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Boundary layer — free stream interactions in horizontal and sloping
open-channels

H.I. ANDERSSON (TRONDHEIM)

THis PAPER treats the open-channel flow problem as a boundary layer-free stream interaction
problem, in analogy to viscous-inviscid interactions in gas dynamics. Convergent numerical
results are obtained by an iterative solution procedure which alternately solves the boundary
layer problem and the free stream equation. In a horizontal channel, the boundary layer is
found to accelerate the external flow in the subcritical case. In the supercritical case the external
flow is, on the other hand, retarded. A particularly strong interaction is observed for initial
Froude numbers close to unity. In a downward sloping channel the interaction effects are found
to oppose the effect of the sloping channel bed.

Przeplywy w kanalach otwartych potraktowano jako problemy oddzialywania warstwy przy-
Sciennej ze struga swobodna, analogicznie do oddziatywania ptynéw lepkich i nielepkich w gazo-
dynamice. Otrzymano zbiezne rezultaty za pomoca procedury iteracyjnej rozwiazujgcej na-
przemian zagadnienie warstwy przy$ciennej i rownanie strumienia swobodnego. W kanale
poziomym stwierdzono, ze warstwa przyécienna przyspiesza przeplyw zewnetrzny w przypadku
podkrytycznym. W przypadku nadkrytycznym przeplyw jest spowolniony. Szczegélnie silne
oddzialywanie wystepuje dla wstgpnych wartosci liczb Froude’a bliskich jednosci. W kanatach
pochylonych stwierdzono, ze efekty oddzialywania przeciwstawiajq sie¢ efektom nachylenia dna
kanatu.

Teuenuss B OTKPBITHIX KaHANAX TPAaKTYIOTCA KaK NMpobiieMbl B3aHMMOAEHCTBHA MOTPAHHUHOIO
CJI0A €O CBODOIHBIM TTOTOKOM, aHAJIOTHYHO B3aHMOMEHCTBHIO BASKHX M HEBA3IKHX MHIKOCTeil
B rasoguHamuie. [TonyueHs! cxofHble pe3ysbTaThl NPH TIOMOLIH MTEPAaLHOHHOH MpOUERYpHI,
P’EUJ.&IOU.IC“ NOMNEpEMEHHO 3aJavy IIOrpaHHYHOrO CJI0oA H YPaBHEHHE CBOGD,IU-IOI‘O MIOTOKA.
B ropusoHTanbHOM KaHajle KOHCTATHPOBAHO, YTO NOrPAaHWYHBIN CJIOH YCKOPAET BHELIHEE Te-
yeHHe B JOKPUTHYECKOM ciyuae. B cBepXkpuTHueckoM ciyuae TeueHue samennserca. Oco-
GeHHO CHIBHOE B3aUMOJENCTBHE BBICTYIIACT IS BCTYNMHTENBHBLIX 3HaueHMit uyucen <Ppyna
6M3KUX eMHALBI. B HAKJIOHEHHBIX KaHaJIaX KOHCTATHPOBAHO, UTO 3ddeKTh! B3aumMoaeicTBHA
npotuBonocrasiasaoTca addexTaMm HakIOHA OHA KaHana.

1. Introduction

Viscous-INVISCID interactions are well-known phenomena in supersonic gasdynamics and
have been extensively studied in the past, e.g. [1-3]. It is well known that the external
flow cannot be predicted a priori as a known datum for calculation of the bqundary layer
problem. The boundary layer flow and the outer inviscid freestream must be treated
simultaneousely. CEBECI and BRADSHAW [4] proposed an iterative procedure for viscous-
inviscid interactions in gasdynamics, and INOUE [3] has applied a similar scheme to in-
compressible boundary layer flows with separation and reattachment.

Recently ANDERsSON and YTREHUS [S] suggested that boundary layer-free stream
interactions in open-channel flow, which is the hydraulic analogy to viscous-inviscid
interactions in gasdynamics, could also be treated by this iterative procedure. Convergent
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numerical results were obtained for horizontal open-channel flow, and the results were
compared favourably with the approximate calculations of subcritical flow by BINNIE [6].

In the present paper we first consider the effect of boundary layer-free stream inter-
actions in a horizontal channel for initial Froude numbers in the range 0.2-10.0. Next,
the iterative scheme is applied to subcritical and supercritical flows in a sloping open-
channel.

2. Physical model

We consider the hydraulic flow entering a sloping open channel with velocity U, over
the initial depth Ao, as indicated in Fig. 1. It is assumed that only negligible tangential
forces are transmitted across the constant-pressure free-surface boundary between the
flow and the ambient atmosphere. The channel is sufficiently wide for the motion to be
considered two-dimensional. The fluid is incompressible and has constant kinematic
viscosity ». Only the steady case of laminar flow is considered.

Fic. 1. Sketch of open-channel flow.

The classical boundary layer concept due to PRANDTL [7] is assumed; i.e. the flow
is inviscid except in a thin layer adjacent to the channel bed through which it adapts to
the viscous no-slip boundary condition. External to the viscous boundary layer, the flow
is assumed quasi-one-dimensional.

3. Boundary layer problem

The boundary layer equations for continuity and momentum of two-dimensional
steady, incompressible laminar flow can be written as [8]

L LS
ox oy
ou du dUu u
gy tog = U v

(3.1)
u(x,0) = v(x,0) = 0,

“(xa a) - U(x)s
where U(x) is the velocity in the nonviscous part of the flow as obtained from the Ber-
noulli’s theorem along the free surface, and d(x) is the boundary layer thickness.
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4. Free stream equation

Since at the free surface the pressure is constant and equal to the atmospheric pressure,
the Bernoulli theorem reads

4.1) UZ/2g+hocosa = U*(x)/2g+h(x)cosa—x * sine

which demonstrates the conservation of the total energy head. Equation (4.1) can be
combined with the continuity equation

Uoho = U(x)[h(x)— 6*(x)]
to give

“2) 1+2F52 = U*(x)+hF32[8*(x)—%tga]+2F520~1(x),

h(x)—8*(x) = U(x)™,

where 6*(x) is the boundary layer displacement thickness
&) )
ey = [ (1=

i ‘J (1 U) )"y

h(x) = h(x)/ho,  8*(x) = 6*(x)/ho,
(4.3) U(x) = Ux)/Uy, X = x/ho,
Fo = Uy/Y ghocosa

are dimensionless quantities, F, being the initial Froude number.

and

5. Solution of the interaction problem

The coupling between the boundary layer characteristic §* and the free stream velocity
U(x) which is expressed through Eq. (4.2); above, clearly demonstrates that the resulting
flow problem must be treated as an interaction problem between viscous and inviscid
domains in the flow field. The iterative scheme proposed by CEBECI and BRADSHAW [4],
chapt. 11.2, is:

1. calculate the inviscid flow, neglecting or crudely approximating the displacement
effect from the boundary layer,

2. use the external velocity distribution to solve the boundary layer problem, Egs. (3.1),

3. add 4%, obtained from step 2, to the bottom shape to form a new displaced surface
and recalculate the inviscid flow problem, Egs. (4.2),

4. repeat steps 2 and 3 until the results converge.

A standard FORTRAN routine for algebraic equations identified the roots of the free-
stream equation (step 1 and 3). The boundary layer problem (step 2) was solved numeri-
cally by a finite-difference method using the Keller Box scheme; KELLER [9]. A detailed
account of the numerical method is given by CeBeci and BRADSHAW [4], chapts. 7-8.

The numerical calculations were carried out using 75 x 26 grid points, with nonuniform
mesh spacing in the y-direction. The iterating process was stopped when the maximum
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relative changes in A, U and 6* became less than 10~3, and the desired accuracy was
reached after 2-10 global iterations, depending on the initial Froude number. The com-
puter time required for one global iteration (step 2 and 3) on UNIVAC 1100/60 was about
10 s cpu. '

6. Numerical results and discussion

6.1. Horizontal channels

In the horizontal case, the initial Reynolds number Re, = Uyh,yfr is conveniently
absorbed in the x-coordinate by the transformation

k.
ho Reo

and thus no explicit Re,-dependence occurs in the results displayed in Figs. 2-5.

Figure 2 shows the calculated variation of the dimensionless freestream velocity [}(x)
for initial Froude numbers in the range 0.1-10. The corresponding variation of the di-
mensionless flow depth };(x) is shown in Fig. 3. In the case of subcritical inflow conditions,
the freestream is accelerated and the flow depth reduced in the streamwise direction.
In the supercritical case, however, the inviscid part of the flow is retarded and the free
surface is elevated in the downstream direction. The deviation from classical flat plate
results, U(x) = 1 and h(x) = 1, increases as F, approaches 1. The enhancement of the
interaction effects close to critical inflow conditions is analogous to the significant viscous-
inviscid interaction effects in transonic gas dynamics.

Figure 4 shows the variation of the derivatives dU/dx and dh/d% with F,. It is observed
that the results for F, = 10 are close to the analytically derived asymptotic limits

=

= i/Reo —

dU/d% - 0, dhj/dx — 1/2-1.7208- %~/
as F, tends to infinity.

When Eq. (3.1); was derived from the Navier-Stokes equations, the diffusion term
v0%u/0x* was neglected under the assumption that this term is small compared with the
remaining terms. In order to examine the validity of this assumption in the present case,
the ratio of the neglected term »3%u/dx? to the driving term U - dU/dx is plotted in Fig. 5
as a function of y. We observe that the magnitude of this ratio is less than 0.03 through-
out the boundary layer for Re, = 1000. Since this ratio is proportional to Reg?2, the
assumption that the term »9%u/dx? is negligible is justified for Re, 2 103.

6.2. Sloping channels

Calculations were also carried out for subcritical and supercritical flows in a sloping
channel, with the angle of inclination & = 1.0°. The numerical results for flows with an
initial Reynolds number Re, = 10® are shown in Figs. 6 and 7. Results without inter-
action, i.¢. 6* = 0 in Egs. (4.2), are also shown for comparison.
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The solid lines in Fig. 6 show that in the case of subcritical inflow (F, = 0.25) the free
stream is retarded and the flow depth increased in the streamwise direction when boundary
layer-free stream interactions are neglected. As the interactions are taken into considera-
tion, however, the increase in the flow depth is slightly reduced, and the free stream is
accelerated in the region x/h, < 2.5.

Figure 7 shows that the flow depth decreases and the surface velocity increases down-
stream in the supercritical case if the displacement effect is neglected. The circles show
that 4 is increased and U is reduced owing to the interaction effect.

7. Conclusions

The present formulation of free-surface channel flow leads to qualitative different flow
behaviour in the subcritical and supercritical flow regime. The initial Froude number
U,/(ghocosa)'/?, the initial Reynolds number Uyho/v and the angle of inclination « are
the fundamental parameters of the problem. Particulary strong interaction effects are
observed for initial Froude numbers close to unity. In the case of a downward sloping
channel the interaction effects are found to oppose the effect of the sloping channel bed.
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