r, t)- c] = n(T, t). 

For the one-point distribution function of the vorticity in the plane case, we derive the 
equation 

of~; t) + u(r, t)Vf(r, t) = ("2c)1
'
2a 1 a- 1L1f(r, t)+ ("2c)1

'
2a-1 f dr1 n(rl, t) 

xB(r-r1): VVf(!, t)-("2c)1'2a-1n{!, t) f ar1BCr-r1): V1 V1ff!1, t), 

where B(r-r1) is the tensor of the second rank. 

B = exVIr-r11exVV(Ir-r11), 

U(f' t) = "ce X V f dr1 V(lr- r11)n(f1' t) 

is the average hydrodynarilic velocity induced by the locally . noncompensated vorticity, 
the colon is the symbol of the scalar product of tensors, a1 is determined analogously 
to a in Eq. (1.15) differing from it only by an additional multiplier ~~- 1 in the integrand. 

A substitution in a, a 1 of the generalized Fourier-image of the potential V(j/j) = 
= (2nl/l 2

)- 1 leads to divergent integrals. To eliminate these divergences one can make 
use of techniques of the theory of Coulomb plasma [13]. As the explicit expressions a, a1 

are not needed here, we shall assume them to be simply limited. 
Let us consider some qualitative properties of the equation derived. Obviously the 

l.h.s of Eq. (1.17) is the Helmholz operator for the vorticity field in the two-dimensional 
case. Since a, a 1 > 0, then the first term in the r .h.s. of Eq. (1.17) containing the La place 
operator determines the positive diffusion of the vo!!icity distribution. The quadratic 
form being formed by the components of the tensor B(r-r1) is 

(1.18) 
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where r = (xl' x2), e;k is the antisymmetric tensor (e12 = -e21 = 1; ell = e22 = 0) 
and the summation from 1 to 2 with respect to the repeated indices is implied. It is di­
rectly checked that the form (1.18) is nonnegative. While making use of the structure 
(1.18) and its non-negativity for continuous n(r, t), one can show that the first and second 
terms in the r.h.s of Eq. (1.17) determine the elliptic operator of the second order whose 
sign depends on the distribution f(f, t) and can be different at various points of the flow 
region. The sign of the latter term is determined by the loca.l value n(f, t). This means 
that Eq. ( 1.12) is capable of describing the local processes of destruction (positive diffusion) 
and appearance (negative diffusion) of large vortex structures. As known from [18], the 
latter effect is identified with the phenomenon of negative viscosity. 

Let us consider the production of information entropy 

(1.19) S( t) = - J dr f(r, t) In f(j, t) 

in the process of evolution. We shall assume that f(f, t) at lrl --+ oo decreases sufficiently 
fast together with the derivatives. Multiply Eq. (1.17) by - (1 + lnf(r, t)) and integrate 
over the whole space. After a series of transformations the equation of entropy balance 
is reduced to the form 

(1.20) ~~ = J drVU(r, t)f(r, t)+ (x 2c)112a1a- 1 J ar[f(r, t)]- 1 [VJ(r, t)] 2 

+·Hx2c)1
'
2a- 1 f f arar1 VV:Bfr-rt)[lnf(r, t)-lnf(r1, t)][f(r, t)-f(ft, t)l 

+(x2c)1
'
2a- 1 J J drdr1B(r-r1): VtfCrt, t)VtfCrb t)[f(r, t)]- 1n(r, t) 

+(x2c)1
'
2a- 1 J J drdr1 VV: B(r-rt)f(r1, t)n(r, t). 

In virtue of the fluid incompressibility V· il(r, t) = 0, the convective term makes 
a zero contribution to the entropy production. The positivity of the second term con­
tribution in the r.h.s. (1.20) is obvious. The third term is positively determined, too, as 

(1.21) 

and the following inequality holds: 

[1nf(r, t)-lnf(r1, t)][f(r, t)-f(r1, t)] ~ o. 
In virtue of the positive determinancy (1.18) and (1.21), the sign of the latter two inte­

grals in Eq. (1.20) depends only on the behaviour of the function n(f, t). Under the con­
dition that a total moment is equal to zero 

J drn(T, r) = 0, 

the estimates show that a negative contribution to these integrals will be collected mainly 
from the flow region periphery where the remaining parts of the integrands tend to zero 
sufficiently fast. Hence a complete contribution of these integrals to the entropy pro­
duction will be either nonnegative or, at least, close to zero with respect to the model. 
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Thus, in the process of evolutionf(r, t) satisfying Eq. (1.17) the entropy (1.19) increases 
monotonically, in the broad sense of the word. On the other hand, from convergence 
of the integral 

J dr f(r, t) < oo 

one can easily derive that the functional (1.13) is limited. This fact enables one to draw 
the conclusion that in the process of evolution the solution (1.17) tends to some stationary 
distribution. 

Analysis of the results of numerical experiments [4, 6] whose conditions are close to 
assumptions employed here shows that Eq. (1.17) reflects correctly the character of evolu­
tion of large systems of point vortices on the plane. In particular, it can be employed 
for estimating the dissipative properties of the algorithms of the type [8] as it is made 
when analyzing the properties of the difference schemes with the help of differential 
approximations [19]. 

2. 
The construction of a dynamic model of point vortices in the three-dimensional case 

entails great difficulties because of a more complex behaviour of the vortex fields in the 
spatial flows [11]. In particular it is displayed in the absence of the universal point carrier 
of vorticity in the three-dimensional case which is a straightline vortex filament for the 
plane case. 

In [9] and independently in [10] it has been proposed to describe the dynamics of 
a system of small vortices in the three-dimensional case in terms of the canonical variables 
conjugate with respect to the Hamiltonian 

N N N 

1I = 2 T(p,)+ 2 Vfr,) · p, + e 2 l/Ju, 
i=l i=l i<j (2.1) 

!/Ju = __ 1_[· PtPJ _ (p,·ru)(pJ·ru)] 
4n lrul 3 lrtJI 5 

• 

Here r1 are physical coordinates of vortices, p1 - their LAMB's [11] momenta, T(pi) is 
the energy of solitary vortices, V(r) is the velocity field of external potential flow, l/Jii is 
the energy of interaction of separate vortices interacting as dipoles with variable dipole 
momenta. 

N 

As follows from [1 0], ~ p[ is not an integral of the system (2.1) and the model sug-
1= 1 

gested contains an essential (in the three-dimensional case) effect of stretching the vortex 
filaments. It is known [11] that the energy of a solitary vortex and its velocity depend 
in a complex way on the topology of vortex filaments inside it. For simplicity we shall 
make use of the model representation of the form(~) 

(2.2) T(p) = Aipi 11k, 
The dependence (2.2) is obtained by approximating the numerical results [20] for the 
one-parametric family of vortices. The index k E [5/7, 2] depends monotonically on the 

(
1

) The results of this section were obtained by the authors jointly with V. B. Levinsky. 
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parameter. Thereat k = 5/7 corresponds to a spherical Hill's vortex and k = 2 to the 
limit of thin rings [11]. 

If we take the ratio of the characteristic dimension of vortices to the mean distance 
between them proportional to the ratio of the microscale of turbulence to its integral 
scale, then in Eq. (2.1) e ~ I and the methods of statistical systems with a weak inter­
action are applicable to the model. Here the one-point distribution function of vortices 
with respect to momenta and coordinates f(p, r, t) obeys the kinetic equation 

(2.3) z +\u+W+V)! -P( ;~ · :, ) (W+U) ~ J(f,f}. 

Here u = oT I op' V(r) is the velocity of external potential flow' 

wCr1, t) = J ar2 dP2 a;: 2 !CfJ2, r2, t) 

is the velocity induced at the point . by distribution of vortices. 

a J - [pxu.2H/J. xu12l 2 ( a a ) _ _ (2.4) J(f,J) = -;)- dpl 8 b4j /
2

!7 lut2c5rs-U12,rU12,s] _;) ___ ;) f(p)f(Pt) 
upr n 0 u ups up1 ,r 

is the collision integral in the Landau's form [21], summation is implied with respect to 
repeated indices. 

Let us outline the relationship between the moment equations which can be derived 
from Eq. (2.3) and the Reynolds equations for the averaged values of the phenomeno­
logical theory of turbulence. Within the framework of 10-moment approximation let us 
approximate the distribution function as 

(2 5) ji( - - ) ( T(p) ) [ r; ) - - = --] . p, r, t = exp - (T) a0 ,r, t +a1 • u+a2 • uu , 

where the exponential factor reduces to zero the integral of collisions (2.4), angular 
brackets mean averaging with respect to fCp, r, t). 

Coefficients in Eq. (2.5) can be expressed by the following averaged values: 

n(r, t) = f dP!CfJ, r, t), <IJ> = n- 1 f dppf(p, r, t), 

<u> = n- 1 f d/Juf(p, r, t), (fl> = n- 1 f d/Ju"PfCfJ, r, t). 

For the components (p) and (P) the following system of equations is obtained: 

on(p1) o ~ o( U1) 
ot + ox

1 
[n((P11)+(U1)(pi))]+n(p1)----ax,- = 0, 

(2.6) ~n(Pu) (U) on(Pu) 3k+l {€5 _a_(P)( ) _ a_ (P)( ) 
Ot + k OXk + 5k t) OXk . Uk + OXt UJ 

+~(P)(u·)}+_!!_(<P) o(Uk) +(P) o(Uk)) + n(Pu) = O, 
ox) ' 2k )k ox, tk OX) T 

(fi> = <w + V). 

The latter term in the second equation (2.6) is obtained by integrating the integral of 
collisions. 

http://rcin.org.pl



630 Yu. N. GRIGORYEV AND N. N. YANENKO 

Assuming formally T to be a small_ parameter in the first approximation from the 
equation for (PiJ), one can derive 

<p > = __ 1 (P) ( o(U1) o(U1)) 
(2.7) ij 2k T OXJ + OXt • 

If we determine the averaged vorticity as 

(Q) = rot(U) = rotw = rotn(p), 

then from the last relations it is seen that the performation of the operation rot from the 
first equation (2.6) and the substitution into it Eq. (2.7), lead to the equation for (Q) 
in the simplest approximation of the scalar turbulent viscosity. 

Let us show that in the framework of the present model the Kolmagorov-Richardson's 
cascade is possible. As we are dealing with the point model, it is necessary to obtain the 
relationship between the momentum and the dimension of vortices. From the invariant­
ness of equations of motion with the Hamiltonian (2.1) with respect to stretching of the 
impulse space, we have 

(2.8) 
3 

p "' r2-fJ' {3 = 1/k. 

It is seen that in the limiting cases of thin rings and Hill's vortex (2.8), the requested de­
pendence is exactly reproduced. 

In virtue of the physical content of the model, the cascade process arises here not 
on the basis of splitting up the vortices (three-wave processes [22]) but by their stretching 
in the process of a pair (four-wave) interaction. 

In [23] a stationary solution of kinetic equations with four-wave interactions has been 
constructed, 

(2.9) 
1 

s = -- (3d+m), 
2 

which corresponds to a constant energy flow through the momentum space; here d is the 
dimension of the momentum space, m is the index of homogeneity bf the scattering func­
tion U(p 1 , P2, p 3 , p 4 ) in the collision integral. 

Writing down for the scattering function the identity of the form 

f daU12 = f ap3 dp4U(pt,P2,p3,p4)b(pt +.P2-p3-p4)b[T(pt)+ T(p2)-TCp3)- T(p4)] 

and fulfilling the scale transformation Pt ~ APt with regard to Eq. (2.8), we obtain in 
our case 

(2.10) m = -8/3+4/3{3, 
1 

s = -~ (19+4{3). 

By using Eq. (2.9) and (2.10) and passing on to the wave vectors we can write down the 
expression for the energy spectrum 

E(k) - T(k)f(k)p2 (k) I ~f 1- k- 2<2~~)' k ~ lkl' 

then it follows that E(k) "' k-: 513 at {30 = 11/10, {30 E [I /2, 7 /5]. It has been shown that 
at {J = {30 the integral of collisions is converged to the solution (2.9)-(2.10). 
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The authors hope that further studies of the models considered in the paper by the 
methods of nonequilibrium statistical mechanics will enable one to derive new structural 
relations for the processes of the turbulent transfer. The model of vortices with dipole 
interaction can also be useful when generalizing for the three-dimensional case the non­
grid algorithms of the type [8]. 
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