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Boundary layer - free stream interactions in horizontal and sloping 
open-channels 

H. I. ANDERSSON (TRONDHEIM) 

Tors PAPER treats the open-channel flow problem as a boundary layer-free stream interaction 
problem, in analogy to viscous-inviscid interactions in gas dynamics. Convergent numerical 
results are obtained by an iterative solution procedure which alternately solves the boundary 
layer problem and the free stream equation. In a horizontal channel, the boundary layer is 
found to accelerate the external flow in the subcritical case. In the supercritical case the external 
flow is, on the other hand, retarded. A particularly strong interaction is observed for initial 
Froude numbers close to unity. In a downward sloping channel the interaction effects are found 
to oppose the effect of the sloping channel bed. 

Przeplywy w kanalach otwartych potraktowano jako problemy oddzialywania warstwy przy­
sciennej ze strug~ swobodn~. analogicznie do oddzialywania plyn6w lepkich i nielepkich w gazo­
dynamice. Otrzymano zbiezne rezultaty za pom~ procedury iteracyjnej rozwi~zuj~cej na­
przemian zagadnienie warstwy przysciennej i r6wnanie strumienia swobodnego. W k~nale 
poziomym stwierdzono, ze warstwa przy5cienna przyspiesza przeplyw zewncttrzny w przypadku 
podkrytycznym. W przypadku nadkrytycznym przeplyw jest spowolniony. Szczeg6lnie silne 
oddzialywanie wystctpuje dla wstctpnych wartoSci liczb Froude'a bliskich jednoSci. W kanalach 
pochylonych stwierdzono, ze efekty oddziatywania przeciwstawiaj~ sict efektom nachylenia dna 
kanalu. 

Tel.JeHHH B oTI<pbiTbiX Kaua.nax Tpa~TCH KaK npo6neMbi B3aHMo~eHCTBIDI norpaHHtiHoro 
CJIOH CO CB060J,UibiM llOTOKOM, aHa.JIOrHl.JHO B3aHMo~eHCTBHIO BH3KHX H HeBH3KHX >KH~OCTeH 
B ra3o~aMHKe. lloJiy'lleHbl CXOJ,Uible pe3yJihTaTbl npH llOMOII.lH HTepa~HOHHOH npo~e~pbi, 
pemaiOII.leH: nonepeMeHHo 3aAaqy norpaHHtiHoro CJIOH H ypaBHeHHe cBo6oJ,Uioro noToKa. 
B ropH30HTa.JibHOM KaHa.ne KOHCTaTHpoBauo, l.JTO norpaHH'llHbiH cnoH: ycKopHeT BHeiiiHee Te­
l.JeHHe B ~oKpHTHl.JeCKOM cnyqae. B CBepXKpHrn'lleCKOM cny1.1ae Te'lleHHe 3aMeMHeTCH. Oco-
6eHHo CHJibHOe B3aHMO~eHCTBHe BblcrynaeT ~ BcrynHTeJibHbiX 3Ha1.JeHHH t:JHCeJI <l>py~a 
6JIH3KHX e~HHH~bi. B HaKJioHeHHbiX KaHa.nax KOHCTaTHpoBauo, l.JTO 3<P<PeKTbi B3aHMo~eH:crBHH 
npornBonocraBJIHIOTCH 3<P<PeKTaM HaKJIOHa J,Uia KaHa.na. 

1. Introduction 

VIscous-INVISCID interactions are well-known phenomena in supersonic gasdynamics and 
have been extensively studied in the past, e.g. [1-3]. It is well known that the external 
flow cannot be predicted a priori as a known datum for calculation of the bQundary layer 
problem. The boundary layer flow and the outer inviscid freestream must be treated 
simultaneousely. CEBECI and BRADSHAW [4] proposed an iterative procedure for viscous­
inviscid interactions in gasdynamics, and IN'QUE [3] has applied a similar scheme to in­
compressible boundary laye~ flows with separation and reattachment. 

Recently AN'DERSSON and YTREHus [5] suggested that boundary layer-free stream 
interactions in open-channel flow, which is the hydraulic analogy to viscous-inviscid 
interactions in gasdynamics, could also be treated by this iterative procedure. Convergent 

http://rcin.org.pl



546 H. I. ANDERSSON 

numerical results were obtained for horizontal open-channel :flow, and the results were 
compared favourably with the approximate calculations of subcritical :flow by BIN'NIE [6]. 

In the present paper we first consider the effect of boundary layer-free stream inter­
actions in a horizontal channel for initial Froude numbers in the range ' 0.2-10.0. Next, 
the iterative scheme is applied to subcritical and supercritical :flows in a sloping open­
channel. 

2. Physical model 

We consider the hydraulic :flow entering a sloping open channel with velocity Uo over 
the initial depth h0 , as indicated in Fig; 1. It is assumed that only negligible tangential 
forces are transmitted across the constant-pressure free-surface boundary between the 
:flow and the ambient at~osphei"e. The channel .is sufficiently wide for the motion to be 
considered two-dimension'al. The fluid is incompressible and has constaQ.t kinematic 
viscosity v. Only the steady case of laminar :flow is considered. 

FIG. 1. Sketch of open-channel flow. 

·The classical boundary layer concept due to PRANDTL [7] is assumed; i.e. the flow 
is inviscid except in a thin layer adjacent to the channel bed through which it adapts to 
the viscous no-slip boundary condition. External to the viscous boundary layer, the :flow 
is assumed quasi-one-dimensional. 

3. Boundary layer problem 

The boundary layer equations for continuity and momentum of two-dimensional 
steady, incompressible laminar flow can be written as [8] 

(3.1) 

~+~=0, ax ay 
ou ou dU o2u 

uax+'Vay-= U-dx ~v oy2' 

u(x, 0) = 'V(X, 0) = 0, 

u(x, c5) = U(x), 

where U(x) is the velocity in the nonvis~ous part of the flow as obtained from the Ber­
noulli's theorem along the free surface, and c5(x) is the boundary layer thickness. 

http://rcin.org.pl



BoUNDARY LAYER- FREE STREAM INTERACI'IONS IN HORIZONTAL AND SLOPING OPEN-cHANNELS 547 

4. Free stream equation 

Since at the free surface the pressur~ is constant and equal to the atmospheric pressure, 
the Bernoulli theorem reads 

(4.1) U~f'ig+h0 cosC~. = U2(x)j2g+h(x)cosC~.-x · sinC~. 

which demonstrates the conservation of the total energy head. Equation (4.1) can be 
combined with the continuity equation 

to give 

(4.2) 

U 0 h0 = U(x)[h(x)-<5*(x)] 

1 +2F0
2 = U2(x)+hFo 2[~*(x)-xtgC~.]+2Fo 2 ii- 1 (x), 

h(x)- c5'*(x) = U(x)- 1 , 

where <5*(x) is the boundary layer displacement thickness 
d(x) 

~·(x) = J { 1- "~(~))ay 
0 

and 

h(x) = h(x)jh0 , J•(x) = <5*(x)fho, 

(4.3) U(x) = U(x)/U0 , x = xfho, 

Fo = UolVKhocosCI. 

are dimensionless Quantities. Fn bein~ the initial Froude number. 

5. Solution of the interaction problem 

The coupling between the boundary layer characteristic <5* and the free stream velocity 
U(x) which is expressed through Eq. (4.2)1 above, clearly demonstrates that the resulting 
flow problem must be treated as an interaction problem between viscous and inviscid 
domains in the flow field. The iterative scheme proposed by CEBECI and BRADSHAW [4], 
~hapt. 11.2, is: 

l. calculate the inviscid flow, neglecting or crudely approximating the displacement 
effect from the boundary layer, 

2. use the external velocity distribution to solve the boundary layer problem, Eqs. (3.1), 
3. add <5*, obtained from step 2, to the bottom shape to form a new displaced surface 

I 

and recalculate the inviscid . flow problem, Eqs. (4.2), 
4. repeat steps 2 and 3 until the results converge. 
A standard FORTRAN routine for algebraic equations identified the roots of the free­

stream equation (step I and 3). The boundary layer problem (step 2) was solved numeri­
cally by a finite-difference method using the Keller Box scheme; KELLER [9]. A detailed 
account of the numerical method is given by CEBECI and BRADSHAW [4], chapts. 7-8. 

The numerical calculations wer~ carried out using 75 x 26 grid points, with nonuniform 
mesh spacing in the y-direction. The iterating process was 'stopped when the maximum 
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relative changes in h, U and <5* became less than 1 o- 3
, and the desired accuracy was 

reached after 2-10 global iterations, depending o~ the initial Froude number. The com­
puter time required for one global iteration (step 2 and 3) on UNIVAC 1100/60 was about 
10 s cpu. 

6. Numerical results and discussion 

6.1. Horizontal channels 

In the horizontal case, the initial Reynolds number Re0 = U0 h0 /v is conveniently 
absorbed in the x-coordinate by the transformation 

:::. , _/R x 1 
X= x e 0 = ---

h0 Re0 

and thus no explicit Re0-dependence occurs in the results displayed in Figs. 2-5. 
Figure 2 shows the calculated variation of the dimensionless freestream velocity U(x) 

for initial Froude numbers in the range 0.1-10. The corresponding variation of the di­
mensionless flow depth h(x) is shown in Fig. 3. In the case of subcritical inflow conditions, 
the freestream is accelerated and the flow depth reduced in the streamwise direction. 
In the supercritical case, however, the inviscid part of the flow is retarded and the free 
surface is elevated in the downstream direction. The deviation from classical flat plate 
results, U(x) = 1 and h(x) = 1, increases as F0 approaches 1. The enhancement of the 
interaction effects close to critical inflow conditions is analogous to the significant viscous­
inviscid interaction effects in transonic gas dynamics. 

Figure 4 shows the variation of the derivatives dUji?x and iiz;ii: with F0 • It is observed 
that the results for F0 = 10 are close to the analytically derived asymptotic limits 

dUfdi ~ o, dhfdi ~ I/2·1.7208 · ~-tt2 

as F0 tends to infinity. 
When Eq. (3.1h was derived from the Navier-Stokes equations, the diffusion term 

vo 2u/ ox2 was neglected under the assumption that this term is small compared with the 
remaining terms. In order to examine the validity of this assumption in the present case, 
the ratio of the neglected term vo 2ufox2 to the driving term U · dUfdx is plotted in Fig. 5 
as a function of y. We observe that the magnitude of this ratio is less than 0.03 through­
out the boundary layer for Re0 = 1000. Since this ratio is proportional to Re0 2 , the 
assumption that the term vo2ufox2 is negligible is justified for Re0 ;(; 103

• 

6.2. Sloping channels 

Calculations were also carried out for subcritical and supercritical flows in a sloping 
channel, with the angle of inclination oc = 1.0°. The numerical results for flows with an 
initial Reynolds number Re0 = 103 are shown in Figs. 6 and 7. Results without inter­
action, i.e. b* = 0 in Eqs. (4.2), are also shown for comparison. 
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FIG. 2. Free stream velocity for different 
values of F0 • Horizontal channel. 
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FIG. 3. Flow depth for different values 
of F0 • Horizontal channel. 
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FIG. 4. Variation of dh/dx and 
dU/dxwith F0 • Hotrizontal channel. 
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FIG. 6. Subcritica1 flow in a sloping channel. 
The lines denote results without interaction. 
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FIG. 7. Supercritical flow in a sloping chanpeL 
The lines denote results without interaction. 

oc = 1.0° and Re0 = 103
• 

http://rcin.org.pl



552 H. I. ANDERSSON 

The solid lines in Fig. 6 show that in the case of subcritical inflow (F0 = 0.25) the free 
stream is retarded and the flow depth increased in the streamwise direction when boundary 
layer-free stream interactions are neglected. As the interactions are taken into considera­
tion, however, the increase in the flow depth is slightly reduced, -and the free stream is 
acCelerated in the region xfh0 .$ 2.5. 

Figure 7 shows that the flow depth decreases and the surface velocity increases down­
stream in the supercritical case if the displacement effect is neglected. The circles show 

. that h is increased and U is reduced owing to the interaction effect. 

7. Conclusions 

The present formulation of free-surface channel flow leads to qualitative different flow 
behaviour in the subcritical and supercritical flow regime. The initial Froude num~er 
U0 f(gh0 coscx.) 112

, the initial Reynolds number U0 h0 fv and the angle of inclination ex. are 
the fundamental parameters of the problem. Particulary strong interaction effects are 

. observed for initial Froude numbers close to unity. In the case of a downward sloping 
channel the interaction effects are found to oppose the effect of the sloping channel bed. 
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