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Preface

This issue of the Archives of Mechanics contains a selection of papers pre-
sented at the 34" Solid Mechanics Conference, 2-7 September, 2002
(Zasopane, Poland).

Following a long tradition going back to the first Polish Solid Mechanies
Corference in 1953, the objective of the 34" Conference SolMech (like many
previous ones — being an international conference) was to bring together re-
searchers engaged in all major areas of contemporary mechanics of solids and
structures. The program of the Conference included 8 invited plenary (keynote)
lectures (40 min), several invited sectional lectures (30 min), and contributed
presentations (20 min) in thematic sessions.

The main subjects included into the program of the Conference were the
following;:

o Mechanics and Thermodynamics of Solids with Microstructure

» Inelastic Response of Materials and Structures

o Geomechanics

o Structural Mechanics, Sensitivity and Optimization

¢ Instability and Localization Phenomena

o Fracture Mechanics, Damage, Fatigue

* Dynamics of Solids and Structures

o Composites, Porous Media

¢ Biomechanics

¢ Stochastic Methods

o Computational Methods

+ Experimental Methods

The Editorial Board of the Archives of Mechanics kindly offered a possibility
of publishing a special Conference issue of the journal to commemorate the 34"
Solidl Mechanics Conference and at the same time, to allow some papers pre-
senfed (and not published yet) a quick editorial processing. On behalf of the
Scientific and Organizing Committees of the Conference, I express our grateful
ackrowledgment to the Editorial Board. Also, I wish to thank the authors who
have contributed to this special Conference issue.

Waraw, November 18, 2003
Kazimierz Sobczyk

Chairman of the 34" Solid Mechanics Conference
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Numerical simulation of atomic positions in quantum dot
by means of molecular statics

P. DLUZEWSKI, P. TRACZYKOWSKI

Institute of Fundamental Technological Research, PAS
Swietokrzyska 21, 00-049 Warsaw
e-mail:pdluzew@ippt. gov.pl
e-mail:ptracz@ippt.gov.pl

DEFORMATION OF A CRYSTAL structure is considered here in terms of constitutive
modelling based upon both the atomistic and continuum approaches. Atomistic cal-
culations are made by using the Stillinger—Weber potential for the GaAs and CdTe
structures. The stress-strain behaviour of the best-known anisotropic hyperelastic
models are compared with the behaviour of the atomistic one in the uniaxial defor-
mation test.

Key words: molecular simulations, stress analysis, nonlinear elasticity, molecular
potential, Stillinger—Weber potential, finite element analysis.

1. Introduction

RECENTLY MANY MOLECULAR models of crystal behaviour have been used in
modelling of the crystal lattice deformation. Many constitutive models based
on the continuum thermodynamics are also available. Hence the question arises
about the relation between the nonlinear behaviour of these two types of mod-
els. For instance, it is well known that the stress-strain behaviour of nonlinear
continuum elastic models depends very heavily on the strain measure applied,
[1, 4]. Namely, the linear stress-strain constitutive relation rewritten for the stress
conjugate to the Almansi strain makes the extension softer than compression,
while the analogical linear stress-strain constitutive relation for the second Piola-
Kirchhoff stress conjugate by work with the Green strain measure makes the
extension harder than compression. It is easy to show on the third order elas-
tic constants obtained by reducing these nonlinear constitutive equation to the
common strain measures, e.g. to the logarithmic strain [4].

Atomistic modelling of crystal deformation can be divided into the computa-
tional methods based upon the fundamental and empirical potentials. The fun-
damental potentials are based upon the quantum theory and Schrodinger wave
equation, while the empirical potentials predict the dependence of strain energy
directly on the basis of atomic positions. It can be shown that the quasi-classical
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treatment of atomic interaction in terms of interatomic potentials and the classi-
cal momentum equation are consistent in certain limits with the solution of the
Schrodinger wave equation [8, 3]. The analogy results from the decomposition
of the analytical solution into the time-dependent and time-independent parts.
The time-independent wave function corresponds to the spatial arrangement of
particles. Generally, the empirical potentials can be divided into two and more
modern many-body potentials. In the simple pair potentials (like the Morse,
Lennard-Jones, Madelung ones) only the direct interaction of two atoms is con-
sidered and added up for a certain sphere with the radius of about four atoms.
In the multi-atom potentials not only two-atoms but also the influence of the
neighbouring atoms is taken into account; for example, in the Stillinger-Weber
potentials applied here noncentral atomic interactions are taken into account by
adding three-atoms interaction terms.

Continuum models of elastic behaviour of crystal lattice can be divided gener-
ally into the linear models based on the linear theory of elasticity, and nonlinear
constitutive models where the differentiation of displacement field over the cur-
rent and initial configurations are distinguished. In the linear theory, by writing
Eij = %(Vﬂg + V;u;) we do not specify precisely over which configuration the
differentiation is made, i.e. over the current or the initial configuration. Gener-
ally, we assume then that it does not matter because the configuration changes
are very small. In the nonlinear theory, before the displacement gradient is writ-
ten, we have to answer precisely over which configuration the differentiation is
done.

Anisotropic hyperelastic models compose a very narrow group among numer-
ous continuum models describing elastic behaviour of materials. Let us empha-
size that the most familiar anisotropic hyperelastic models, like the St.-Venant-
Kirchhoff and Biot models, change heavily their instantaneous stiffness under
large strains. Moreover, the stiffness evolution often differs significantly from the
behaviour of real materials. Neglecting an anomalous behaviour we can expect
that with respect to molecular effects the instantaneous stiffness of crystalline
solids increases under compression and decreases under tension. This nonlin-
ear elastic effect is responsible for many phenomena observed experimentally.
For instance due to the different stress-strain response of the extension and com-
pression regions, a single edge dislocation causes the volume expansion of crystal
lattice [6, 11]). The asymmetry in the stress-strain response appears also in the
form of negative values of third-order elastic constants measured experimentally
for many real crystal structures [13, 15, 16]. Thus, applying elastic constitutive
models which behave just conversely (St.-Venant-Kirchhoff, Biot) to the real
material, can be the cause of many undesirable effects such as improper propor-
tion between stress values and sizes of extension and compression regions around
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a single edge dislocation which causes positive or negative volume expansion in-
duced by edge dislocations in elastic continuum. Therefore, the use of new elastic
and elastic-plastic constitutive models, whose behaviour could be more adapted
to the nonlinear behaviour of real crystal structures, is desired.

2. Nonlinear continuum elasticity

According to the polar decomposition theorem, the deformation gradient F
can be decomposed into the rotation tensor R and the left or right stretch tensor,
U or V, respectively, F = RU = VR.

DEFINITION 1. By general Lagrangian and Eulerian strain tensors we mean
two tensor functions

@21 L Af(w) u ey and ed fl) viow,

where u;, w;, vi, v denote respectively i-th eigenvalues and eigenvectors of the right
and left stretch tensors, while f(z) : RY > 2 — f € R denotes an arbitrar-
ily chosen C! monotonically increasing function which satisfies the conditions
df (z)

Z)|z=1 =0 and = L.
f( )|I ! dzr lz=1

This definition includes the well-known family of strain measures noted first
in [10]

(22) ©= %(Um ~1) and £=—(V™—1),

1
m
and many others. It can be proved that to balance the energy for an arbitrar-
ily chosen deformation process, the Cauchy stress has to be governed by the
following equation:

0y

5.3 =R(A:p—= |RT ~1
(2.3) o (A p@e) detF ™7,

where the fourth-order tensor A decomposed in the vector basis {uk} consisting
of the eigenvectors of right stretch tensor is represented by the following non-
vanishing components:

= P (5” mf"(u,) for Uy = uy,
2.4 A Sy SR
(24) = A un J[f(2|) 2f(UJ)] il e g

Up =y
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- d . .
where p = pdetF, f'(u)) = —f(z(—iﬁ , [4]. Let us consider the hyperelastic
3
material governed by the following constitutive equation stated for the specific

strain energy

| P
2.5 Y= —E:C:E

(25) b= 5

where € is the fourth-order tensor of elastic stiffness. Substitution into (2.3) leads
to

(2.6) c=R(A:¢:)RTdet F .

This constitutive model based on the generalized strain measure takes into ac-
count the most of the well-known anisotropic elastic models. Obviously, the mod-
els which do not satisfy the energy conservation law, like hypoelastic models, are
out of our consideration.

3. Interatomic potentials

Recently a wide group of interatomic potentials are used in the computation
materials science. Below, we present in brief the mathematical foundation of a
few empirical potentials.

Embedded Atom Method. The Embedded Atom Method has been proposed
by M. I. BAskes and M. S. DAaw in 1984 [3]. The EAM is using the density
functional theory. In this model, the energy required to place an atom in crystal
lattice is a function of electron density in the desired place. This method is using
two-body interactions so it is a central a forces method. This allows to calculate
lattice relaxation and many properties of large sets of atoms. The fundamental
equations for EAM are

1
(3.1) Eior = Z Fi(pn,i) + 5 Z bii(Rij),
(§ 1,

(3.2) P 3 BE By,
)

J(#

where Eio is total internal energy, pp; is closely approximated by a sum of
atomic densities p® of the constituents [i.e. pn; |, fi is electron density of atom j
as a function of distance from its center, R;; is distance between atoms ¢ and j,
Fi(pn,i) is energy of embedded atom i for electron density pj ; and ¢; ; is the short
range (doubly screened) pair potential. This potential looks quite simple but the
results obtained using it are very close to those obtained experimentally [3, 5].
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All parameters are more precisely discussed by authors of this potential. The
numerical problem in applying this potential is that it requires to calculate the
interactions of all atoms with each other — that gives a huge number of equations
to process. Two other presented potentials have a cut-off parameter which allows
to limit the number of interacting atoms to those within cut-off range.

Tersoff potential is more advanced than two-body potentials. The Tersoff
potential depends not only on atomic distances but also on the angle between
three atoms (two bindings) [8]. That makes this potential more flexible and ac-
curate in calculations, but it makes it harder to adapt to numerical calculations.
The geometric term which contains information about the angle 8 between two
bindings is very important. This angle limits the number of atomic positions -
without this term the number of possible positions is almost unlimited and does
not correlate with physical reality (the angle between e.g. Ga-As and As-Ga in
a crystal is known exactly). The energy function

(3.3) E= Z%ZVZJ

i g
where V;; is the energy of bindings between i-atom and j-atom in a crystal,
(3.4) Vij = fo(rij)[f(ri) + bij fa(ri;))-

Functions f4 and fp are the attractive and repulsive parts of potentials for a
pair of atoms. The function fe is responsible for limiting the length of bond and
is a smooth cut-off function. The parameters R and D are chosen in order to
limit the interactions to first-neighbour shell only. The functions are described
below:

(3.5) falr) = ~Bg T
(3.6) fe(r) = Ae™™7,

1 for < R-D,
(3.7) foly) = % - %sin %) for R—D<r<R+D,
0 for r> R+ D,
(3.8) bi; = (14 gey,™) Y2,
(3.9) Ei= . folru)g(Bim)e o),
k#(1.7)

The b;; term is responsible for the strength of bonds. In this case the bond
strength depends on local environment and is lower when the number of neigh-
bours is relatively high. This potential is based on the Morse interactions.



398 P. DLuzZEwsK], P. TRACZYKOWSKI

The parameters should be chosen to fit the theoretical and experimental data
obtained for realistic and hypothetical crystal configurations, e.g. the cohesive
energy of several high-symmetry bulk structures, the lattice constant and bulk
modulus of the researched crystal lattice [14].

Stillinger—Weber potential [12], its energy function comprises both two- and
three-atom contributions which make it possible to describe complex deforma-
tions in crystals more accurately than in the case of potentials based only on
two-atomic interactions. Any interatomic energy function describing interactions
between N atoms can be simplified to one-body, two-body, three-body etc. in-
teractions as it is presented in the following equation:

(3.10)  w(1,...,N)=

ST+ wmi i)+ Y vl g k) + .+ on(l,.., N).
i ij ik
<] i<j<k
The potential v; stands for a single particle in the system. This part will be
neglected because it is not considered in our discussion. It is important that the
component functions v, should quickly tend to zero with increasing value of n.
To this end the Stillinger—Weber potential is approximated only by v and v
functions, that is two-body and three-body interactions. The potential is based
on the well-known Lennard-Jones potential, which was assumed for noble gases
description; however, it is unusable for semiconductors due to the lack of fitting
parameters. The partial energy functions vy and v3 are introduced as follows

(3.11)  wa(ry;) = efao(ryy/o)  and  wa(r, vy, 1) = efa(ri/o,r;/0,vx/0),

where € is chosen to give fo depth —1, and o is chosen to make f2(21/6) van-
ish. The fo is a function only of the scalar distance, but f3 must possess full
translational and rotational symmetry.

Finally the two-body part of Stillinger-Weber potential takes the following
form:

A(Br7P — r“?)e:&i for r <a,
(3.12) falr) =

0 for r > a,

where the constants A, B, p have to be positive. This potential is also automat-
ically cut off when r = a, without any discontinuities in any r derivative, which
makes it very useful in any molecular dynamics simulations.

The same cut-off condition has to be held in the three-body interactions

(3.13)  fa(ri,rj,r) = h(rij vik, Ojir) + h(Tsi, Tk, Ouji) + hThis iy Oirs)
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where O, denotes the angle between r; and ry subtended at vertex u. The
function h has two parameters (A,y > 0), it takes the form

4 1
AeTiiT® Tik—® (cos Ojik + §) for 1y, rie <a,

0 for r>a.

h(rij, rik, Bjix) =

For this part the @ parameter is very important; it gives us information about the
crystal deformation. When @ is such that cos @ = —1/3, then the three-body po-
tential vanishes, which is because of the perfect tetrahedral angle cos©® = —1/3.
This shows that in an undeformed state this potential is based only on two-body
interactions.

Table 1. Parameters assumed for the Stillinger—Weber potential.

e (eV) o (nm) a A B A v
GaAs 1.409 0.210 1.794 8.513 0.782 27.0 1.0
>dTe 1.088 0.228 1.863 8.582 0.993 27.0 1.20

We have used parameters determined in [2] for GaAs. The parameters A, B, p,
q,a, A, v have been determined on the basis of many conditions. One of them
is crystal’s minimal energy in undeformed state. The second condition arises
from experimental values of the elastic constants and the third one from the
temperature of melting point and other similar constants. Some constants are
calculated using the ab initio methods for determining physical properties of
atomic bonds. In addition we compared the crystal’s energy, calculated with
the Stillinger-Weber potential, response on stretching with hyperelastic models
based on generalized strain models which is shown in Fig. 1.

To find the stress-strain response of atomic structure the energy of which is
governed by a given interatomic potential, we have applied the following relation
yielding from the strain energy balance:

~ Lo
(3.14) 01 =PaE:

where @ denotes the first Piola—Kirchhoff stress tensor while ¥ means the crys-
tal’s specific free energy (per unit mass). The energy depends on distances and
positions between all the atoms in the crystal, i.e. ¥ = ¥(r,,...,ry). Assuming
that the current position vector r; depends on the deformation gradient F and
on the reference position vector R;, we find

(3.15) o= i (ZZ?%?%Z(%M)*

i
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where r; = FR;. Substituting (3.15) into ( 3.14) we find the Cauchy stress tensor
corresponding to the Stillinger—-Weber potential

PN !
(3.16) O'—p(,)FF detF*.

%] [amnem Discrete Stillinger-Weber

—e— Almansi (m=-2)
0.18 sl e mz_l

0.20

%‘ 0.16 —v—Hencky (m:O)
3 0.144|—*— Biot (m=1)
8 oizd|—*— Green (m=2)
o
E o010
o
Z o008
>
2 006
[+}]
S oos
0.02
0.00
T L] g L] ¥
09 1.0 1.1 1.2
F..

FiGc. 1. Energy of hyperelastic models based on generalized strain models versus discrete
Stillinger-Weber potential model in uniaxial stretch test.

The method described above is very similar to the method used by [17]. Be-
cause the calculation of stress on the basis of numerical differentiation of all
two- and three-atomic terms over the deformation process turned out to be very
time-consuming, the Stillinger-Weber potential model was replaced by a nonlin-
ear hyperelastic constitutive model based upon a non-monotonic (pseudo-strain)
functions. Finally, the functions below will describe the continuized Stillinger-
Weber model.

3
(3.17) =) Iy e 3D yeuy,
2=1
< 2
(3.18) £= Zln'u; e300 v g v,
’ i=1

where n is a strain parameter. In our research we have found parameter n by
fitting the above functions to discrete Stillinger-Weber potential. The fitting
procedure shows that the parameter n should be 0.57 for GaAs crystal lattice.
We didn't fit the n parameter for CdTe or ZnTe. The results of using such a
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continuized potential function for GaAs are presented in Fig. 2. This fitted model
differs from the discrete Stillinger Weber potential, the difference is about 3%.
The stretching test was performed with atoms able to reorganize themselves.

§.00E+G10 = et
—— ,.nﬁmtimm‘!c?
B + -
41
E ««q«“ii}ii‘“”
-5.00E+010+ '%“'
= ]
-8 1 at e
-1.00E+011 o .* [m Continuized Stilinger-Weber potential measure | -
S| m=-2, (Almansi)
1 . A M=,
-1.50E+011 o v m=0, (Hencky)
| ¢ m=+1, (Biot)
4 m=+2, (Green)
~2.00E +071 1 e
0.7 0.8 0.9 1.0 1.1 1.2 13
F

Fic. 2. Stress of hyperelastic models based on generalized strain models versus continuized
Stillinger-Weber potential model in uniaxial stretch test.

106«
1.04 o
1.024
1.00
0.984
0.96 «

0.94 o

Energy [Normalized units)

092«

0.90 «

0.88

—— Constrained model
Non-constrained model

F1G. 3. Stress-strain

We made also a shear

comparison of the considered constrained and non-constrained model

for the simple shear test.

ing test for the Stillinger-Weber potential model. The

shear test plot is a comparison between a model with atoms allowed to reorganize
and find their local energy minima and another one where atoms are placed with
no possibility to move.
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4. Quantum dot calculations example

We have applied the discrete Stillinger-Weber potential with special subrou-
tines to FEM solver, namely FEAP [18]. Here we must explain that although
the algorithm is using a FEM solver, it is not the Finite Element Method - there
are no finite elements.

In our approach we have used subroutines describing two- and three-body
interaction terms. The fundamental difference between our method and FEM is
that our, let’s say, pseudo-elements do not contain continuous distributions of
mass and stress/forces within elements, but they are based on the energy balance
of discrete atoms situated in the mesh nodes, which satisfy the motion equation

(4'1) Mpfp = fn-,
where the nodal forces f,, are determined as a superposition of elemental forces

ov ’ du
2 2 3 _ 3
(4.2) fr= = and fo= v

corresponding directly to the two- and three-body terms of energy, v2 and w3,
according to (17). In other words, in the classical FEM the energy, mass and
forces are continuously distributed within elements, while in our approach there
are no continuous distributions over the two- and three-body pseudo-elements.
Such approach allows us to link these pseudo-elements with the classical solver
of FEM. Such attempt doesn’t require any changes in the FEAP solver.

The mesh, similar to the FE mesh, is only a graphic representation of all pos-
sible connections and data needed to calculate the interaction between atoms.
The algorithm is capable of calculating dynamic (time-dependent) or static prob-
lems. The material distribution is assumed for quantum dot structures observed
on HRTEM experimental images [7]. In this example we applied CdTe in ZnTe
quantum dot atoms positions to the prepared program which generates mesh
of pseudo-elements. The generator produces a block of sphallerite structure of
desired size and shape or uses an input file where the atoms position were stored
(e.g. Zn, Te or Cd). The Stillinger-Weber potential which is applied in our
pseudo-elements recognizes the bond type and the atoms by recognizing the
material number (e.g. Cd-Te material has the number “1” and Zn-Te has the
number “2”). The quantum dot was composed of 40 300 atoms — to limit the cal-
culation time and conserve the computer memory we applied the so-called mul-
tipeint displacement boundary conditions on each boundary plane of our block
chosen for calculation. These conditions correspond to the assumption that the
quantum dot is not alone in the bulk material but is surrounded by other quan-
tum dots of the same shape and size what also required setting the boundary
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condtions on external walls of our material. Finally the problem was limited to
only 10075 atoms. In the presented example we have calculated the static prob-
lem - time-independent. The assumed quantum dot material decomposition is
showa in Fig. 4.

F1G. 4. Assumed material decomposition in quantum dot quarter.

The obtained atom displacements, Fig. 5, were compared with similar quan-
tumdot calculated with FEM, and they were very similar both in the shape and
the lisplacements. In initial state of the performed simulation both structures
of quantum dot and the surrounding region have the same lattice constant -
ZnT: lattice constant. Because CdTe has a larger lattice constant than ZnTe,
we apected that the quantum dot region will extend to reach the CdTe lat-
ticeconstant. Such extension can be noticed in Fig. 5 presenting the directions
of ectension X,Y and Z. We can notice that the largest displacements are in
pictires presenting X plane (almost 0.22 nm) and Z plane (0.28 nm), what is
caued by periodic boundary conditions. The block of crystal presented here
is asimulation of an infinite line of quantum dots in Y direction, so the last
rowof atoms in Y direction has been disabled to move along the Y axis — in
realstructure just behind the last row of atoms begins the next similar quan-
tum dot which interacts in opposite direction [7]. These results can be later
easily applied to the HRTEM image simulation program allowing to verify and
recaistruct the quantum structures observed in laboratory conditions. Parame-
tersfor the Stillinger-Weber potential used in these calculation were taken from

(9,4
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Displacements in direction X Displacements in direction Y

Fic. 5. Displacements resulting from the performed calculations.

5. Conclusion

In the hyperelasticity based upon general strain measure, the fundamental
question arises: which of the finite strain measures is the best one? The choice
of the given measure is responsible for the higher order elastic effects. For exam-
ple, the third-order elastic constants depend very strongly on the strain measure
choice, see [4]. In this paper, we have shown that the nonlinear elastic behaviour
of one of the most popular interatomic potentials used in MD simulations, namely
the behaviour of the Stillinger-Weber potential, is closest to the behaviour of
the first-order hyperelastic models based upon the strains corresponding to the
strain parameter between —1 and (. This means that the first-order anisotropic
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hyperelasticity based upon the strain e =InU or € = —U~! +1 gives approxi-
mately the same extension/compression asymmetry in elastic behaviour as that
obtained by physicists with the use of interatomic potential like the Stillinger—
Weber one. Recently, it has been used in the majority of MD simulations carried
out for semiconductor nanostructures. Obviously, our comparison concerned only
the elastic behaviour in the uniaxial deformation range in which the interatomic
potential was able to hold a stable GaAs atomic structure in the approximately
uniform deformation state.
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SOME CHARACTERISTICS of the process zone developed around the tips of cracks
as well as the fractography of the fracture surfaces constitute the subject of the
present paper. The study was carried out using Scanning Electron Microscopy for the
determination of the Crack Tip Opening Displacement, while numerical analysis and
experimental results were combined for the determination of the J-integral. A modern
particulate Metal Matrix Composite and its matrix alloy were used for the fabrication
of relatively thin tensile specimens of two different types, i.e. single- and double-
edge-notched. Dependence of the above quantities on the thickness of the specimen is
detected: both the critical Crack Tip Opening Displacement and the critical J-integral
are found to increase in an almost linear manner with thickness. For comparison,
intact prismatic specimens were considered, in order to study the dependence of
ductility and fracture on the thickness of the specimen. It is observed that they
depend also on the specimen thickness in a similar manner. Variation of these two
properties with the direction of the specimen with respect to the rolling axis is also
detected, indicating the importance of the plastically induced anisotropy due to the
manufacturing process. Concerning the mechanisms leading to failure, it is concluded
that void coalescence is active although void nucleation due to the presence of particles
appears to be unavoidable.

1. Introduction

THE QUANTIFICATION of the characteristics of the process zone developed around
the tip of a crack is among the most important tasks of Fracture Mechanics since
this zone governs the further development and propagation of the crack. How-
ever, in spite of the fact that the definition of a single-parameter mechanical
quantity, which could serve as a failure criterion in case of pre-cracked spec-
imens or structural members, has been the subject of an enormous number of
research papers, already since the very early steps of the development of Fracture
Mechanics, the problem is not yet closed.

The introduction of the concept of the stress intensity factor, K, by WESTER-
GAARD [1] and IRWIN |2] as well as of the concept of the critical stress intensity
factor or fracture toughness, K, gave the impression that an acceptable solution
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of the problem was achieved. The initial enthusiasm was shadowed, however, by
a long series of experimental findings, which indicated that K¢ depends on the
thickness of the specimen [3]. Indeed, experiments have shown that only above a
certain specimen thickness, beyond which the material is under predominantly
plane strain, K¢ tends to a constant value, which is usually considered as a
material property. Below this limit K¢ depends in a sigmoid manner on the
thickness of the specimen exhibiting a well-defined maximum value. For very
thin specimens the dependence is not exactly known.

The above behaviour is usually attributed to the fact that for very thin
plates, the fracture toughness results from the plastic energy spent in the neck
in front of the crack tip, which in general is significantly larger in comparison to
the energy spent for the overall damage of the material. The work of necking,
however, depends directly on the thickness of the specimen. As a consequence,
the fracture toughness varies also with thickness, as pointed out by BLUHM [4]
and SWEDLOW |[5] already from the early sixties and for purely plane stress the
variation is almost linear.

Unfortunately, experimental results concerning the dependence of fracture
toughness on thickness for very thin specimens are rather scarce and as a result,
the relation between the resistance to cracking initiation and plate thickness
remains insufficiently understood until today [6] even for conventional metallic
materials and alloys. The situation is worse in case of modern composite mate-
rials and especially for the class of them described under the term particulate
Metal Matrix Composites (MMCs), since the study of their behaviour from the
Fracture Mechanics point of view is still in progress all over the world. These
materials were only developed during the last two or three decades to meet the
increased demands of aerospace industry for optimized mechanical properties
combined with low specific weight.

In general, the principal concept of the technology of composite materials is to
combine certain assets of their constituents in order to give to the newly synthe-
sized material unique and useful properties. The reinforcement may be either of
one- (fibrous) or two- (laminar) or even three-dimensional shape (particulates).
The last class includes composites with more than 20% of the hard reinforcing
dispersed phase. The particulate composites are non-homogeneous materials and
their properties appear to be very sensitive to the constituent properties as well
as to the geometric shapes of the array. The strength of particulate composites
depends on the diameter of the particles, the interparticle spacing as well as on
the volume fraction of the reinforcement.

Among particulate composite materials Metal Matrix Composites (MMCs)
are advantageous as structural materials since in their virgin state they are
isotropic materials without any kind of texture anisotropy. Also, they combine
metallic with ceramic properties, such as high strength, high modulus of elastic-
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ity, high toughness, relatively low sensitivity to thermal shocks and temperature
changes, high surface durability, low sensitivity to surface flaws, high thermal
and electrical conductivity. Additionally, the ductile metal matrices, such as alu-
minum (used in the present work), titanium or nickel-chromium alloys, undergo
energy absorbing plastic deformation under impact, which is very important in
many dynamic structural applications |7].

On the other hand, the ductile matrix permits the blunting of cracks and
relieves stress concentrations by plastic deformation. It is thus expected that the
composite materials should be characterized by improved fracture toughness.
However, it has been pointed out [8] that the presence of cracks strongly deterio-
rates the fracture strength of MMCs, in comparison to the uncracked materials,
rendering the use of the matrix material more advantageous in case of presence
of macro-cracks. Indeed, pairs of matrix alloys and MMCs are reported for which
under specific loading conditions the fracture toughness of the matrix alloy is
higher compared to that of the composite material [8, 9.

Thus it can be said that the target of the paper is twofold: The determination
of the characteristics of the process zone and their dependence on the thickness
of the specimen in case of MMCs and, on the other hand, the study of the
mechanisms leading to failure, in an attempt to understand the deterioration of
the mechanical characteristics of MMCs in the presence of macro-cracks.

2. Some theoretical considerations

It is accepted that in Linear Elastic Fracture Mechanics, a single parameter
can characterize in a satisfactory manner the singular stress and strain fields
around a crack tip. This parameter is usually described in terms of a balance of
energy rates, which leads to the energy release rate concept, uniquely related to
the stress intensity factor. Following a similar procedure for the case of nonlinear
materials, the J-contour integral (or simply the J-integral) was introduced [10],
which describes the flow of energy into the tip region. With respect to a point
s on the crack front in a nonlinear elastic material, the J-integral is defined by
the formula:

3 ou; 0 _ ou;
(21) J(S) = / (W(S]y - Pﬂm)n]df s / m (P3za—‘x‘;) dA.
Ap

s

In the above Eq. (2.1) I' is an arbitrary curve enclosing the crack front at
the position given by s, in the plane X3 = 0, Ap is the surface area defined
by I, W is the deformation work per unit volume, u is the displacement vector,
P;; denotes the Piola-Kirchhoff stress tensor, X; is a component of the position
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vector of a material point in the undeformed configuration and n; is a compo-
nent of a unit vector perpendicular to I".

For the Double Edge Notched Tensile (DENT) specimen, used for the de-
termination of the J-integral in the experimental program of the present work,
RICE [11] introduced the following simplified formula for J-integral:

. 3 1t u .

Here K| is the stress intensity factor, E the Young’s modulus, P the applied load
and u, the plastic displacement. For this type of specimen the stress intensity
factor, K, is given as [12]:

P A
23) K= —,/ ——(1.122 — 0.561)\ — 0.205)2 AT 4 0.1900%)
( ) I to Qwo(l _ )\) (l 0.56 0.205)2 + 0 4 )

In Eq. (2.3) wp is the half-width of the plate while A = ag/wp, where ag is
the initial crack length.

The validity of the J-integral approach was the subject of a long series of
papers. The point most intensively criticized was related to the fact that it is
strictly founded exclusively for nonlinear elastic materials, which are of reversible
nature concerning the loading-unloading path. It appears thus that using the J-
integral for elastic-plastic materials is illegitimate and the concept is applicable
only until no unloading occurs in any part of the material, or in other words until
crack propagation starts. Other points related to the difficulties encountered
during the practical determination of the critical value of J-integral and the
necessity to combine the experimental results with finite element analysis are of
rather minor importance.

The consensus reached today is that the J-integral can be calculated at the
tip of a crack even for an elastic-plastic solid until the crack starts propagating
subject to the additional condition that the crack tip finite strain zone, in which
damage occurs, is sufficiently confined. Indeed, the loss of constraint, appearing
with large scale yielding, is directly related to the deviation of the relationship
between the J-integral and the Crack Tip Opening Displacement (d;) from the
one proposed by SHIH [13], even for a stationary crack:

U()CS;
dn

(2.4) J=

The above Eq. {2.4) was obtained by Shih using the HRR solution for the stress
and strain fields, which is valid within the framework of the deformation theory of
plasticity, assuming that no unloading occurs. The flow behaviour of the material
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is simulated by a power law, generalized as follows:

3 Te B3 Si'
(2.5) £ij = ;0 (;2) £

where ;; and S;; are the components of the strain- and of the deviatoric stress-
tensor, respectively, o, is the effective stress, defined as oer[S;’Q(SijSl—j)]]/ 2 oy is
a reference value for the stress (usually defined as the 0.2% offset yield strength)
and a, n are experimentally defined constants. Assuming then that the above
restrictions are fulfilled, the stress field components, o;;, can be described ac-
cording to Shih’s approach by the following equation:

EJ 1/(n+1) )
(2.6) gij = 0p ( ) aij(n,0),

acdl,r

where 7 is the radial distance from the crack tip, I,, is a dimensionless constant
which depends on strain hardening and &;; is, also, a dimensionless constant
depending on strain hardening and angle # from the crack plane. Concerning the
function d,, = d,,(n,ep) of Eq. (2.4), which was given by Shih as a nomogramme,
OMIDVAR’S et al. [14] approximate solution was adopted in the present study,
according to which it holds that:

0 1.05/(n—0.1) 3

(2.7) dn (m,20) = 3 (1 + E)'
It is to be emphasized at this point that the previous analysis is valid as long
as each material point experiences proportional loading. For cracked bodies this
is not the case, since an intense strain region exists, within ~24; of the tip, that
experiences highly non-proportional loading. In such a case the analysis is only
valid as far as the intense strain region is surrounded by a region in which the
HRR model assumptions still prevail. This is true as long as 6, is relatively small
compared to both the crack size and the uncracked ligament length. Otherwise
fracture toughness becomes strongly geometry-dependent [15]. The validity of
the above assumption will be checked experimentally in the next paragraphs.

3. Experimental procedure

3.1. The material

The material used in the present study is the BP-2124 Al-Cu particulate
MMC, produced by a powder metallurgy process. According to this process,
aluminum alloys are reinforced with extremely fine silicon carbide (SiC) particles.
The chemical composition of the matrix alloy is listed in Table 1. The respective
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Table 1. The chemical composition of the BP-2124 Al-Cu alloy.

Element Wt [%]
Copper 4.0-4.4
Magnesium 1.3-1.6
Manganese 0.4-0.7
Iron 0.3 max
Zinc 0.25
Silicon 0.2
Chromium 0.1
Titanium & Zirconium | 0.2
Others (each) 0.05 max
Others (total) 0.2 max
Aluminum Balance

composite is obtained by adding to the matrix alloy about 20% wt of SiC particles
of average diameter 3 pm [16].

The BP-2124 Al-Cu particulate MMC has very good specific properties (spe-
cific stiffness and high specific strength). Its absolute mechanical properties are
considerably improved in comparison to the matrix alloy. As it can be seen from
Table 2, in which the values of the modulus of elasticity, tension strength, torsion
strength and ductility are recorded, the improvement varies between 37% for the
modulus of elasticity and 50% for the strength under torsion. Of course as it is
expected, the ductility of the composite material is about 27% lower compared
to that of the matrix alloy [17].

Table 2. The average mechanical properties of the BP-2124 Al-Cu MMC and of
the respective matrix alloy (properties measured along the rolling direction).

Elastic Modulus | Tensile Strength | Torsional Strength | Ductility

(GPa] [MPa) [MPal %]
2124 Alloy 80.0 435 505 6.7
2124 MMC 109.9 622 760 49

Change [%] (37) (43) (50) (-27)
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According to the manufacturing process, the raw materials, i.e. the atomized
aluminum alloy powder and the silicon carbide microgrit, are bought-in to an
internal specification covering chemistry and size. The powders are then pro-
cessed and blended to a homogeneous mixture. The mixed powders are then
canned, degassed and hot isostatically pressed to full density using conventional
aluminum powder metallurgy practices. The hot pressed billets are decanned
and converted to wrought product using standard metal working equipment.

The material was available in rolled plates of thickness equal to ¢t = 12 mm
and rolled sheets of thickness ¢t = 1.2 mm. After the specimens were cut from
the plate and machined in their standardized shape (by removing away mate-
rial in the thickness direction), they were subjected to heat treatment as it was
suggested by the manufacturer. The procedure included solution treatment for
ninety minutes at 505°C and then immediately cold-water quench. No visible dis-
tortion or surface cracking of the specimens was observed due to the quenching.
Finally, the specimens were carefully polished in order to eliminate any scratches
and similar irregularities from their surface.

However, it should be mentioned at this point that the above heat treatment
procedure might be the reason for the generation of residual stresses, which are
suspected to be responsible for many mechanical changes including anisotropy,
especially in case of particulate reinforced MMCs. Although the analysis of the
residual stresses is beyond the scope of the present paper, it is mentioned here
that extensive study of the BP-2124 Al-Cu MMC with the aid of SEM and TEM
techniques verifies the above option: The rupture of it is generally initiated in
the matrix alloy in the immediate vicinity of the SiC particles. The dislocation
density is much higher in the grains in contact with the particles. The cracks
are initiated in this region because there are high residual stresses due to the
coefficient of thermal expansion mismatch and the heat treatment procedure
adopted [18].

3.2. Specimens and testing procedure

Three different types of specimens were employed:

e The first one included miniature Single Edge Notched (SEN) used for the
determination of the Crack Tip Opening Displacement (CTOD) with the aid
of the Scanning Electron Microscopy (SEM) technique. They were cut out from
the rolled sheet and plates along the rolling direction. After they were machined
to the required thickness, which varied between 1.2 and 3.5 mm (by removing
away material in the thickness direction very slowly by mechanical milling), they
were formed to the familiar dog-bone - like standardized geometry. Edge cracks
were machined on one side of the specimens by means of a rotating slow cutting
diamond disc of thickness 100 pum. The specific cutting procedure was chosen
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since it creates cracks with minimal mechanical damage at their root. The width
of the specimens was w = 6.5 mm, their thickness varied between ¢ = 1.2 mm
and t = 3.5 mm, while their gauge length varied between 65 and 70 mm. The
initial length of the cracks, ag, varied between 1 mm and 3 mm, yielding f values
(ratio of width of the specimen over the length of the crack) in the range from
about 0.15 to 0.45. The cracks were cut either perpendicular to the rolling and
loading direction (8 = 90°) or inclined at 60° with respect to it (3 = 60°).

These miniature specimens were subjected to in-situ, monotonically increas-
ing tensile loading in the Scanning Electron Microscope (SEM), Cambridge S4-10
type, available at the Laboratory of Testing and Materials of the National Tech-
nical University of Athens. The level of the tensile loading is servo-controlled
(patent of the Institute of Physics, London, UK). The maximum capacity of
the loading device is 2.2 kN. Following the above procedure it becomes possible
to measure in situ, with the maximum possible accuracy, the current CTOD.
However, it is emphasized that if the exact shape of the crack tip were taken
into account, the term describing better the quantity measured would be “Notch
Root Opening Displacement” (NROD).

As far as it concerns the method for the measurement of CTOD, a procedure
similar to the one described in ref. (8] was adopted, based on continuous moni-
toring and successive photograph of the specimen at various stages of the testing
procedure. The measurements were carried out by means of a Gruman-type vi-
sioscopic fringe analyzer, equipped with a digital electronic micro-positioning
system, of maximum error 0.5 pm.

o The second type included Double Edge Notched Tensile (DENT) speci-
mens of length 150 mm and width 60 mm, the thickness of which varied again
between 1.2 and 3.5 mm. They were cut from the rolled plates along the rolling
direction and the load was induced along the same direction. The width of the
ligament was kept constant equal to 20 mm since it was not among the purposes
of the paper to study the influence of the length of the ligament on the process.
The edge cracks of initial length ap = 20 mm were machined using the above
described procedure for the same reasons. During the numerical analysis of the
experimental results it was verified that path-independence at cracking initia-
tion was secured and no case was detected for which the whole ligament length
underwent finite strains.

The specimens were subjected to static tensile loading with the aid of a very
stiff hydraulic frame. The crosshead speed did not exceed 0.02 mm/min. The
load-displacement curve was recorded by means of very sensitive extensometers.
The onset of fracture was detected by the appearance of thumbnails on the crack
front at the center of the plates.

e The third type included prismatic specimens with orthogonal cross-section
of constant width w = 9 mm and thickness varying from ¢ = 1.2 mm to ¢ = 9 mm,
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for the determination of the dependence of fracture strength and ductility on the
specimen thickness. They were cut either along the rolling direction or perpen-
dicular to it or inclined 45° with respect to it, in order to study, also, the influence
of the plastically induced anisotropy on the ductility and fracture stress. They
were prepared very carefully to ensure parallel gauge length and faces that were
orthogonal to the plane of the sheet.

A system of 8 strain gauges bonded in the mid-section of the specimens was
used to measure in real time the transverse and the through-thickness strains as
well as the longitudinal ones, which are necessary for the determination of the
constitutive law. Gauges were bonded on all four sides of the specimens to mon-
itor possible bending parasitic effects. A series of successive loading-unloading
loops was executed in each experiment, in order to measure the pure elastic
constants of the material as well as the plastic portion of strains. It is to be
mentioned at this point that considerable difficulties were encountered during
the measurement of strain in the case of very thin specimens, the maximum
thickness of which did not exceed in any case 1.2 mm. Bonding gauges on such
thin surfaces is not possible and uncertainties appear concerning the validity of
the results. For these specimens the strains were measured using two alternative
methods, one based on laser technology and a purely mechanical one based on
conventional extensometers. The differences recorded between the two methods
were insignificant.

4. Experimental results
4.1. SEN specimens and the critical COD

In Figures 1 (a, b) characteristic SEM photographs are displayed showing
the unloaded tip of a crack (Fig. 1a) and the same tip immediately before final
failure (Fig.1b), for a crack oriented perpendicularly to the loading direction
(8 = 90°), with a crack length-to-width ratio f = 0.3. On the other hand, in
Figs. 2 (a—¢) characteristic SEM photographs are displayed showing the unloaded
tip of a crack (Fig. 2a) and the saine tip immediately before final failure (Fig. 2b),
for a crack oriented at a direction J = 60° with respect to the loading axis and
f = 0.3 again. The photographs in Figs. 1(a,b) and 2 (a,b) correspond to a
magnification ratio equal to 500, while that in Fig.2c corresponds to a mag-
nification equal to 1000 giving a better view of the damaged zone around the
tip.

From the series of SEM photographs taken during the loading process the
CTOD was measured, adopting the procedure indicated in Figs. 3 (a, b), where 1
and 2 indicate characteristic material features on the specimens. Characteristic
results are shown in Fig. 4, in which the CTOD is plotted versus the exter-
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Fic. 1. SEM photographs of a crack with 3 = 90° (magnification 500%): a) Zero loading
step. b) Final loading step.

nally applied net stress reduced over its corresponding maximum value, for the
thinnest specimens, i.e. the ones with thickness w = 1.2 mm. In this figure filled
symbols correspond to specimens with 4 = 90° while empty symbols correspond
to specimens with b = 60°. It is seen from this figure that the evolution of CTOD
is almost negligible for load levels lower than half the final net fracture stress and
then it increases in an exponential manner until the fracture stress is reached.

The above behaviour is qualitatively identical with the respective one de-
scribed by KOURKOULIS in ref. [8] where a different technique for the measure-
ment of COD was adopted, based on a modified ds technique. In Fig. 5 results
taken from [8] are shown concerning the COD values reduced over the initial
width of the crack, for a crack with 8 = 90°, for both the composite material
and the matrix alloy, for comparison reasons. Considering the initial width of
the crack in [8] (dp = 0.2 mm), the absolute COD values reported there are
of the order of 80 um. Extrapolating these results at the tip of the crack the
values of CTOD obtained vary in the range between 15 pm and 25 pm, in very
good agreement with the results of the present study, for specimens of the same
thickness.

As far as it concerns the dependence of the critical CTOD on the thickness
of the specimen, it was concluded that an almost linear relationship exists, for
the range of thickness studied in the present series of experiments. This linear
relationship is clearly depicted in Fig. 6, in which the values of the critical CTOD
are plotted versus the thickness of the specimen, for both the composite material
and its respective alloy. As it can be seen from this figure, the critical CTOD
increases linearly with increasing thickness from an initial value of 18 pm for
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t = 1.2 mm to a final value of about 30 pm for ¢ = 3.5 mm for the composite
material. On the other hand, for the matrix alloy the respective values vary
between 72 pum and 97 pum.

Finally, it was concluded that the average values of the critical CTOD appear
to be independent of the value of f, for all specimen thicknesses, at least for the

values of f used in the present study.

Fic. 2. SEM photographs of a crack with 3 = 60°: a) Zero loading step (magnification 500x).

b) Final loading step (magnification 500x). ¢) Detailed view of the crack-tip area at the final

loading step (magnification 1000x). Localized damage at the “corner” of the notch root is
clearly visible.



a) TP L e

P=0 Pi
‘_
1 2 1
310 —> <— &y %
Initial CTOD= 84 Current CTOD= 5},1

(1 and 2 are selected reference features on the photographs)

Initial c+0D=8t,0 Current CTOD=9 ;

Fic. 3. The procedure followed for the measurement of the CTOD from the SEM
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4.2. DENT specimens and the critical J-integral

In order to determine the critical values of the J-integral, the DENT specimen
configuration was used since the symmetry characterizing it renders numerical
simulations easier. The numerical analysis employed is similar to the one followed
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by PARDOEN et al. [6], based on the 3D domain integration technique introduced
by SHIH et al. [19]. According to it J(s) is computed from various contours in
order to check the path-independence and a mean value is obtained by averaging
the local values on the entire thickness. However, it is to be mentioned that
the differences detected between these local values were relatively small for all
specimens. As it was mentioned earlier, path-independence at the moment of
crack propagation onset was observed for all geometries tested. Alternatively,
the J-integral was determined using Eq. (2.2) together with the experimental
results for the load — displacement curves. It is encouraging for the validity of
the numerical analysis that the differences detected between the values obtained
from the two alternative methods were very small and the maximum discrepancy
did not exceed 4% in any case.

(8]

Critrcal J-integral x1074 [N/

0 1 2 8 4
Specmen thickress [ram)

Fic. 7. Numerically calculated critical values of the .J-integral versus the thickness of the
specimen.

The results of the numerical analysis for the composite material are plotted
in Fig. 7. As it can be seen from this figure, the critical values of J-integral
increase linearly with increasing thickness, in a manner similar to Crack Tip
Opening Displacement. However, it is to be mentioned that the line is of rather
abrupt inclination although the material is rather brittle. Indeed the values
vary from about 1.7x10* N/m for the specimens with ¢ = 1.2 mm to about
2.5x10* N/m for the specimens with { = 3.5 mm. Such a behaviour is rather
unexpected since the material studied here is less ductile compared to the one
studied by PARDOEN et al. [6] for which the maximum value was reached for a
thickness of about 5-6 mm. Such a trend is not detected for the material studied
in the present work. However, it could be explained on the basis of the different
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failure modes activated in case of pure metallic materials and composite ones, as
it will be discussed in the next paragraph. In any case it is obvious that additional
analysis is required (including also the tests with thicker specimens) in order to
determine the exact form of the relation between J and specimen thickness.

The conclusions for the matrix alloy are of the same qualitative nature, how-
ever the slope of the Jo = Jo(t) function is much higher.

4.3. Intact specimens

As a first experimental observation it should be mentioned that the axial
strains measured in the rolling plane, £aya1,p, diverge slightly, but systematically,
from the axial strains measured in the thickness plane, €axjal tp, for the same load
level. The divergence becomes higher with increasing width-to-thickness ratio,
as it can be seen from Fig. 8, in which the ratio €axial rp/€axial,tp has been plotted
versus the axial stress, for a series of characteristic experiments with prismatic
specimens cut and loaded along the rolling direction. Also, it is observed from
the same figure that while €ayjalrp exceeds €axialsp during the initial loading
steps, however, as the load increases, the phenomenon is inversed and tends to
be eliminated as the load approaches the failure limit. The above observations
indicate a non-uniformity of the deformation along the thickness of the plates,
which becomes more pronounced as the thickness of the specimens increases. The
conclusions for the other two types of prismatic specimens, namely the ones cut
perpendicular to the rolling direction and diagonal to it, are of similar qualitative
nature.
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Fic. 8. The divergence between the axial strains measured in the rolling- and in the
thickness-plane for specimens cut and loaded along the rolling direction.
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F16. 9. The axial stress versus the axial strain measured in the rolling plane for prismatic
specimens cut and loaded along the rolling direction.

As far as it concerns the variation of the fracture strength and ductility with
specimen thickness it was concluded that both quantities increase with increasing
thickness. In Fig. 9 characteristic axial stress — axial strain curves are plotted for
the specimens cut and loaded parallel to the rolling direction. The axial strains
were measured in the rolling plane. It can be seen from this figure that, contrary
to the observations by ASSERIN-LEBERT et al. [20], the deviation between the
graphs starts relatively early, namely almost immediately after surpassing the
linearity limit. Such a behaviour seems to contradict common sense, however it
can be explained if one takes into account that the material studied here is not
a homogeneous continuum medium due to the presence of the reinforcing dis-
persed phase of the silicon carbide particles. The conclusions for the specimens
cut and loaded perpendicular and inclined at 45° with respect to the rolling axis
are almost identical. The respective results are sumimarized in next Figs. 10 and
11 for all types of specimens.

In Fig. 10 the fracture stress is plotted versus the specimen thickness for
all three types of prismatic specimens. It is seen from this figure that the frac-
ture stress-specimen thickness curve is alimost linearly increasing with increasing
thickness for thicknesses between ¢ = 1.2 mm and ¢ = 5 mm. From this point on
the linearity is lost and the curve reaches its maximum value for specimens with
thickness about 9 mm. The absolute differences between the fracture strength
of the thinnest and thickest specimens was about 40% for all three types of
specimens.
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Concerning the influence of plastically induced anisotropy it is seen from
Fig. 10 that the rolling direction is the strongest one while the differences be-
tween the other two directions are negligible no matter what the thickness of the
specimen is.

In the next Fig. 11 the dependence of the fracture strain on the specimen
thickness is plotted for all types of prismatic specimens. Although the qualitative
behaviour of the graph is similar to that of the fracture stress, it is worth to be
mentioned here that the specimens cut along the direction inclined 45° with
respect to the rolling one appear to be the most ductile, especially for small
thickness and they reach their respective maximum value of ductility already for
a thickness equal to about 6 mm. Concerning the absolute differences they vary
from about 80% for the specimens cut perpendicular to the rolling direction to
about 50% for the ones cut parallel to it.

5. The fracture surfaces and the fracture mode

In Figs. 12 and 13 microfractographs are shown taken from two different
locations of the fracture surface of a typical specimen with # = 90° and f = 0.3.
Indeed, in Fig. 14, in which the specific specimen is shown, the plane-stress
“macromode” of fracture ahead of the crack tip (inclined plane of fracture) can
be clearly detected. This failure mode is a combination of a shear component
(distinguished by the shear lips) and a normal one (normal cone). The shear
component prevails close to the surface layers whereas the normal one prevails
at the mid-thickness layers of the specimen. The microfractograph of Fig. 12
corresponds to points of the shear failure area while the one of Fig. 13 to points
of the normal failure one. From these figures it is safely concluded that the
overall failure process is a ductile plane-stress one with an additional feature:
The “dimple microfailure mode” is active. This is attributed to the microvoid
coalescence mechanism, on which the ductile macrofracture of metals [21] is
based.

Figures 12b and 13b were taken with the aid of the signal differentiation
processing mode, by which contour enhancement or edge sharpening of the dim-
ples is achieved. In this way one can better distinguish the differences in the
morphology between the two areas of the failure surface (shear lips and normal
cone). It can be observed from them that the shear prevailing area is character-
ized by an elongated dimple pattern, in contrast to the normal cone area which
is characterized by a more or less “‘quasi-equiaxed” dimple pattern. Such a be-
haviour is attributed to the loss of severity of the triaxiality of the stress state
near the surface layers of the material [22].



F1G. 12. SEM micro-fractographs (magnification 500%): a) Elongated shear dimpled surface.
b) Signal processed image for the enhancement of elongated pattern.
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F1G. 13. SEM micro-fractographs magnification 500x): a) “Quasi-equiaxed” dimpled surface.
b) Signal processed image for the enhancement of “quasi-equiaxed” pattern.

[426]
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FiG. 14. SEM photograph of the fractured specimen. The arrows indicate the exact points at
which the photographs of Fig. 12 (filled arrow) and Fig. 13 (empty arrow) were taken.

6. Conclusions

Some characteristics of the process zone developed around the tip of cracks as
well as the fracture strength and ductility of the 2124 Al-Cu MMC were studied
in the present work. The fractography of the fracture surfaces was used in order
to determine the failure mechanisms activated.

The values of the critical CTOD recorded were less than 30 pm for the
composite material and less than 100 um for the matrix alloy. It is thus concluded
that the intensively damaged zone surrounding the tip is restricted to less than
about 2% of ag for the SEN specimens, for both the composite material and the
respective alloy. Hence the HRR model appears to be valid, at least for the range
of f values tested, although the failure mode detected is a ductile one. It means
that Eqgs. (2.6), (2.7) can be safely used for the description of the stress field for
both materials.

It was also concluded that both the critical CTOD and the critical J-integral
depend almost linearly on the thickness of the specimen. However, the exper-
imental study did not employed specimens of increased thickness in order to
determine the above quantities under plane strain conditions since it is not pos-
sible to apply the loads required to cause failure in situ on the Scanning Electron
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Microscope. This was possible only for the fracture strength and ductility since
the respective tests were executed using conventional hydraulic loading frames.
For these quantities it was verified that after an initial linear portion of the re-
spective graph, the increasing tendency was eliminated and a maximum value
was reached for specimens with thickness about 9 mm for the fracture stress
and of about 6 mm for the ductility. Additionally it is mentioned that the above
quantities strongly depend on the orientation of the specimen with respect to the
rolling direction, indicating the importance of the plastically induced anisotropy
due to the manufacturing process adopted for the production of the compos-
ite material. The dependence for the matrix alloy is almost insignificant. This
behaviour should be expected since in the case of the composite material, the
plastically induced anisotropy is caused by the fact that the initially spheri-
cal reinforcing particles are transformed gradually into elliptic-paraboloidal ones
[23]. Such a transformation does not take place in the matrix alloy and thus the
plastically induced anisotropy is much weaker.

On the other hand, the analysis of the SEM images pointed out that the
fracture process is still controlled by the void coalescence mechanism despite
the presence of the reinforcing SiC particles. On the other hand, SEM analysis
of the fracture surface of uncracked specimens indicated that the micro-cracks
are initiated in the matrix rather than at the particle-matrix interface. This
peculiar, at least for MMCs, phenomenon can be explained by the fineness of
the reinforcement phase as well as by the process used for the production of
the specific MMC (powder metallurgy) which is responsible for some porosity.
Thus, in the case of uncracked specimens void nucleation than void coalescence is
the critical step for failure. When the local plastic relaxation that relieves stress
concentration becomes difficult, as in the case of pre-cracked specimens, where it
is concentrated in the vicinity of the tip of the macroscopic crack, then the final
failure occurs at rather low strains. It seems thus that the presence of macro-
cracks changes the failure mechanism, explaining in this way the deterioration
of the mechanical properties of cracked MMCs.
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THE AIM OF THE PAPER is to formulate a particular case of the J. Rychlewski yield
condition for anisotropic linear elastic solids with Hooke’s law and the limit tensor
representing elastic range in the Mises yield condition under the assumption that
different symmetry of elasticity tensors and the limit tensor appears. The elastic-
ity tensor C is assumed to have cubic symmetry. The yield condition is based on
the concept of stored elastic energy density, the theory of proper elastic states and
energy orthogonal stress states developed by J. RycHLEwskI [1-3]. Three possible
specifications of energy-based yield condition for cubic crystals are considered: the
criterion based on the total distortion energy, the criterion based on the energy ac-
cumulated in the three proper states pertinent to cubic symmetry and the energy
based criterion for cubic symmetry in elastic range and orthotropic symmetry in the
limit state. Physical motivation, comparison with available experimental results and
possible applications in mechanics of anisotropic solids as well as in nanomechanics
are discussed.

1. Introduction

THE AIM OF THE PAPER is to study some particular cases of the RYCHLEWSKI
yield condition |2, 3| for anisotropic linear elastic solids with Hooke’s law

(1.1 0=S8-t 0y =8ncr, €=C-0 enn=Cnnijoi
such that

(6im6jn 3 6i716jm)

BO |

{1.2) CoS=80C =I5 < SijaiCrimn =
and the limit tensor H representing elastic range in the Mises yield condition
(1.3) o-H:0=Hjjnoijon <1,

under the assumption that different symmetry of elasticity tensors of stiffness S
and compliance C vis-a-vis the limit tensor H appears. The elasticity tensor C is
assumed to have cubic symmetry, while at the limit the state material becomes
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cubic or tetragonal or in general orthotropic. Three possible formulations of the
energy-based yield condition are considered.

In the simplest case, the energy of distortion, which can be separated from
the total elastic energy density, is taken as a measure of material effort. This is a
direct extension of the approach proposed independently by J. C. MAXWELL [4],
M. T. HuBER [5] and H. HENCKY [6] for isotropic solids, which is based on
the assumption that only a part of the density of elastic energy — energy of
distortion - is responsible for reaching a limit state. In this case, only one crit-
ical value of the limit state exists, e.g. yield strength. Such an approach can be
applied only for solids of isotropic or cubic symmetry because only in such a
case the part of elastic energy related with volumetric change corresponds to
proper elastic state and the assumption of material incompressibility is admis-
sible. For other symmetries, a volumetric change does not correspond to proper
elastic state and W. BURZYNSKI condition [7] should be assumed in order to
extract the density of elastic energy related with spherical part of stress from
the total one. This confines the considerations to the class of solids with volu-
metric (spherical) isotropy and enables introduction of the simplifying constraint
of incompressibility (cf. [8]).

The second case is related with the elastic energy densities corresponding
to three proper elastic states, as derived in [9, 10]. In such a case three critical
values of limit state (e.g. yield constants) can appear in the limit condition.
Under incompressibility assumption the number of critical values reduces to
two. The advantage of J. RYCHLEWSKI approach (2, 3] lays in the possibility of
consideration of different symmetries of a solid body in the elastic range and in
the limit state. This enriches the spectrum of possible applications. Therefore, in
the third case, the energy-based yield criterion is derived for the situation when
a body is of cubic symmetry in elastic range and becomes orthotropic in the limit
state. Physical motivation is presented and possible experimental verification of
the proposed energy based criteria is discussed.

2. Physical motivation

The well-known examples of solids with cubic symmetry are metal single crys-
tals of FCC and BCC lattice. Since early investigations of E. Scumip [11, 12],
the assumption that single crystal starts to yield, if the shear stress resolved
onto the crystallographically defined slip plane and in the slip direction reached
a critical value, is commonly used in plasticity of single crystals and polycrys-
talline aggregates. Such a criterion, known as the Schmid rule, can be expressed
in the case of a single crystal subjected to tensile load P in the form:

P
(2.1} q COS (P COS A = Tgr,
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where ¢ and A are, respectively, the inclination angle of the normal to the slip
plane n with respect to the tensile axis and the inclination angle of the slip
direction b with respect to the tensile axis, while 7, denotes critical value of
shear stress once plastic glide starts to operate. In general, for arbitrary Cauchy
stress tensor o the criterion reads

(2.2) ban = 7.

The experimental investigations reveal a good confirmation of this criterion for
HCP and FCC single crystals in situations, when only a single slip system oper-
ates. Remarkable deviations have been observed, however, in cases when multiple
slip occurs, e.g. for the orientations of tensile axis lying near to the corners of the
fundamental triangle of stereographic projection. The plastic yield in BCC single
crystals also does not conform to the Schmid criterion. These facts have been
already reported in [12, 13]. The studies concerning localization of plastic defor-
mation in single crystals [14, 15] also show that modification of the Schmid condi-
tion accounting for other components of stress tensor provides better prediction
of localization phenomena. The atomistic study based on molecular dynamics
simulations and examining the effect of crystal orientation on the stress-strain
relationship of Ni single crystal shows large deviations from the Schmid criterion
[16]. The recent investigations of [17, 18] related with atomistic calculations of
the behaviour of dislocation core and the so-called non-Schmid effects in the
plastic yielding of BCC single crystals led the authors to the yield criterion in-
cluding non-glide components of stress. Although the mentioned applications of
molecular dynamics simulations provide deeper insight into the phenomenon of
the onset of plastic glide and the core structure of a dislocation in BCC metals,
the criterion accounting for non-glide components bears an empirical character.
Therefore, such an approach cannot be generalized for other situations, which
might be related with other crystalline structures, e.g.: nanostructures, thin lay-
ers or interfaces. In the case of nanocrystals the difference in the interatomic
distances, with resulting change of symmetry of the bulk material and strained
surface layer becomes essential (cf. e.g. [19]). The strained surface layer is often
a site, where a limit state can appear first. Under the limit state, we can under-
stand in such a situation breaking of atomic bonds, which may lead to formation
of a point defect or a dislocation. Evaluation of the critical energy of breaking
of atomic bonds with application of a quantum-mechanical model of an ideal
Cu crystal was presented in [20]. The question arises then, how to formulate the
limit criteria for solids exhibiting different symmetry in elastic range and in limit
state.

The problem was studied afresh in [21], where a new approach has been pro-
posed. It is based on the fundamental concept of density of elastic energy of
distortion accumulated in a strained solid, anticipated in 1856 by J. C. Maxwell
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in his private letter to W. Thompson |4] and discovered, independently, by
M. T. Huber [5]. This pivotal idea, proposed originally for isotropic solids, was
further extended for elastic anisotropic solids in the studies of W. BURZYNSKI [7],
W. OLszAakK, W. URBANOWSKI [22], W. OLszAK, J. OSTROWSKA-MACIEJE-
WSKA [23] J. OSTROWSKA-MACIEJEWSKA, J. RYCHLEWSKI [9] and J. RYCH-
LEWSKI [2].

3. Formulation of the problem

The yield conditions are based on the concept of stored elastic energy, the
theory of proper elastic states and energy orthogonal stress states developed by
J. RYCHLEWSKI [1-3], who proved that the Mises limit criterion bounds the
weighted sum of stored elastic energies of uniquely defined, energy orthogonal
states of stress

1 1 ]
(3.1) o H o=—®&(0))+ -+ —P(0p), p < 6,

hy hp
where 0 = 0} + 02+ - - + 0, is the unique decomposition of stress tensor @ into
energy orthogonal states, o4-C-0; = 0 for k # [, and hy,. .., hy are the pertinent
energy limits of elasticity, which we called in [20] the Rychlewski moduli.

If the compliance tensor C possesses cubic symmetry, three elastic proper
states exist. The spectral decomposition of the compliance tensor for cubic sym-
metry has the form [9, 10]:

1 1 1
3.2 C=—P —P — P,
(3.2) N 1+/\“ 11+)\m 1
where the projectors Py, K =1, II, III are given by
1
Pl=-1®1,
1= 3 ®
1
(3.3) P, = (K ” §1 ® 1) ,
Py = (Is — K)

and Ar, A\ip and App are the Kelvin moduli, which can be expressed by elasticity
constants representing the components of stiffness tensor (cf. [24], where the op-
posite notation for the tensors of compliance - § and stiffness — C in comparison
with our work was assumed):

At = A1 = S + 281122,
(3.4) Air = Az = A3 = Ay = St — Suee,

Al = As = Ag = 252323,
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whereas the fourth-order tensor K is defined by unit vectors lying along the
edges of the elementary cube (m;, my, mgy)

(35) K=m®m e®m;&m; +m;@m;®my®ms+ m3®mz ®mz® msj.

The stored elastic energy for unit volume is composed in such a case of three
parts |9, 10]

) o= %6 -C-0=9,(0) + 2} (0) + ¢} (0)

. 1 1 1
(tro)? + — |0 - K - 0 — = (tra)? +W(traz—U-K-0),
1

11
6 A\f 211 3

the energy of hydrostatic states @! (o) and the energy of distortion Ps(0) =
(D}I (o) + @}” (o) related with two deviatoric states, respectively.

4. Criterion based on the energy of distortion

In the first approach, the energy of distortion @, (o) that can be separated
from the total elastic energy density is taken as a measure of material effort:

(4.1) &; (o) = oY (0) + 2} (0)

; 1
(myom;)? + (myom,)? + (mzomg)* — 3 (tro)?

2An

o-0— (mpom;)? + (myomy)? + (mzom;)*

+
22 m

The criterion of energy of distortion for solids of cubic symmetry, in particular
for crystals of cubic lattice, can be stated as follows [21]:

The yield condition is satisfied, if the density of energy of distortion accumu-
lated in a body of cubic symmetry attains certain critical value .,

(4.2) b (0) = Do

The critical value of energy of distortion can be determined experimentally
in a tensile test of a single crystal along the direction of unit vector n = (m,; +
mmy + nmy with stress ¢ = o,n ® n. The energy of distortion takes in such a
case the form [10]:
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(43)  @;(on.n)

= gy (l4+m +n —l)+§)—t[—102( — (' +m* +nt))

, 1 1 ; 1 1
2 4 1 4

= e, R l + m + mn + —_—
% [(2)\” 2,\]]1) ( ) 2)\[1] f)A[]

Let us observe that there are two initial orientations of the crystal subjected
to tension, for which the formula (4.3) obtains a particularly simple form [21]:

e Initial orientation chosen for one of the edges of elementary cube, i.e. [100],

[010] or [001].

e Initial orientation taken along the normal to the octahedral plane [111].
For the orientations [100], [010] or [001] we have, respectively, [=1, m=n =0,
m=1,l=n=0, or n=1, [=m=0 and the energy of distortion can be expressed
by means of tensile stress along one of the cube edges:

L1 11 11 . 11
11 _ 2 . — 2 oy .
(44) P5 (0[100]) = gEU[wo] ET [010] = 5)\—“‘7[{)01]7 Py = 3 X0 Y7,
while
(4.5) &' (o1100) = 25" (o1010)) = P}" (o100) = 0.

On the other hand, for the initial orientation [111] the distortion energy takes
the form

11 . 11 _.
11 2 _ 2
(4.6) o5 (opu) = 3 oy Tl Do = ET]EY“
while
(47) gp{fl (0[111]) = [)

It means that in the limit state the ratio of two critical values of tensile stress
at yield is determined by Kelvin moduli Ajp and Appg

(4.8) 5 JAR
. Y3 Al
Then, the tensile tests of a single crystal along one of the edges of elementary
cube and along the initial orientation [111] lead to two deviatoric states, which
arc energy orthogonal. It can be also proved that these directions correspond to
the extremal values of Young modulus (cf. [10]). Due to this we can use one of
these tests to measure the yield stress and the other one to verify by means of
(4.6) the proposed criterion of energy of distortion.
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5. Specification of the criterion for cubic crystals for spectral
decomposition of the elasticity tensor C

The second case of possible formulations of energy-based yield condition is
related with the elastic energy densities corresponding to three proper elastic
states (3.3), as derived in |9, 10]. It is the specification of general criterion (3.1)
that was obtained originally by J. Rychlewski from the main energy orthogonal
decomposition for cubic symmetry. According to [9] it takes form:

2 7] 2
o o: oF
1 2 3
(5_1) = of == =S ]
2 2 2 =5
ki ok k3
where af = 0; 0, k? = 2h; A, 1 =1, 2, 3 — no summation for ¢. In such a case

three critical values of limit state (e.g. yield constants) can appear in the limit
condition. If k; = oo, we say that the i-th state is safe for any state of stress.
In the theory of plasticity of isotropic metallic solids it is often assumed that
the spherical parts of stress tensors are safe. Such an assumption can be also
extended to bulk metallic solids of cubic symmetry, since the hydrostatic state is
a proper elastic state. Therefore, sometimes a body of cubic symmetry is called,
if we abstract from its crystallographic features, a body of cubic isotropy. It
should be mentioned however that for other types of symmetry (anisotropy) the
hydrostatic state is not a proper elastic state. If we assume for certain reasons,
for simplicity or having experimental justification, that the material is pressure
insensitive, we confine at the same time our considerations to certain class of
bodies with constraints, which are volumetrically isotropic (cf. [2, 8]). It is also
worthwhile to observe that the limit condition (5.1) can be obtained also if we
assume that the limit tensor H possesses the same symmetry as the compliance
tensor C (they are coaxial, i.e. they have the same proper subspaces but different
proper values).

If the hydrostatic state of stress is safe, we have k; — oo and the quadratic
limit condition (5.1) can be expressed only for two deviatoric states

o2  o? (m|0m1)2 + (m20m2)2 + (mg(rmg)2 —3 (tr(r)'2
5.2 =+ =5 = ‘
oY BTR g
-0 — [(m10m1)2 + (rngamrz)2 + (mgcmg)z]
+ 5 < L
k3
where k% = 2ho A1, k? = 2hzAi are the limit constants, which should be

determined experimentally, e.g. in tensile tests. The tensile tests for single FCC
crystals with different initial orientations have been proposed in [20] to verify
experimentally the new yield criterion. Accordingly, the yield stress in tension
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along the direction n = lm; + mm;y + nmj, while the elasticity tensor C and
the limit tensor H are coaxial for single cubic crystals, was calculated under the
assumption that k1 — oo

(5.3) ¥ WY £ (i* + m* +nt) o
1 = S b - s - 39 m '

3 B\ A
Two limit constants ke and k3 can be determined in the independent tensile tests
for a single crystal with initial orientation chosen along one of the edges of elemen-

3
tary cube [100], [010] or [001], what gives o(100] = O[010] = OJo01] = Y2 = \/;kg,
1
V3

3
and along the direction n = [111], what leads to oj11y) = Y3 = \/;kg.

6. Specification of the Rychlewski approach for materials
of cubic elasticity and orthotropic limit state

In the foregoing discussion there was not necessary to specify the limit tensor
H. The limit conditions were derived on the basis of the elasticity tensor S and
compliance tensor C. If we assume that H is coaxial with C, then the criterion
of the form (5.1) can be also obtained

¢(o1) , F(o2)  Ploy) |
h,l h.-g h3

(6.1)

where the Rychlewski moduli h; = @¢ (0;) , ¢ = 1, 2, 3 correspond to critical
energy of pertinent proper state.

In the general approach of J. RYCHLEWSKI [2] tensors C and H are not
interrelated and can possess arbitrary symmetry. In the third case of energy-
based limit condition, cubic symmetry of elasticity tensor C and orthotropy of
limit tensor H is studied. As an example, we can consider a single crystal with
the lattice of cubic symmetry in a natural state. According to the Cauchy-Born
hypothesis, which says that the lattice vectors deform like “material filaments”,
an extension along one of the edges of the cell with cubic lattice transforms it
into the cell of tetragonal lattice. Such a situation appears also if we consider
nanocrystals, where the difference in the interatomic distances in bulk material
and strained surface layer results in the change of symmetry from cubic to tetrag-
onal. Similar situation appears in the case of heterostructures composed of layers
of cubic symmetry and strained interface of tetragonal symmetry. Therefore, in
the elastic regime the bulk material remains cubic and the limit state can appear
first in the surface layer or interface, which is of tetragonal symmetry. This is
a special case of an orthotropic limit state. In further considerations, we assume
that the symmetry axes of the material in elastic range and limit state coincide.
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As it was observed in [25], for orthotropy the spherical tensor is not a proper
elastic state. However, for the additional constraints H-1 = 0, it becomes the
proper state with the eigenvalue equal 0. Such an assumption is often made in
order to eliminate the influence of spherical part of stress on plastic yield. In
such a case, it can be shown that spectral decomposition of the limit tensor H
takes the form [26]:

1
(6.2) H=—TI+...+ —T%,

where I'y, ..., T'g, are the orthogonal projectors for H. The orthogonal projectors
T'; are defined by proper states x; corresponding to the different eigenvalues K;
of the limit tensor H that is:

(6.3) F'i=x19x1, -+, T's =X ®Xs-
Proper states x; of the tensor H can be expressed as follows

1

X1 \/5

Xo = cosyayy + sinay,

L

X3 = —sinyay + cos Yar,
(6.4) %y = % (my @ X3 + m3 ®my),
1
xszﬁ(m1®x3+m3®m1)ﬁ
1
X6 = ﬁ’

where (m;, my, m3) denote the unit vectors lying along the edges of the ele-
mentary cube, whereas the tensors aj; and ag are defined by the formulae

aj = m; ® m; —my @ my),

e
7

|
an = —=(m; ® m; + m; ® my — 2m3 ® my)

v

and v is the strength distributor that depends on the components of the limit
tensor H.
From (3.3) and (6.3) it follows that

(6.6) r, =Py, 'y +T'3 = Py, I'y+Ts+Ts =P,
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what results from (3.2) in

Al All Al

By comparing (6.2) with (6.7) one comes to the conclusion that, in the con-
sidered case, the limit tensor H is partially coartal with the compliance tensor C,
that is all the proper states of H are the proper states of C (but not opposite).
It means that the symmetry group of H is contained in the symmetry group
of C.

Let us formulate the Mises-type condition (1.3) for the assumed tensor H
given by (6.2) in the energy-based form (3.1). In order to obtain this form,
according to [2], the following eigenvalue problem is to be solved

(6.8) (H . é%c) -k =0.

Substituting (6.2) and (6.7) into the above formula it is found that

1
det ([H— —C) =0
e( 2}1)

(6.9) A K\ = ; Ky K3
== -3, b= B B2 ey
Y © T g YT 2
K, K Ks
h‘4 == 1 3 h’5 = | 3 6 = "_?_"
2111 211 2
and k;=x; (1 = 1,...,6) given in (6.4), so in this case the energy proper states

K; are equal to the proper states of the tensor H. The energy orthogonal stresses
o; are then calculated as

(6.10) o;=I;-0 and o=0;+03+...+ 0.

Graphical illustration of the above stress state decomposition for the analysed
case of material symmetry is presented in Fig. 1, where the following notation
is used:

1
T=§(011+022+033),
S Joreh a o = 7 )
8 = s———=[011 + 022 — 2033 — v (011 — 022)],
(6.11) ST T
1
U=W[3(Ull—022)+’7(011+022—2033)]a

p =013, q = 023, v =012, v = —Vv3coti.
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FiG. 1. The energy-orthogonal decomposition of the stress state for the material that has
cubic symmetry in the elastic range and becomes orthotropic in the limit state.

if

Energy-based formulation of the limit criterion for the considered case is
therefore due to (3.1) and (6.9) as follows:

_2Mn 2/\11

2/\1;1 2Am 2A1m
e —_— —_— 1.
7d ® (o4) + K, @ (05) + K (o6) =

It should be noted that from (3.6), (4.1) and (6.12) it transpires that

(6.13) &) =d(0;)+®(o;) and B} = d(0,) + Do) + (o).

7. An energy interpretation of the Hill yield condition
for orthotropic solids

The equation (6.9) enables an energy-based interpretation of the Hill yield
condition for plastically incompressible orthotropic solids that exhibit cubic sym-
metry in the elastic regime. The Hill yield condition for the orthotropic solids is
given by the formula [27]:

(7.1) F(022—033)2+G(033 —011)2

+ H (o171 — 022)2 + 2Nof2 + 2MU¥3 + 2L0§3 =1,
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where the constants F, G, H, N, M, L can be expressed by the yield limits
obtained in three tensile tests along the orthotropy axes, X, Y, Z and three
shear tests in the planes of orthotropy R, S, T

1 1 1 1 1 1 1 1 1
H=mtm—x Wemtxm v W=pmty 7
(7.2)
1 1 1
2L=17, M=, 2=

Stress components o;; are the components of the stress tensor ¢ in the or-
thotropy axes. This equation can be rewritten in the form (1.3) proposed by
Mises. Eigenvalues of the limit tensor H and the strength distributor 4 are then
obtained as [26]:

] 1
K2: 1 3 Kf}: i )
F+G+If—+—§\/‘AU F+G+f—§\/ﬂu
1 1 1
K4=-r K5:_7 Kﬁ_—“
(7.3) & M it
F+G—-2H—Apgy
tan 1 = !

V3 (F - G)
Ay =2|(H = F)+(H-G)+(F-G)] >0.
Equivalently, due to (7.2) and (7.3) we have

1 _i7f 1 1
K, 2\X2 vz Z2

1/2

109 o8 HE . ¥ e 1 %2
x z)T\e 7 t\ewx *

P4y 1 1 1+i+1
Ks 2\X?2 Y2 22

L1
2

y 51 1/2
1 1 1 %% N . 2 (2 1 \2]Y
2 [\x2 22 Y2 Z2 Y2 X2 ’

K, = 2R?, Ky = 252, Ke = 272,
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(7.4)

[cont.]

Pl a) o2 o)

()

tany =

1 1 2

Vi xit
1 E %

V5 (73 - 52
The particular case of orthotropy with the additional symmetry of rotations
of the angle 7/2 about the axis parallel to m3 was considered. The results are
applied for the analysis of a single cubic crystal which, due to the finite extension
along the one of cubic directions, changes symmetry and becomes tetragonal. In

such a case we have F' = G and L = M, or equivalently X =Y and R = S,
therefore

1 1
F42H' ~° 3F 4

s 1
(75) 1[) == 57 K2 K5 = ﬁa

1
1’

1 2+v21 1-v21

K 2 X2t T3 @
(7.6) 1 _2—\/§1+1+\/2‘1
Ky 2 X? 2 Z¥

Ky = K5 =252, K¢ = 2T2.

Still tensor H is partially coaxial with the tensor C, but in this case we have
only five uniquely defined energy-orthogonal projectors I';.

(77) I‘;:I‘z— for 1=1,...,3 and F;II‘4+I‘5, ngrﬁ.

The form of energy-orthogonal decomposition (6.10) of the stress state o
for this special case of material symmetry (tetragonal) is shown in Fig. 2. The
following notation is used (see (6.11)) for v = 0:

(o1 — o22),

DN =

1 1
T:§(011+022+033), s=—(on +0o2—2033), u=
(7.8) 6

p =013, q = 023, v = 012.
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According to (6.2) and (7.6), the limit condition for the material of cubic
symmetry in elastic range and tetragonal in limit state can be expressed as
follows:

2 _ 2
(2 + \/i)ZX-;Z(; V2)X 5(0,)

(2-v2)Z’ + (1 + VX2 | i

X222 ¢ (03) + oz @ loa) + =
where, besides the Kelvin elastic moduli Aj; and Ayyy, four limit values are to be
determined; in two tensile tests along the edges of the tetragonal unit cell and
two shear tests changing the right angles between the edges.

(7.9) Al

~+ )\H

g, g,
""’
‘_— _‘b.
5 u

all

el

“HNHIIM‘“

Fic. 2. Energy-orthogonal decomposition of the stress state for the material that has cubic
symmetry in the elastic state and becomes tetragonal in the limit state.

8. Discussion of possible experimental verification and conclusions

From the geometry of slip in a FCC single crystal which is subjected to
tension in the direction [100], it appears that eight potential slip systems can
operate. In such a case we have

(8.1) J[100) = Yo= \/chr-

Similar relation holds for tension in the direction [110] corresponding to ac-
tivation of four potential slip systems, o119 = V67¢r. In the case of tensicn in
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the [111] direction, six potential slip systems exist and the critical stress at yield
reads

3v6

(8.2) o) =3 = —

Ter-

Comparison of the discussed energy-based limit conditions on the example
of Cu single crystal leads to the following relations:

Y-
e Schmid criterion — — = g =~ (0.67, T = const.
Y3 3 -
e Hypothesis of elastic energy of distortion — ?2 = 0.56.
3
Yo &k
e Energy-based quadratic condition — 22
Y ks

These relations should be verified experimentally. The results of J. DIEHL
[28] can be applied to make at least an approximate assessment of the ratio Y5 /Y3
for Cu single crystals. In [28] (Fig. 12, p. 335) the values of critical resolved shear
stress 7. for different initial orientations of single crystals subjected to tension
were given. We calculated the average values of 7. taken from the neighbor-
hoods of the orientations corresponding to the corners of fundamental triangle
of stereographic projection: (7)Y = 106.67 [g/mm?| for [001], (Tcr)[“l] =

aver aver

127.20 [g/mm?] for [111] and (Tcr)glvle?.] = 110.25 [g/mm?] for [110]. The resulting
values of tensile yield strengths are: Y; = \/E(Tcr)gov(llr] = 261.29 [g/mm?)], Y3 =
3—\2/—6(7”)5‘,1@1] = 467.36 [g/mm?] and Of110) = \/6(7'”)5\;2} = 270.06 [g/mm?],
respectively. It is visible that the resulting ratio Y3/Y3; = 0.56 is close to the
value obtained from the hypothesis of elastic energy of distortion. The equality
within two digits of accuracy is rather coincidental because the assessment of
experimental data is very rough. Nevertheless, rather large discrepancy with the
prediction of the ratio Y5/Y3 = 0.67 calculated according to the Schmid criterion
should be noted. The test for the direction [110] does not provide so good con-
firmation. We can observe that due to (4.3) and (4.4), with an account of Kelvin
moduli for Cu single crystals A;p = 47 [GPa], Ay = 150 [GPa), the theoretical
prediction of the ratio Y3/0(;,9 = 1.39 and the discussed above experimental
data provide Y3/oy119) = 0.97. The program of systematic experimental tests is
necessary to verify the proposed criteria. The main difficulty lies in accuracy of
measurement of yield limit for single crystals.

The proposed energy-based criteria can be applied in mechanics of anisotropic
solids, e.g. formulation of yield criteria for metals subjected to shaping opera-
tions as well as for polymers and composites. For example, it could provide deeper
insight into the description of elastic and plastic anisotropy in sheet metals pre-
sented in [29]. The application of spectral decomposition of elasticity tensor
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and energy orthogonal stress states proposed by J. Rychlewski for transversely
isotropic material, representing fiber reinforced composites, was studied in [30].
Also in the field of nanomechanics the proposed approach can appear helpful fill-
ing the gap between the atomistic calculations and continuum mechanics mod-
elling of the behaviour of different kinds of crystalline nanostructures. In such a
case the pertinent limit values of elastic energy should be determined from the
first principles with use of quantum mechanical theory of the strength of atomic

bonds.
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A CONSTITUTIVE THEORY, finite element formulation and topology optimization for
anti-vibration rubber are presented. Many vibration isolators made of rubbers are op-
erating under small oscillatory load superimposed on large static deformation. A vis-
coelastic constitutive equation for rubber is proposed considering the influence of
large static pre-deformation on the dynamic properties. The proposed model is de-
rived through linearization of Simo’s viscoelastic constitutive model and introduction
of static deformation correction factor. And then the model is implemented in a fi-
nite element code to analyze the behavior of rubber elements under general loading
conditions. Dynamic tests are performed in order to verify the model under multi-
axial deformation. The computed results by the FEA code are compared with the
experimental results and the suggested constitutive equation with static deformation
correction factor shows good agreement with the test values. For the stability and low
transmissibility of isolation systems, both static and dynamic performance must be
concurrently considered in the design process. The continuum-based design sensitivity
analyses (DSA) of both the static hyperelastic model and dynamic viscoelastic model
are developed. And then the topology optimization methodology is used in order to
generate the system layouts considering both the static and dynamic performance.

1. Introduction

MANY RUBBER COMPONENTS, which are used as vibration isolators, experi-
ence small oscillatory loads superimposed on large static deformation. Most of
dynamic properties of vibration isolators can be described by linearized steady-
state harmonic response. Considering nonlinear behavior of rubber under large
deformation, it is evident that even linearized dynamic properties depend heav-
ily on prestrain. The accurate constitutive equation that describes rubber under
the loading conditions is essential in analyzing the dynamic behavior of rubber
and designing the shape of rubber elements.
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Morman’s model is widely used to describe viscoelastic behavior of rubber
that is under small oscillatory loads superimposed on large static deformation
[1-5]. Morman derived a viscoelastic constitutive model from the assumption
that the time effect and large prestrain effect can be separable. The separability
assumption leads to simple relaxation function that is independent of deforma-
tion. It is observed in experiments that the separability assumption is applicable
to unfilled rubber [1, 6]. In filled rubber, however, the relaxation function is a
function of prestrain [6, 7]. Rubber is seldom used as pure gum, because ad-
dition of fillers to elastomers improves mechanical properties [8]. Therefore it
is very important to consider the effects of prestrain in the constitutive theory
of small viscoelastic motion superimposed on large static deformation in many
engineering rubber materials [9].

In the previous work [9], the authors have proposed Linearized Simo’s Vis-
coelastic Model (LSVM) with static deformation correction factor as a consti-
tutive equation of rubber that is under small oscillatory loads superimposed on
large static deformation. In this constitutive model, the statically pre-deformed
configuration has been used as the reference configuration. And static deforma-
tion correction factor has been introduced to consider the influence of prestrain
on the relaxation function. In the previous work, it has been observed that the
proposed model works well under single stress component.

In this work, the proposed model is implemented in a finite element code
that enables us to predict the behavior of rubbers for general complex shapes
and loading conditions. And dynamic tests are executed in order to verify the
proposed constitutive model. Complex stress-state tests are included in the dy-
namic tests in order to assure the proposed model under multi-axial stress states.
The computed results by the FEA code are compared with the experimental re-
sults in order to estimate the performance of the model.

Many works for engine mount system of vehicles and aircrafts used two-
level design approaches [10]. First step is the system level design in order to
decide the mounting location and mount stiffness. In this level, simple spring-
damper models are generally used with constant parameters such as dynamic-
to-static ratio and loss factor. However these models are too simple to describe
the complex behavior of rubber-like materials. Second step is the isolator shape
design to get target stiffness decided in the first step. Various optimization ap-
proaches [11-13] are applied to the shape design, but they consider the only
static hyperelastic behavior of rubber. Most vibration isolators must endure
the static loadings due to large gravitational and inertial forces. And also they
must be dynamically flexible in order to have small natural frequencies and re-
duce the transmitting dynamic force from the vibrating systems to the other
structures. Therefore in the stiffness and shape design process of the vibra-
tion isolators, both static and dynamic behavior of rubber materials must be
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simultaneously considered for the structural stability and the vibration isola-
tion.

For the stability and low transmissibility of isolation systems, both static
and dynamic performance must be concurrently considered in the design pro-
cess. Among the various design methods, a topology optimization approach can
be applied for the shape design of vibration isolator made of filled rubber. For
easier application of the optimization algorithm, two kinds of continuum-based
design sensitivity analysis method are developed. Material property design sen-
sitivity analysis of both the hyperelastic constitutive equation and the steady-
state viscoelastic one are developed for topology optimization using the mean
compliance and adjoint variables. In order to consider simultaneously the static
and dynamic behavior of rubber, a proper topology optimization formulations is
proposed.

2. Constitutive equation and FE formulation
2.1. Notation

The small deformation superimposed on the large static deformation is de-
picted in Fig. 1. Let &, denote the configuration of the body 4 at instant £.
Configuration @y, @4, and &, refer respectively to the undeformed, the statically
deformed and the current configuration. ¢T'(7) represents a tensor T at time
n with respect to a configuration @¢. For convenience, the following simplified
notations are also used:

(2.1) T(n)=¢T(n), eTy = ¢T'(to), oT' (&) = ¢ T(§), T = ¢T(t).

The deformation gradient and volume preserving deformation gradient tensor
are denoted by

(2.2) (¢F (1), = (%) =R

where J is det (¢F). Left and right Cauchy-Green tensors that correspond to (F
and ¢ F are

(2.3) ¢€C=(FT¢F, (C=¢F ¢F,
(2.4) ¢B=FFT,  (B=FF"
and Green strains are defined by
1 o A
(2.5) ¢E=5(cC-1), E=3(C-1).
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t=t

] Static
X 3 f;

XZ
Xl

FiG. 1. Large static deformation + small dynamic deformation.

2.2. Linearized Simo’s viscoelastic model (LSVIM)

Simo proposed a finitely deformable viscoelastic model from the generaliza-
tion of standard linear solid model [14]|. The characteristics of Simo’s model are
decoupled bulk and deviatoric responses over any range of deformations and lin-
ear rate constitutive equation. Simo’s nonlinear viscoelastic constitutive model
is written as follows:

(26) S= s L jmpEy [(d ‘pﬂ

aJ JFE
/ ow
+ J7¥SDEV / va ( ) i |
g(t 55 ) %
0
where DEV [o] = (8) — 1/3[C : (e)] C~!, U and ¥ are the volumetric and devi-

atoric parts of the elasmc free energy function. From this model, static stress is
given as
(2.7) ao = Pl + dev [y),
g—g JFgg_E.FO and dev [e] = (o) — 1/3[] : (¢)] 1. We know
from the above equation that static behavior of Simo’s model is exactly equal
to that of hyperelastic material. The static stress caused by prestrain is deter-
mined only by the last state of static deformation. Because of the fading memory
hypothesis |15, 16| of the viscoelastic material, the effects of the deformation his-
tory are relaxed out. Thus we can assume that viscoelastic effects depend only
on the superimposed small vibratory deformation.

A linearized constitutive equation that specifies the behavior of rubber under
small oscillatory load superimposed on large static deformation can be derived

where Py =
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from the assumption that the superimposed motion is small. Repeated applica-
tions of the chain rule to Eq. (2.6) and the reference configuration transformation
vield the relation between the stress increment AgS and the superposed strain
increment €.

U

(2.8) AyS = (J“gji' +

P) expd — 2P¢

t
2
—g[dev(30)®1+1®dev(3[))] :E+’€:£+[g(t—§) % : edE,
0

2/ s AL
(2.9) %:5(0:1)(1—51@@1)
+$—%[(5z;1)®1+1®(,%1)]+%(1:5¢:1)1®1,

T . = S
where Fijn = =FirFjiFraFu (—_—2) and I is the fourth order identity
J OF" / 1iKkL
tensor.
Let us suppose that the superimposed deformation is steady-state harmonic

such as ¢ = e*e™!. Then the complex constitutive relation is extracted from

Eq. (2.8).

\ B o*U " ’
2 0 = o i
(2 10) A S IdJ2 + P Ekk‘[ 2P¢
2 S ~ * . *\ ¢ *
—g{dev(a)®l+1®dev(o)] te" 4 (1 +iwg®) €€,

w .
where g* is the Fourier transform of g¢(t) ie. ¢*(w) = / g (t)e “'dt. The

0
relation between ¢* and complex shear modulus G* = G’ +iG" is as follows:

GI’ Gf
11 h— - 2
(2.11) wy . + (1 Goo) i

2.3. Static deformation correction factor

Thus far it has been assumed that g (¢), which represents the time effects,
is not affected by static deformation. This separability assumption of time and
large prestrain is suitable for the rubbers that do not contain such fillers as
carbon black [6, 7]. However, it is known from experiments that g (¢) depend
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on the static deformation for filled rubber [6]. Unfilled rubber is seldom used for
engineering applications, because the addition of fillers improves their mechanical
properties [8]. Therefore the influences on g (¢) due to the static deformation must
be considered in order to develop a realistic viscoelastic constitutive model. In
order to describe the non-separability nature of filled rubber, we introduce a
static deformation correction factor ¢* (By) to the constitutive equation. Now
we define g~ which is the correction of 1+ iwg* in Eq. (2. 10).

(2.12) g = (1+iwg")c" (Bo),

where ¢* (Bp) is a complex-valued function that depends on the static deforma-
tion. g can also be described as follows using complex shear modulus and ¢*(Byp).

o, G , e B G
(2.13) 9 (w,Bo) = e (Bo) = (a;*"@@ c¢* (Bo) = e

In the above equation, G* can be interpreted as an effective complex shear mod-
ulus under static deformation. The static deformation correction factor can be
expressed by the modulus and argument of ¢*,

(2.14) ¢* (Bg) = ce®.

To define ¢* in a specific form, we need to measure the static deformation that
is described by the tensor By. It is observed that generalized octahedral shear
strain has good performance as a static deformation measure. The generalized
octahedral shear strain [17] is defined as

LA TR o T
(2.15) IWFE(ZIL—()IQ) :

where T; and T, are the first and second invariants of the right Cauchy- Green
tensor C. 1., is an invariant of Bp and represents the octahedral shear strain
under infinitesimal deformation. Since the value of ¢* is unity without the static
deformation, the following polynomial forms can serve as the static deformation

correction factors:

(2.16) 2 (L) = cyet®r,
(2.17) eIy} =14 2y Dyt it Tom,
(2.18) 8T =g 1),

where z,,, z, and gz, are material constants. The material constants can be
easily determined by the results of uniaxial tension test.
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2.4. Mixed FE formulation of static deformation

For the FEA of a rubber element that is under small steady-state dynamic
load superimposed on large static deformation, the static analysis results such
as statically deformed shape and static stress state are required. Since rubber
can be idealized as a hyperelastic material as mentioned in the previous section,
static deformation analysis results can be easily obtained using the techniques
that are developed for the FEA of hyperelastic material. In the static analysis,
nonlinearity due to large deformation and incompressibility characteristics of
rubber should be effectively treated, and so the updated Lagrangian formulation
with displacement-pressure mixed method (u/p mixed method) is used in this
paper.

The mixed finite element formulation that was proposed by SussMAN and
BATHE [18] is used in order to analyze the incompressible large deformation
problems. In the mixed method, pressure that is defined by —oy,/3 is indepen-
dent of the displacement field and interpolated by its own shape function. The
independent pressure variable is denoted by p and the pressure computed from
displacement is represented by 7. By definition of pressure and Eq. (2.7), P has
the following description:

ou
(2.19) P=—g3
The stress is composed of the derivatives of the strain energy function that is
obtained from the displacement field and the independent pressure field.
1

= O —r| .
(2.20) o5 (H) =)= Jodev [FOS—E—FO] —pl.

The governing equations in the u/p mixed method are described by the following
weak forms:

BW- 1 .
2.21 —— — —— (p—1) —— ) : S E dV = S: pEdV = R
(2.21) /(%E KJO(‘D fDaOE) 0 /0 0 :
‘//

1
(2.22) = =0 ipdV =
/

In the above equations, the first and second equations are respectively the
equilibrium equation and pressure constraint between p and 5. R and K represent
the external virtual work and bulk modulus of rubber, respectively. (W that
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is the strain cnergy per unit volume of statically deformed state is defined as
follows:

~

(2.23) oW = i s (w + U)

In this paper, U and ¥ are described by the Mooney Rivlin model and the
second order polynomial of J. The specific form of the strain energy function is

(2.24) U=c (I —3) +c2(T2—3),
(2.25) U= %K £F =1

where ¢;, ¢ and bulk modulus K are the material constants of rubber.

The solution of the governing equations cannot be obtained directly because
the equations are nonlinear. Thus we use the Newton Raphson method in which
the linearized governing equations are solved by the iterative technique. The
incremental form of the governing equation can be written as follows:

(2.26) /55 9 —p I®I —2?)} redV

+ /(70 AdpE dV +[—Aﬁ[ :de dV =R — /00 e dV,
v ¢

J/,
(2.27) /—6"I'EdV—/ -
. pl : Kl
. 2

dbu;  Jdou; 1

- o +j) and ¥ = ————.
d.’Ej d.’l,‘i -Io d()Ed()E
and (2.27), the displacement and pressure field are approximated by the shape
functions.

SR L gl e
558 dV = - [ g5 (o= o) 90V,
‘/

1
where dgi; = 2 ( To solve Eqgs. (2.26)

(2.28) w; = N,
(2.29) f= 2 8

In the above equations, N is the interpolation function for the displacement
and Nrf is the interpolation function for pressure. uiI is the displacement at the
I-th node in the i direction and 7’ is the I-th pressure degree of freedom. The
element used in this study has 27 displacement nodes and 4 pressure degrees
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of freedom. The interpolation function for displacement field is the conventional
isoparametric shape function that continuously interpolates the field between
elements. The pressure field is interpolated by a linear polynomial using element
local coordinates and it is discontinuous between elements. Using finite element
approximation, the governing incremental equations are converted to the follow-
ing matrix equation:

(2.30)

Kyu Kyp Au 4 Fy
KP([ KPP Aﬁ i 0 Ly Fp ;

where Kyy, Kyp, Kpp, Fy and Fp are defined as follows:

- E)Eij g s 2 aekl
(2.31) (Kuv)on = [ Fa [J p(1®f—2l>]”k‘ e
d 029
+/U,J——a T dv,
aN'
(232) (K(]p)mq = (K[)U)qm = d Nq dV
LTy
> = e ‘_— q Nt
(2.33) (K¢ p)qz KION N, dv,
0¢;
(2.34) (Fy),, = / gt .
2. F: 9 dV.
(2.35) P) KJg p) N}

In the above equations, m and n denote respectively the displacement degree
of freedom at the I-th node in direction 7 and the J-th node in directions in the
global matrix.

2.5. FE formulation of steady-state dynamic deformation superposed on large
static deformation

The finite element formulation for the dynamic analysis is easily derived
through generalization of the static incremental formulation. In the dynamic
formulation, the viscoelastic behavior that alters the stress-strain relation and
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the inertia effects must be considered. Assuming that the displacement and ex-
ternal force increments which are superimposed on the static deformation are
varying in steady-state harmonic manner, the increments are written as follows:

(2.36) Au= Au*e™, Ap= Ap*e™t, AZ = AZ*e™, AS= B8,

The stress increments are determined by the proposed constitutive equation.
Because we use the mixed method in the FEA, the pressures and their increments
in the constitutive relations are converted to the independent variables. The
stress increments are calculated by

(2.37) AS* = 9* : £* — Py (1 @I~ Qf) £ — &L,

where 2* = g € — 2/3[dev (69) ® I + I ® dev (5¢)]. The inertia effects due to
dynamic deformation can be regarded as the body force pw? Au* by d’Alembert’s
principle. We can obtain directly the dynamic finite element formulation using
the same procedure that is used in the previous static case except for the complex
constitutive relation and the inertial body force. The finite element matrix equa-
tion for a rubber element subject to steady-state harmonic motion superposed
on finite static deformation is

M+ Kjy; Kup Au* AZ*

2.38 : i =
S Kip Kpp || Ap 0

In the above equation, the mass matrix and the dynamic stiffness matrix is
written as follows:

(2.39) My = =8, | pw®NINY dV,
(2.40) M / Ocis [9 ~ o (1@ P 21”)] Ot gy
j Mo oux! ijkl Qut
F By
+ | gt

The dynamic stiffness matrix depends on the static prestress and frequency due
to the definition of 2* and Eq. (2.40). Comparing Egs. (2.30) and (2. 38), we
see that the steady-state dynamic finite element equation has the same structure
as the incremental equation for static deformation, except that the dynamic
equation has the mass matrix and the complex stiffness matrix.
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3. Experiment and prediction by the constitutive model

Dynamic tests in which the rubber specimens are subject steady-state har-
monic motion superimposed on large static deformation have been executed in
order to verify the proposed constitutive model. The tests performed in this
work are composed of the uniaxial tension tests and the complex stress-state
tests. The coefficients in the proposed model are determined by uniaxial tension
test. The determined coefficients are required in FEA of complex stress-state
test to specify the constitutive model. In the previous paper [9] it was observed
that the proposed model works well under single stress component. In this paper,
the complex stress-state test is carried out to verify the model under multi-axial
stress state. Varying the size of static deformation, the dynamic stiffness of each
specimen is measured and compared with the predicted value that is calculated
by FEM using the proposed model. By comparison of the results, we can verify
whether the model effectively describes the behavior of rubber subject to the
steady-state harmonic motion superposed on finite static deformation.

The tests have been performed at room temperature (26°C) using a servo-
hydraulic rubber tester(Instron-5802). To subject the specimen to small dynamic
motions superimposed on finite static deformations, experiments are conducted
in two steps. Finite prestrain is applied to each specimen with 20 minutes of re-
laxation time in order to achieve the static equilibrium. After that, the dynamic
load is superimposed on the static deformation. The dynamic displacement am-
plitude is 0.5% with respect to the deformed specimen length. Initial conditioning
has been applied 12 hours in advance before the test. For the initial condition-
ing, each test specimen is exposed to the highest strain and frequency in the test
series in order to remove irreversible material structures [19]. The measurement
is executed after 50 cycles of initial dynamic loading. When the test is executed
using the displacement-control mode, the dynamic displacements and the corre-
sponding dynamic driving forces are measured as the experiment results. And
then from these test data, the dynamic modulus and stiffness can be calculated
considering the size of specimens.

Table 1. Recipes of specimens.

Ingredient | Content (phr) Ingredient Content (phr)] Ingredient | Content (phr)
NR 100 Carbon black GPF 50 Antidegradant 4
ZnO 3 TBBS 1.0

Stearic acid 1.0 S 1.75
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Table 2. Material constants and the coefficients of static deformation correction

factor.
Material constant Value | Material constant | Value |Material constant| Value
c1 (MPa) 0.46 p (kg/m?) 1124.7 92+ -0.0627
Cc3 (MPa) 0.08 Zy1 -2.841
G (MPa) 1.08 Zy2 10.81

The rubber specimens used in this work are made of natural rubber and
other ingredients. The recipes and material constants of the rubber are shown
in Table 1 and Table 2. Aluminum plates are bonded to both ends of the rubber
specimen by quick setting adhesive and each plate is bolted to the test machine.
The pictures of specimens used in uniaxial tension test and complex stress-state
test are shown in Fig. 2 and Fig. 3.

FiG. 2. Tension specimen,

Fi1G. 3. Complex stress-state specimen.
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3.1. Uniaxial tension test

Using the uniaxial tension test, the behavior of rubber under tensile loading
conditions can be examined and the performance of the proposed constitutive
model can be verified by comparing the test results with the calculated results. As
a pre-deformation, the static deformation in the range from 0% (A = 1) to 30%
(A = 1.3) is applied to the specimen. The 0.5% dynamic strain amplitude with
respect to the deformed specimen length is superimposed on static deformation
in 1 ~ 30 Hz frequency range. The definition of stretch and dynamic strain is as
follows:

l ! Al Al

(3.1) Bl RO o
lo lo lo
Al

In the above equations, lg, [, Alg and Al are respectively, the original length of a
specimen in the direction of the test machine axis, length of the specimen after
static deformation, static displacement and dynamic displacement amplitude.
As results of the dynamic tension test, storage and loss modulus of the spec-
imen are shown in Fig. 4 and Fig. 5 as a function of vibrating frequency for each
static tension case. The well-known near-linear relation between the stiffness and
log frequency is observed under different static deformation. We also can observe
that the dynamic stiffness is moved vertically with static deformation and con-
clude that the frequency effect is not influenced by static deformation. In order to

74
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Fic. 4. Storage modulus against frequency at different static stretch for uniaxial tension
specimen.
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Fi1G. 5. Loss modulus against frequency at different static stretch for uniaxial tension

specimen.
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Fi1G. 6. Storage modulus against static stretch at 10 Hz for the uniaxial tension test.

estimate the performance of the constitutive equation, the measured dynamic
modulus and thecalculated ones are plotted at 10 Hz with respect to static de-
formation in Fig. 6 and Fig. 7. The proposed model successively describes the
effects of static deformation. It is observed that the complex Young’s modulus
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of rubber shows an initial decrease followed by an increase with enlargement
of static stretch in the uniaxial tension test. In the uniaxial tension test, Mor-
man’s model and LSVM in which static deformation effects are not considered,
cannot describe the variation of the modulus by static stretch. The proposed
model describes properly the dynamic behavior of the rubber. The constitutive
equations in which static deformation effects are not considered tend to predict
higher dynamic stiffness than the value measured in the compression test.

0701 | _m— Experiment
1 | —&— Morman //
06854 | —&— LSVYM

—¥— Proposed /

0.60 /"
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w
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Stretch (5.)

Fi1G. 7. Loss modulus against frequency at different static stretch for uniaxial tension
specimen.

In the prediction of loss modulus, the proposed model anticipates smaller
value than the measured result but shows a similar trend. Since the loss mod-
uli are very small compared with the storage modulus and are very sensitive
to experimental condition, consistent experiments are difficult to be performed
for the loss moduli. The differences between the computed values and the mea-
sured ones could be caused by these difficulties. However, the dynamic moduli
calculated by the proposed model show the trends of initially decreasing and
gradually increasing against the static deformations, as similarly shown in the
experimental results.

The storage modulus is plotted with respect to the static deformation at fre-
quencies 5 Hz and 30 Hz in Fig. 8 and Fig. 9. In these figures we can observe
that the proposed constitutive model works well at other frequencies. The value
of ¢* used in the analysis at frequencies 5 Hz and 30 Hz is determined by the
uniaxial tension test results at 10 Hz. This means that the static deformation
correction factor determined at one frequency is effective at other frequencies in



464

WAaAN-SUL LEE, SUNG-KIE YoUN and BonG-Kyu Kium

the tested range. This confirms authors’ assumption that ¢* is only a function

of static deformation.

By the discussion given in this section, the constitutive model proposed in
this work efficiently describes the effects of static deformation and shows better
performance than the conventional constitutive model in predicting the dynamic

behaviors of rubber specimens subject to large static deformations.
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3.2. Complex stress-state test

Complex stress-state test in which the specimens are under more complicated
stress state is used to verify the proposed constitutive model. The specimen used
in this test has the shape of a hexahedral block with a central hole and is under
infricate stress state when it is deformed as shown in Fig. 10 and Fig. 11. The
static deformations are applied to the specimen and the values of deformations
are in the range from 15% compression (A = 0.85) to 20% tension (A = 1.2). The
0.5% dynamic strain amplitude with respect to the deformed specimen length
was superimposed on the static deformation over 1 ~ 30 Hz frequency range.
Varying the magnitude of static deformation, the dynamic stiffness defined by
the following equation is measured and compared with the computed result:

AF*
Alx’

where AF* and Al* are the dynamic force and displacement.

(3.3) K*=K +iK" =

F1G. 10. Static stress distribution for the complex stress specimen (von Mises’ stress,

A=085).

From the results of complex stress-state test, the relations between dynamic
stiffness and frequency for each static deformation show the nearlinear relation.
This trend is very similar with uniaxial tension test results shown in Fig. 4
and Fig. 5. The dynamic stiffness moves upwards with static compression and



466 WaN-SuL LEE, SUNG-KIE YoUN and BoNG-Kyu Kim

downwards with static tension. The effective cross-sectional area of the speci-
men increases with the compression and decreases with the tension, as shown in
Fig. 10 and Fig. 11.

FiG. 11. Static stress distribution for the complex stress specimen (von Mises’ stress,
A = 1.20).

In order to appreciate the performance of the constitutive equation, the mea-
sured dynamic stiffness and the calculated one are plotted at 10 Hz with respect
to static deformation in Fig. 12 and Fig. 13. The minus sign in the static dis-
placement means that the specimen is compressed by the test machine. It is
interesting to notice that the slope of dynamic stiffness curve has a discontinuity
at the point with no static deformation. It is clearly observed that the unde-
formed state is expressed as a local maximum point in the dynamic stiffness
plot. It has been shown in uniaxial tension test of the previous section, that
the modulus of rubber decreases with static deformation in the vicinity of the
undeformed state. The dynamic stiffness of complex stress-state test specimen is
decreased by both pre-applied tension and compression pre-deformation. Thus
the dynamic test results have a peak when the specimen is under no prestrain.
The constitutive equations without static deformation correction factor cannot
describe the peak and anticipate higher dynamic stiffness than the experimental
value. The proposed model, however, effectively describes the effects of prestrain
that cannot be expressed by conventional constitutive models as shown in the
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figures. The dynamic stiffness is plotted against the static deformation at 30 Hz
in Fig. 14. It is observed that the proposed constitutive model works well at other
frequencies. This result confirms the fact that the static deformation correction
factor determined at one frequency is also effective at other frequencies in the
tested range.
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FiG. 12. Real part of complex stiffness against static deformation at 10 Hz for the complex
stress specimen.
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Fi1G. 13. Imaginary part of complex stiffness against static deformation at 10 Hz for the
complex stress specimen.
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Fi1G. 14. Real part of complex stiffness against static deformation at 30 Hz for the complex
stress specimern.

In prediction of the loss stiffness, the proposed model predicts greater value
than the measured result but shows same trend. In case of no static deformation,
all constitutive models yield the same value because every model becomes a linear
viscoelastic one. The material properties used in the calculation are determined
by the uniaxial tension test results. The difference between the computed value
and the measured one under no static deformation is caused by material property
difference between the test specimens. It is suspected that the material property
difference between the specimens comes from curing condition variation during
preparation of specimens and the effects caused by adhesive bond between the
specimen and fixing plates. There are some experimental difficulties similar to the
tension test since imaginary parts of stiffness are very small compared with real
part and very sensitive to experimental condition. In spite of these differences,
the proposed model shows more precise prediction than the conventional models.

4. Design sensitivity analysis and optimization

In the designs of vibration isolators, both static and dynamic characteris-
tics of rubber must be concurrently considered in order to assure the structural
stability and low transmissibility. As mentioned before, the static and dynamic
behavior of rubber can be respectively described by a hyperelastic model and
a steady-state viscoelastic model. A topology optimization approach can be ap-
plied for the shape design of vibration isolator made of filled rubber. For easier
application of the optimization algorithm, material property design sensitivity
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analyses of both the hyperelastic and viscoelastic constitutive equation are devel-
oped for topology optimization using the mean compliance and adjoint variables.
In order to consider simultaneously the static and dynamic behavior of rubber,
a proper topology optimization formulations should be proposed.

4.1. Design sensitivity analysis of the hyperelastic model

The hyperelastic constitutive equation can be written with the following non-
linear energy form and load linear form:

(4.1) a(r,7)=1(r), VreU x P,

where U and P are spaces of kinematically admissible virtual displacements and

. T .
hydrostatic pressure, r = [u,ug,u3,p] is the vector of the displacements and
hydrostatic pressure. In this equation, each side can be written with integral

terms as follows:

1

(42) Q (7',7:) = d /OW A (}de =4 / [)W = m (]5 —ﬁ)z dV 5
‘/ \
(4.3) I(F) ="R= / fudV+ / T u dS,
V s

where oW represents the energy density function. f and T represent the external
volumetric and surface forces.

Material property design sensitivity analysis of hyperelastic model was de-
veloped [11]. When a structural system with a given design b is in the final
equilibrium configuration at time t, the system reaches another equilibrium at
time t + At due to design perturbation 76b.

(4.4) Aparap (1, 7) = by rgp (), Vre U x P.

Since the difference between the final equilibriums of two designs becomes
smaller as design perturbation becomes smaller, the first-order variations of the
nonlinear energy form and the linear load form with respect to the design variable
can be defined as:

it ot e
(4.5) ag, (r,7) = 77 Qb+rdb L% |
2 7=0
d
(4.6) gy (7) = Ehﬂrﬂih (r) o
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By the chain rule of differentiation, the first order variation of Eq. (4.4) is ob-
tained as:

(4.7 agy ('r‘; r’,'r") =I5, (7) — u:;b (r,F) .

Generally, the following static mean compliance can be selected as the static
performance measure of the structural system:

(4.8) p= [ frdv.
/

If the external force f is independent of the design changes, the first-order vari-
ation of the mean compliance is written as follows:

(4.9) @ = | fridV.
/

Using the adjoint equation, the design sensitivity of static mean compliance is
written as:

(4.10) Y = —afy, (r, 7).

In this equation, the first order variation of energy form with respect to the
design variable can be written in terms related to design variables as follows:

=0

ar
’ v _ . -
(4.11) a&,(r,,r)_/55.—6T[w(b+féb)} cedV
v

o
¥ f 5 [ag (b+ T(ﬂ))]TZO . ASyEdV,
J

4.2. Design sensitivity analysis of the steady-state viscoelastic model

Introducing the virtual variable, the complex viscoelastic constitutive equa-
tion (2.37) is written as the following energy equilibrium equation:

(4.12) a(r*, @) = 6W* = AR* = [ (7*), V" €eU* x P,

where U* and P* are spaces of kinematically admissible virtual complex displace-
ments and hydrostatic pressure. The first-order variation of energy equation can
be obtained similarly to the static case.

(4.13) asy (7"*; r* ,’F*) = Iy, (F*) - s (20, 7).
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In the vibration isolation system, the dynamic performance of the system is
the transmissibility from the vibrating systems to the base structures. As shown
in Fig. 15 and Fig. 16, the transmissibility of the system has a very similar
tendency compared with the dynamic compliance, therefore dynamic compliance
can be the dynamic performance measure of structures.
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FiG. 15. Transmissibility against vibration frequency.
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FiG. 16. Normalized dynamic compliance against vibration frequency.
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The steady-state dynamic compliance can be defined as:
(4.14) W / Frrhdv.
v

If the vibrating external force f* is independent of the design changes, the
first-order variation is obtained as:

(4.15) o' = [y,

v
The design sensitivity of static mean compliance can be written by using the
proper adjoint equation similar to the design sensitivity of static mean compli-
ance,
(4.16) v = —djy (r°,77).
In this equation, the dynamic compliance and its first-order variation are the
complex variables defined as ¥* = (i) + 11p2) and & (¥*) = (d9p1 + 1d1P2). There-
fore, the following two scalar variables can be used as the real-valued performance
measure and its design sensitivity.

(@17) 191l = /95 + 3
2 L gy
(4.18) Sl = 5 (v +93) (2o + 20myn).

4.3. Optimization formulation

Generally, in order to strengthen the static stiffness, the static mean compli-
ance of the structure should be minimized. In this work, the density distribution
approach is used as the topology optimization methodology. The topology opti-
mization problem can be formulated with the maximum volume constraint using
the element density 7; as the design variable.

Ny
minimize ¢ = [f idV = Z fiuj,
i

(4.19) §

nel
subject to /ndV == Zme < Vostawes 0<m <1
2 i
In the optimization for transmissibility, we can use the dynamic compliance
as the objective function and then the optimization problem can be formulated as
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follows. In order to minimize the transmissibility, the dynamic mean compliance
should be minimized. The volume constraint must be reversed to minimum value
because the structure will become very flexible in view of low force transmission.

Ny
minimize ¢ = ||¢*] = /f*r* dv| = Zfi*u:.‘
% i
(4.20)

nel
subject to [ 1V =S nVe > Voin, 07 <1,

v i
In order to make an isolator endure the static loadings and reduce the force
transmission, the static and dynamic compliance of the structure should be si-
multaneously considered. Multi-objective optimization can be used for this prob-
lem, but the sensitivity differences of static and dynamic compliance cause some
difficulties. In this paper, the dynamic compliance is minimized with the maxi-
mum static compliance constraint as well as the volume constraint. Such topology

optimization problem can be formulated as:

Ny
minimize Y= |9 = /f* rrdV| = Zfi*u: 3
- j

Ny
subject to  h; = /f r dV — Cpax = Zfiui — Chax <0,
? j

(4,21) nel
hy = fﬂ dV — Vinax :ZniViE_Vmax <0,
v 1
nel
hy = Vinin — /7] dV = Vmin — Znivf <0,
v .
0<nm <L

As mentioned before, the density distribution approach is selected and the
design densities indicating the material existence are used as design variables.
In order to assure the existence and uniqueness of a solution, a relaxed and
penalized artificial material model is selected. The relation between the elastic
modulus and the design density in this artificial material model is represented
by the following equation and its characteristics are presented in Fig. 17. As
parameter « increases, the relation becomes more penalized.
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(4.22) Bl e L B L

B R

In this work, the three-dimensional quadratic hybrid elements are used in FE
analysis for each static and steady-state dynamic problem. The hybrid elements
have 27 displacement-nodes and 4 hydrostatic pressure degrees of freedom for
the treatment of incompressible or nearly incompressible behavior. Therefore the
locking phenomena and checkerboard pattern can be effectively removed. And
also the continuation methods for volume and static compliance constraints are
used in order to prevent the local minima. A sequentially linear programming
(SLP) algorithm is selected as the optimization algorithm, which updates the
design variable to improve the performance of structures.

5. Design examples

A simple structure shown in Fig. 18 is selected as a numerical example to
demonstrate this approach. A natural rubber filled 70 phr carbon black is applied
as the isolator material and steel (ASTM A36) is selected as a non-design mass
material. A mass to be isolated is located on the top center surface of rubber.
A large static deformation is generated by self-weight of the mass and external
vibrating forces are vertically applied to the mass center. The volume constraint
for design is set to 50% for all following problems.
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FiG. 18. Schematic diagram of simple structure problem (¢ = 10 mm).

At first, the static design result for minimizing the static compliance and
obtaining the highest stiffness is shown in Fig. 19. A very stiff structure within
the given volume constraint was obtained and this structure is strong enough to
endure the large static load. For the design problem to minimize the transmis-

Fic. 19. Maximum static stiffness design of simple structure problem.
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sibility for 20 Hz vibrating frequency, a very flexible structure is obtained and
shown in Fig. 20. This structure has a very small natural frequency and shows
very low transmissibility, however it is too weak to endure the self-weight of the
mass. It is obvious that the static stiffness compared to the mass is very small
because of a large cavity under the mass. If this design is applied for isolator,
very large static deformations may be generated by self-weight of mass and the
structure may become unstable due to small disturbances. Therefore it is im-
possible that the design results considering only the dynamic behavior of rubber
could be applied to vibration isolator.

FiG. 20. Minimum transmissibility design of simple structure problem (f — 20 Hz).

For this reason, the static and dynamic behavior of rubber must be simul-
taneously considered in the design process of anti-vibration rubber. A topology
optimization process to minimize the dynamic compliance with the static com-
pliance constraint as well as volume constraint is attempted. During iteration
of the optimization, structure may become flexible in order to minimize the
dynamic compliance and then a large deformation occurs with the element dis-
tortions. The continuation of volume and static constraints is applied to avoid
this mesh-distortion problem. The design result within 120% static constraint
is represented in Fig. 21. The 120% static constraint means that the structure
can be deformed within 120% of static deformation of maximumn static stiffness
design. The obtained result shows a complex truss-like structure. As represented
in Table 3, this structure has a sufficient stiffness for static loading by the mass
and shows about 20% lower transmissibility compared to the static stiffness de-
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sign. On the contrary, the static deformation due to static loading increases by
about 20%. We can conclude that the proposed design method is effective for

vibration isolator design.

Fic. 21. Simultaneous design result of simple structure problem (f = 20Hz, 120% static
compliance constraint).

Table 3. Design results of simple structure problem.

Design method

Static design

Dynamic design

Simultaneous design

Static compliance

0.1990635E + 00

Not available

0.2401379E4-00

Transmissibility

0.1577919E-+00

0.2596466E-02

0.1262678E-+00

Dynamic compliance

0.1181939E-05

0.1030806E-05

0.1151566E-05

6. Conclusions

A constitutive model, FE formulation and topology optimization for rubber
that is under small oscillatory loads superimposed on large static deformation
was discussed. The constitutive model was proposed and implemented in a fi-
nite element code to calculate the behavior of rubber under complicated loading
conditions. Updated Lagrangian formulation with displacement—pressure mixed
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method was used to treat the incompressible large deformation problen. Dy-
namic tests under specified loading conditions were executed in order to verify
the proposed constitutive model. Complex stress-state tests are included in the
dynamic tests to verify the model under multi-axial stress states. The jesults
computed by the FEA code were compared with the test results to estimae the
performance of the model. In the complex stress-state test, it is clearly obierved
that the undeformed state is expressed as a local maximum point in the dyramic
stiffness plot. The proposed model successfully predicts the peak point md its
computed results agree well with the experimental ones.

For the stability and low transmissibility of isolation systems, a tojology
optimization method was proposed considering both the static and dyiamic
performance. Material property design sensitivity analysis of the hyperlastic
model and steady-state viscoelastic one were developed using the mean ompli-
ance and adjoint variables. A simple design example was presented and lesign
results showed that the proposed design process could simultaneously cosider
the static and dynamic behavior of rubber with adequate constitutive mddels.

The amplitude of dynamic deformation generally affects the dynamic stffness
(Payne effect). It is anticipated that the amplitude effects increase with larger
strain amplitude and amplitude variation. As a future work, we are now tring to
include the Payne effect in our constitutive equation and consider more ralistic
loading conditions for the isolator design.
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THE MESOSCOPIC CONCEPT is a way to deal with complex materials with an inter-
nal structure within continuum mechanics. It consists of extending the domain of
the balance equations by mesoscopic variables and of introducing a local distribu-
tion function of these variables as a statistical element. In our case microcracks are
modelled as penny-shaped and are completely characterized by their diameter and
the unit normal to the crack surface. Two examples of crack dynamics are given as
well as a possible definition of a damage parameter. Orientational order parameters
(fabric-alignment tensors) are defined and balance-like dynamic equations for them
are derived.

1. A model of microcracks

MACROSCOPIC FAILURE OF BRITTLE materials is initiated by the propagation of
microcracks. In a simple model the microcrack is described as a flat, rotationally
symmetric surface, a so-called penny-shaped crack. In addition we make here the
following simplifying assumptions:

1. The diameter of the cracks is much smaller than the linear dimensions of
the continuum element. Under this assumption the cracks can be treated
as an internal structure of the continuum element. The cracks are assumed
to be small enough so that there is a whole distribution of crack sizes and
orientations in the volume element.

2. The cracks are fixed to the material. Therefore their motion is coupled to
the motion of representative volume elements.
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3. The cracks cannot rotate independently of the material, i.e. if they have
a nonzero rotation velocity at all, this rotation velocity is determined by
the antisymmetric part of the time derivative of the deformaticn gradient
of the surrounding material and it does not depend on crack length and
orientation. All cracks within a volume element move and rotate with the
same velocity.
4. The number of cracks is fixed, there is no production of cracks, but very
short cracks are preexisting in the virgin material.
5. The cracks cannot decrease their area, but can only enlarge, meaning that
cracks cannot heal.
To summarize our model, the microcrack is characterized by a unit vector
n representing the orientation of the surface normal and by the radius { of the
circular crack surface. These parameters will be taken as the additional variables
in the mesoscapic theory.

2. Different approaches to damage mechanics
and the mesoscopic concept

There are two principally different possibilities to deal with complex mate-
rials within continuum mechanics: the first way is to introduce additional fields
depending on position and time. These fields can be any kind of internal vari-
ables [1, 2|, or damage parameters [3, 4], and damage tensors (fabric tensors)
[5, 6]. In damage mechanics such additional macroscopic variables have been in-
troduced in many different cases of materials with internal structure like liquid
crystals [7, 8], polymer solutions [9, 10] and others. The other way is a so-called
mesoscopic theory. The idea is to enlarge the domain of the field quantities by an
additional variable, characterizing the internal degree of freedom connected with
the internal structure of the material. Field quantities are introduced, which are
defined on an enlarged space R3 x R, x M. The manifold M is given by the
set of values the internal degrees of freedom can take. In our case the internal
degrees of freedom are the different sizes [ and orientations n of microcracks. We
call this way of dealing with the internal structure of complex materials a meso-
scopic theory, because it includes more information than a macroscopic theory
on R2 x Ry, but less than a microscopic one on the molecular level. The domain
of the mesoscopic field quantities R3 x R, x M is called the mesoscopic space.

Macroscopic quantities are calculated from mesoscopic ones as averages over
crack sizes and crack orientations. The spatial distribution of cracks is not rele-
vant in the sense that the resulting macroscopic quantities are still field quantities
depending on position and time. For a treatment of the spatial distribution of
cracks and a possible coarsening process see [11].
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In contrast to spatial averaging introduced in [12], a nonlocal generalization
of the classical Weibull theory, the averages in mesoscopic theory are local in
space. They are averages over different microcrack sizes and orientations in a
volume element.

Scaling properties [13] are completely out of scope of the whole mesoscopic
theory. They result from microscopic statistical considerations. Statistical the-
ories of fracture describe the breakdown of material as a second order phase
transition [14, 13|, as well as a first order phase transition [15-17].

We will apply now the mesoscopic concept to a damaged material with mi-
crocracks. The crack length can take values between a minimal length I, of the
smallest preexisting cracks and a maximal length ljs, which is limited by the
linear dimension of the continuum element. The orientation of the unit vector n
can be given by an element of the unit sphere S2. Therefore in the example of
microcracks the manifold M is given by [l;,,lp] x S2. The change velocities of
the mesoscopic variables [ and u:= n are defined in such a way that for At = 0
we have

(2.1) I(t+ At) = I(t) +iAt,  n(t+ At) = n(t) + uAt

at later times ¢ + At. The rotation velocity u and the length change velocity
are the components in spherical coordinates of the crack velocity v; introduced
in [18]. In this previous paper [18] the set of additional mesoscopic variables n
and ! was called directional variable.

Beyond the use of additional variables, the mesoscopic concept introduces a
statistical element, the so-called mesoscopic distribution function. In our case
this is a distribution of crack lengths and orientations in the continuum element
at position x and time ¢, called here crack distribution function (CDF). The
distribution function is the probability density of finding a crack of length [ and
orientation n in the continuum element.

3. Mesoscopic balance equations

Now such fields as mass density, momentum density, angular momentum den-
sity, and energy density are defined on the mesoscopic space. For distinguishing
these fields from the macroscopic ones we add the word “mesoscopic”’. In addi-
tion we introduce the crack number density N as an extensive quantity. The
mesoscopic crack number density N(I,n,x,t) is the number density, counting
only cracks of length ! and orientation n. For this crack number density there is
a balance equation too, as it is an extensive quantity. The crack number density
can be prescribed independently of the mass density, although the motion of
cracks is coupled to the motion of surrounding material in our model. Therefore
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we distinguish here between the two fields: mass density p and number density
N, although they have the same equation of motion and were not distinguished
in an earlier paper [18].

3.1. Definition of the distribution function

Due to its definition as probability density, the distribution function is the
number fraction

N(l,n,x,1)

(3.1) fllnx )= N

in volume elements, where the number density N(x,t) is non-zero. Here N(x,t)
is the macroscopic number density of cracks of any length and orientation. Since
the distribution function in Eq. (3.1) is not well defined if N(x,t) = 0, we
define in addition that in this case f(I,n,x,t) = 0. Since there is no creation of
cracks in our model, the distribution function will be zero for all times in these
volume elements. In all other volume elements with a nonzero crack number it
is normalized

Iy
(3.2) /[f(l,n,x,t)ldeTL(ll =1.

lm S?

3.2. Balance equations of mass, momentum, angular momentum, and energy

For the mesoscopic densities the local balance equations have been derived
from the macroscopic global ones [18-21]. The macroscopic balance equations
express the fact that the extensive macroscopic quantities within a region G can
change due to a flux over the boundary 0G and due to production and supply
within G. This results in the general form of a global balance equation

d
(3.3) = f Xd3zdnl?dl = f ox (-)da + / 2y ()d2zdnl?dl .
G aG G

A generalized Reynolds transport theorem on the mesoscopic space, analo-
gous to the one in [22], is used to transform the time derivative, and a generalized
Gauss theorem is applied. The boundary dG of G consists of parts in the posi-
tion space, in the orientation space, and in the length interval. In regular points
of the continuum we get the general form of a local mesoscopic balance equation
[18] with the abbreviation (-) = (I, n, x,t):
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%X(-) + Ve [VOX() = S()] + Vi - [u(-X(-) = R()]
+ 215% (121(.))((.)_1{[(.)) = E{4,

where R and R, are the non-convective fluxes over the orientational and length
part of the boundary of G, and G is a region in R? x §% x [I,,,ls]- The derivative
with respect to the mesoscopic variable (I, n) is represented in spherical coordi-
nates. In the derivation of the local balance equation it has been supposed that
there is no flux over the boundary of the total mesoscopic space:

(3.4) 7/7v-¢x(-)d3zdn12dt = (.

—00 52 I

Otherwise such a non-zero flux term (3.4) could be interpreted as an additional
source term on the right-hand side of the equation.
Explicitly we have:

Balance of mass

(35)  arol)+ Ve {elIvix, 0} + Y elhulx, 0} + o (o)) =0,

Balance of momentum
(36) o0V 0] + Ve [vix (v 1) ~ ()

+Va- [u(x,t)g(-)v(x,t) - TT(-)] + %2% (lgjg(-)v(x,t) - T())

Here f(-) is the external acceleration density, t ' (-). the transposed mesoscopic
stress tensor, and T (-) the transposed stress tensor on orientation space (non-
convective momentum flux in orientation space), T(-) is the momentum flux
vector with respect to the crack length variable. We introduced already the
assumption that the material velocity v and the rotational velocity u are the
same for cracks of all orientations and lengths.

Angular momentum

The balance of angular momentum has to be taken into account as an ad-
ditional equation independent of the balance of momentum, because there is an
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internal angular momentum due to crack rotations. The total angular momen-
tum

(3.7) S(x,t) :==x x v(x,t) +s(-)

is the sum of the moment of momentum and the internal angular momentum.

|

(38) = [ol)S()] + Va- [vixDe()S() - (x x T())T ~TL" ()]

D

t
+ Vo [ulx, 02()S() = (e x w() T =77 ()]

b 2 (Pio0)S() - w()) = o()x x k() + e
Here n x g is the vector of couple forces (acting on crack orientation), the tensor
IT is the surface torque, and  is the analogue with respect to orientation, and
w is the analogue with respect to crack length. These constitutive quantities
appear in the non-convective fluxes in the position space, orientation space, and
in the length interval, respectively. This equation can be simplified with the as-
sumptions that the material velocity and the rotation velocity depend only on
position and time v(x,t) and u(x,t).

However, the spin is only relevant, if the model allows for crack rotations
independently of the rotations of material elements, and this is not the case in
our simplified example dynamics.

Similarly the balance of energy can be given, which is omitted here and can
be found in [18]. In all balance equations, in addition to the flux with respect
to the position variable, there appear additional flux terms with respect to the
additional mesoscopic variables crack orientation and length.

Balance of crack number

In our model the cracks move together with the material element. Therefore
their flux is the convective flux, having a part in position space, a part in orien-
tation space, and a part in the length interval. There is no production and no
supply of crack number. Therefore we have for the crack number density N:

7] 10 ¢9;
(39) £ NC)+ Vo INOVE D} + Vo (NOulx 1)} +575 (PING) =0
In a fixed volume element this crack number density is proportional to the mass
density, and therefore these two fields were not distinguished in an earlier pa-
per [18].
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We obtain from the mesoscopic balance of crack number density (3.9) a bal-
ance of the CDF f(l,n,x,t), by inserting its definition (3.1):

(3.10) %f(l,n,x,t} + Vg (vix, t)f({,n,x,t))

+ V- (u(x, ) F(,0,x,1)) + z%% (Fz’f(z,n,x, t))
— _f(ly n,x, t)

N(x,t) (_a_ ) Vz) N(x,t)

ot

_ —f(l,n,x,t) dN(xvt) =0
~ N(x,t) a

The right-hand side is equal to zero, as for the co-moving observer the total
number of cracks in a volume element does not change in time, as in our model
no cracks are created. In our model all cracks in a volume element move with
the translational velocity of the volume element v(x,t) and rotate with the
velocity u = V x v(x,t). Therefore the first three terms on the left-hand side
can be summarized as a co-moving time derivative of the distribution function
(the time derivative of an observer moving with the material elements) with the
abbreviation d¢/dt:

(3.11) a%f(l,n,x,t} +vix,t)- Vo f(l,n,x, t) + u(x,t) - V. f(l,n,x,t)
g df(l,n,x,t)

dt

If we assume in addition an incompressible motion V, - v = 0, we end up with
the equation of motion for the CDF:

dcf(zsnax’t) 10 27 e
(3.12) o g e (z lf(l,n,x,t)) = 0.

This is not yet a closed differential equation for the CDF as long as no expression
for the length change velocity of the crack [ is given. An example of such a closed
equation will be discussed later.

Macroscopic quantities are obtained from mesoscopic ones as averages with
the CDF as probability density:

5}
(3.13) A(x,1) :f/A(l,n,x,t)f(l,n,x,t)d2n12dl.

I 52
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Entropy balance

Besides these mesoscopic balances, the entropy balance is necessary forintro-
ducing the second law of thermodynamics. Because the production of mesoicopic
entropy is not necessarily positive for each crack length and orientation, tie en-
tropy balance is only interesting in its macroscopic form

(3.14) %[g(x,t)n(x,t)] + Vi - [o(x, t)n(x, t)v(x, 1) + d(x,t)] = o(x, t)e(x, 1)

(n = specific entropy density, ¢ = entropy flux density, ¢ = entropy prodiction
density). The second law is expressed by the dissipation inequality

(3.15) a(x,1) > 0.

The set of balance equations is not a closed system of equations, constiutive
equations for mesoscopic quantities are needed. The domain of the constiutive
mappings is the state space; here a mesoscopic one. There are the possililities
that the mesoscopic state space includes only mesoscopic quantities, or that it
includes mesoscopic and macroscopic quantities, and there are examples vhere
such mixed state spaces cannot be avoided [23]. (For instance in the ase of
liquid crystals the macroscopic alignment tensor is included in a mesoicopic
state space. This is necessary to account for the orienting mean field d sur-
rounding ordered particles. Otherwise it is not possible to describe the phase
transition from the isotropic phase to the ordered liquid crystalline phase) Con-
stitutive equations have to be such that the second law of thermodynanics is
fulfilled by any solution of the macroscopic balance equations with the coistitu-
tive equations inserted [24]. This requirement restricts the possible constiutive
functions.

Finally, even for the exploitation of the dissipation inequality, which & pos-
sible only on the macroscopic level, the choice of variables can be motivaed by
the mesoscopic background [25, 26]. A relevance of these variables could 10t be
guessed from a purely macroscopic theory.

4. Damage parameter and order parameters
4.1. Definition of a damage parameter

The damage parameter is introduced as a macroscopic quantity growin; with
progressive damage in such a way that it should be possible to relate the chaige of
material properties to the growth of the damage parameter. We define thedam-
age parameter as the fraction of cracks, which have reached a certain lengh L.
The idea is that cracks of this and larger sizes considerably decrease the stength
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of the material, and therefore their fraction is a measure of the damage. This
idea is related to the slender bar model of KrRAJCINOVIC [5] (especially useful in
one-dimensional crack problems), where the damage parameter is introduced as
the number of “broken bars” in the sample,

oQ
(4.1) D(x,t) = f/f(l,n,x, t)d*nl?dl.
L 2
In this definition of the damage parameter the possibility of cracks of any length
(I — o0) is included. This is consistent with many possible laws of crack
growth, where the crack does not stop growing.
More sophisticated definitions, taking into account the orientational distri-

bution too, are possible and will be discussed elsewhere. Another measure of
damage which could be introduced is the average crack length [27].

4.2. Length order parameters

From the mesoscopic distribution function two different kinds of moment
series can be built because of the dependence on crack length and on crack
orientation. We can introduce moments of the distribution function with respect
to crack length:

Im
(4.2) f £t m,%, ) Pe()Pdl = pe(n, x,8),

Im
where Py (l) are polynomials being orthogonal with respect to the measure [2dl:

bar
(4.3) / Pi(1)P;(1)1%dl = bij.

b

The moments introduced in Eq. (4.2) still depend on crack orientation. Aver-
aging over all orientations gives macroscopic fields, the length order parameters:

(4.4) me(x,t) = [ Pe(n,x,t)d*n.
/

In the following we will investigate the moments of the distribution function
with respect to crack orientation.
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4.3. Orientational order parameters

We can introduce the following set of alignment-fabric tensors of succ:ssive
tensorial order

(4.5) a®) (x, t) //f (l,n,x,t no..om *dld*n,

where == denotes the symmetric irreducible part of a tensor [28]. Renark-
able, that only the even order tensors appear in the series because th: mi-
crocracks are represented by axial vectors, the unit normal to the crack sur-
face, i.e. n and —n are not distinguished. Due to this symmetry all od or-
der moments vanish. The tensors defined above are macroscopic quanities.
We want to call them alignment-fabric-tensors. Originally tensorial damage pa-
rameters were introduced on a purely statistical ground, without a mesosopic
foundation and were called “fabric tensors of the second kind” in damage me-
chanics (see KANATANI [6] or KrRAJCINOVIC [5]). The alignment-fabric-teisors
represent the orientational distribution of microcracks, but do not take into
account their lengths. They have to be distinguished from the scalar lam-
age parameter which is a measure of the growth of cracks. These alignnent-
fabric tensors form a whole set of internal variables in the sense of thernody-
namics.

The alignment-fabric tensors are a measure of the deviation of the cract ori-
entation distribution from isotropy. They are all zero, if all crack orientatiors are
equally probable, and at least some alignment-fabric tensors are nonzero incase
of anisotropic distributions. The orientation distribution of cracks and therfore
the alignment-fabric tensors become important in the dynamics of the wrack
distribution. There are usually the specimen geometry and loading condiions
rotation symmetric around an axis d (uniaxial conditions). It is reasonahe to
assume that also the distribution of crack orientations is rotationally symmnetric
around the same axis d. Then, for symmetry reasons, all alignment-fabric ten-
sors of different orders can be expressed in terms of scalar orientational «ader
parameters S} and the unit vector d in the following way:

(4.6) a®) =8®) do...od (k=24,..),
——

where the order parameters S*) are one in case of total alignment (the mcro-
cracks stand parallel) and zero for randomly oriented cracks.
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4.4. Equations of motion for the alignment-fabric tensors
and for the damage parameter

In general a coupled set of equations of motion for the alignment-fabric ten-
sors of different order can be derived from the differential equation for the crack
distribution function by taking moments of this equation, i.e. multiplying with
the dyadic product mo...on and integrating over all orientations n € S2. This

———

set of equations is analoécous to the differential equations for the alignment ten-
sors in liquid crystal theory [19] and will be discussed elsewhere in more detail.
In general the equations for the different tensor orders are coupled.

As in our model all cracks in a volume element have the same angular velocity,
namely that of the surrounding material, this set of equations simplifies to a set
of very special balance type equations without production, and without non-
convective flux, which are not coupled:

dak)
ot

1

(4.7) +v(x,t) - Val® + % (Vxv)-a® — —éa(k) (Vxv)=0,

(4.8) or 4 =0

for any tensor order k. This special form arises due to the model assumption
of a fixed crack number and in addition cracks not moving and rotating inde-
pendently of the surrounding material. Therefore for an observer co-moving with
the material, the orientation distribution and the alignment-fabric tensors do not
change. These equations are the equations of motion for the internal variables,
which have to be postulated in a purely macroscopic theory. For our simplified
crack dynamics the dynamics of the alignment-fabric tensors is not independent
of the motion of the material elements. Therefore the change of the alignment
tensors in time is not relevant to be considered in our simplified model, as it
is completely determined by the motion of the surrounding material. However,
the situation is different for other, more complicated crack dynamics. In any
case, even if the dynamics of the tensorial damage parameters is not interesting,
the orientation distribution itself is relevant, because of the dependence of the
effective stress on crack orientation (see below). This effective stress determines
the dynamics, as it appears for instance in the Griffith criterion for the onset
of growth, and it also appears in the expressions for the length change velocity
discussed in the examples below.

Orientation dependence of the effective stress

In an experiment with uniaxial tension o applied to the sample the stress
component o,, normal to the crack surface, depends on crack orientation.
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Let us assume that in an experiment a uniaxial tension o is applied along
the z-direction. Then the stress component in the direction n, acting on a crack
surface with surface unit normal n is

(4.9) oot = ole, - n)2,

where e, is the unit vector in z-direction. This dependence of the effective stress
on crack orientation leads after averaging over all orientations to

(4.10) /Ueﬂ‘f(l n,x,t)d*n = [o(ez -n)%f(l,n,x,t)d*n

52 52

1 )
- /0 (nn—gé) f(l,n,x,t)d*n + %B[Jf(l,n,x,t)dzn 1e,e,

S2 52

1 1
=0 a+§6 re,e, =0 Clzz+§ i

where a,, is the zz-component of the second order alignment-fabric-tensor a.
This dependence of the effective stress on the alignment-fabric-tensor leads to
a dependence of the crack dynamics (for instance the critical length) on the
orientational order. Thus macroscopic equations of motion of damage param-
eters depend on the orientational order characterized macroscopically by the
alignment-fabric tensors. Hence it would be interesting to study the dynamics of
the alignment-fabric-tensors, too.

4.5. Differential equation for the damage parameter

Differentiating the definition of the damage parameter equation (4.1) with
respect to time we get the following differential equation for the damage param-
eter:

s

(4.11) eix4) _-d—//f(z,n,x,t)d%ﬂdz

dt dt
L 52
Las
/[( fl,n,x,t)2 + f(I,n,x, t)2l[) d*ndl
L

S2
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%H) //( i%unxn)+funxwm)fmz

L §2

=_P%unxt L+2//f1nxﬂm%m

L 52

The differential equation for the damage parameter depends on the crack
distribution function itself, and therefore also on the initial crack distribution,
and it also depends on the dynamical equation for the crack length.

5. Examples of closed differential equations
for the distribution function

Some model on the growth velocity of a single crack is needed in order to
make a closed differential equation for the length and orientation distribution
function out of Eq. (3.10). Two different dynamics of crack extension from the
literature will be given here as examples. In the second example we suppose that
for a given load not all cracks start growing but only cracks exceeding a certain
critical length [, which is given by the Griffith criterion. As in many examples
of a crack length change dynamics, the cracks do not stop growing but extend
infinitely, in all these cases the maximal crack length has to be set to I3 = oc.
However, when the cracks become macroscopic their growth dynamics, becomes
more complicated (showing for instance branching) than our example dynamics.

5.1. Mott’s extension of Griffith’s energy criterion including a kinetic crack energy

When the cracks are growing the system has a kinetic energy due to the
growth by virtue of the inertia of the material surrounding the separating crack
surfaces. This extension of the original Griffith energy concept (see below) by
a kinetic energy term goes back to MoOTT [29]: A kinetic energy term is added
to the sum of the crack surface energy and the elastic deformation energy of
the surrounding elastic material, and the crack length is such that the total
energy of the system is constant. Two different loading conditions are especially
interesting: fixed loading (“dead weight”) and “fixed grips” conditions. In both
experiments uniaxial symmetry is assumed. In the first case a constant force is
applied to the ends of the specimen, leading to a tensile stress. In the second case
a fixed displacement is prescribed at the outer boundaries of the specimen. For
these two loading conditions, requiring a constant total energy and an argument
based on geometrical similarity, the following expressions for the crack length
change velocity have been derived ([30] p.93):
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“Dead weight™

(5.1) I=lr (1 170)

where Ip is the so-called terminal velocity, not depending on the crack length,
but on the applied load oeg, and therefore on crack orientation. lp is the nitial
crack length.

“Fixed grips™

1/2

(5.2) I=lip 1—%"(%%")

where the parameter « is defined as

_ 8mi?

(5.3) :

It is the ratio of the initial crack area to the surface area A of a cross-s:ction
of the specimen. In the “fixed grips” geometry the crack extension migh' stop
again after a certain growth. This can be understood, because of the increise in
compliance associated with crack extension in a finite specimen. This leads to a
diminishing applied force and decreasing tendency of the crack growth.

From the mesoscopic point of view the growth laws, Eqgs. (5.2) as vell as
(5.1) are mesoscopic constitutive equations relating the length growth velccity [
to the external load in a material-dependent manner.

In both loading conditions discussed here the crack velocities have bem de-
rived for single cracks. If we apply these growth velocities in our differntial
equation for the length distribution function, Eq. (3.10), this means that ve ne-
glect interaction between cracks. However, crack interactions can be take:r into
account by more sophisticated expressions for the length change velocity.

Inserting the length change velocities of the previous section into tle dif-
ferential equation for the crack distribution function, and integrating ower all
orientations leads to the following closed differential equations:

“Dead weight:

(5.4) %z"” = —%% (IQf(l,x,t)fT (1 - ZTU)) :
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The parameter irr depends on the effective load geg and therefore on the second
order alignment-fabric tensor.

“Fixed grips™

2\ 172
1+a=
df (I, x, t) L8 |as : ly lo lg
. A Ll — 2 oe il 0 ,
e dt b A A S e el i pv >

5.2. Griffith criterion for the onset of growth

The criterion for the cracks to start growing adopted in the example is the
energy criterion introduced originally by GRIFFITH [31]. According to GRIFFITH
[31] there is a criticality condition for the crack growth to start, and for cracks
larger than a critical length there is a velocity of crack growth {. From ener-
getic considerations GRIFFITH |31] derived a critical length of cracks with cracks
exceeding this length starting to grow. This critical length is given by:

K
(5.6) lo= ;_E,

where K is a material constant, and o, is the stress applied perpendicularly to
the crack surface. It is assumed that a stress component within the crack plane
does not cause the crack growth. For cracks smaller than the critical length [,
the energy necessary to create the crack surface exceeds the energy gain due to
release of stresses.

5.3. Rice—Griffith dynamics

A possible crack dynamics, taking into account the criticality condition of
Griffith, is derived from a generalization of the Griffith energy criterion on ther-
modynamic grounds, introducing the Gibbs potential [32], which includes the
stress normal to the crack surface and crack length as variables. The resulting
crack evolution law has the form

(5.7) [ = —p 4 ol for 1>1,,

(5.8) i=0 for 1<,
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with material coefficients «, and 3. In case of a constant time rate of the applied
stress, 0 = vqt, it results:

(5.9) | = —a+ Bolit? for 1>,
(5.10) =0 for 1<l

U, is the time derivative of the applied stress normal to the crack surface. The
dependence of this normal stress on crack orientation leads to the following
orientation dependence of the dynamics:

(5.11) [ = —a+ po? jitl(e, -n)* for 1>,
(5.12) [=0 for 1<l

where v, ¢ is the change velocity of the stress applied in the z-direction.

After averaging over all orientations, this orientation dependence leads to a
dependence on the fourth moment |, g2 INNN fd?n of the distribution function.

This dynamics also includes a criticality condition for the crack to start
growing.

With this model for the length change velocity we end up with the following
differential equation for the distribution function:

df(l,n,x,t) 10

. b o o i e PN, Sl /1 2142 f 1>1
(5.13) 7 2 a0 (? (—a + Bus(n)?it?)) or 1>l
(5.14) if(l_*;‘tﬁ’_ﬂ =0 for I<l,.

Solutions of this differential equation are discussed in [27].

6. Conclusions

In the mesoscopic description we have introduced mesoscopic fields, defined
on an enlarged space including crack size and orientation. Averages over crack
sizes and orientations, i.e. macroscopic quantities are calculated with a distri-
bution function f. The differential equation for this distribution function was
derived from the mesoscopic balance equations and crack growth law for the
single crack. Different crack growth laws from the literature were discussed.

Macroscopic quantities accounting for the progressive damage have been de-
fined as integrals calculated with the distribution function. These are scalar dam-
age parameters, like for instance the average crack length, and fabric-alignment
tensors. For these different scalar and tensorial damage parameters equations of
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motion have been derived. The time evolution of fabric-alignment tensors will
be of special importance under biaxial loading conditions.

The equations of motion for the damage parameters can be compared to
the evolution equation in phase field models (or in Landau theory of phase
transitions). In phase field models an additional wanted field, the phase field
is introduced. The form of the equation of motion, often in the form of a con-
servation law is postulated [33, 34|. This phase field can be compared to the
damage parameter introduced here, and in the non-unilateral case also to the
fabric-alignment-tensor. The equation of motion for the damage parameter is of
the same type. It is a special form of a balance equation, here with a zero flux
term, because spatial inhomogeneities were not taken into account. However,
this form of equation of motion has not been postulated here, but derived from
mesoscopic considerations, i.e. mesoscopic balance equations.
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Derivation of the normality rule for time-dependent
deformation using the principle of maximal rate
of entropy production

K. SANTAOJA

Laboratory for Mechanics of Materials,
Helsinki University of Technology,
Otakaari 4, FIN-02150 Espoo, Finland

DERIVATION OF THE normality rule for time-dependent deformation by the principle
of the maximal rate of entropy production was carried out. The derivation was made
within the framework of thermomechanics with internal variables. Since Ziegler did
not cast his principle into an exact mathematical framework, it was done here. A con-
dition for the multiplier in the normality rule (c.f. plasticity multiplier) was derived.
If the condition gives a constant value for the multiplier, the specific (complementary)
dissipation function was shown to be a homogeneous function. In the case where the
value of the multiplier depends on the state variables, the dissipation potential is a
non-homogeneous function.

Key words: thermodynamics, thermomechanics, internal variables, dissipation, en-
tropy production, normality rule.

Notations
q heat flux vector,
s specific entropy (entropy per unit mass),
§ specific entropy production rate,
$lon  specific entropy production rate (thermal part),
#l,c  specific entropy production rate (mechanical part),
T absolute temperature,
o _internal state variable (a second-order tensor),
B internal force (a second-order tensor),
£ strain tensor,
g inelastic strain tensor (irreversible strain tensor),
P density of the material,
a stress tensor,
@ specific dissipation function (potential),
wloe  specific dissipation function (mechanical part),
P specific Helmholtz free energy,
D/Dt material (time) derivative operator,
v vector operator del,
() material (time) derivative operator,
(7) quantity ( ) is a vector,

second-order and fourth-order tensors are denoted, by bold letters.
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1. Introduction

THE PRESENT PAPER combines the theory of continuum mechanics and ttermo-
dynamics and refers to the combination as thermomechanics. There are sveral
dialects of thermodynamics. Here the theory of thermodynamics with irernal
variables is adopted since it provides an excellent framework within whch to
evaluate material models.

Basic courses in continuum mechanics already teach students learn that the
body has to satisfy the equilibrium equation. They well know that if the equilib-
rium is not satisfied, the solution is incorrect and therefore has to be disnissed.
This is because a solution that does not obey the equilibrium is in contracdction
to a basic law of nature. In this case the basic law is the law of balance «f mo-
mentum. The law of balance of momentum places a restriction on the vaues of
forces and moments.

Corresponding restrictions also exist for a material model. They are tie ba-
sic laws of thermodynamics, such as first law and second law. The thernody-
namical restrictions for constitutive equations are dressed in the form »f one
inequality called the Clausius-Duhem inequality. If the material model s:tisfies
the Clausius—-Duhem inequality, it is not in contradiction to the basic Lws of
thermomechanics and can therefore be applied. Thermomechanical evaluaion of
a constitutive cannot prove that the material model is correct. This work is for
micromechanical investigation of the material model and experimental wirk.

In order to prepare a thermomechanical investigation of a material nodel,
the researcher has to write explicit forms for following two functions: the s>ecific
Helmholtz free energy i (or the specific complementary Helmholtz free mergy
%) and the specific dissipation function ¢ (or the specific complementary dissi-
pation function ¢¢ or the yield function F'). The material model is then obained
from these two functions using state equations and the normality rule. Tiis pa-
per studies the derivation of the normality for time-dependent deformatior. The
derivation is carried out using the principle of maximal rate of entropy poduc-
tion proposed by ZIEGLER [1, p. 134]. Since Ziegler did not cast his prnciple
into an exact mathematical framework, it is done here. In this paper tle nor-
mality rule is derived for time-dependent deformation. In the subsequent paper
the standard approach of the principle of maximal rate of entropy producion is
extended for description of time-independent thermoplasticity.

Today when material models within the framework of thermomechancs are
studied the normality rule belongs to the standard toolbox. However, 1sually
the principle of maximal rate of entropy production is not used in the teriva-
tion of the normality rule. Instead of that the approach by the French school
of thermodynamics is adopted. The French school of thermodynamics asumes
that there exists a convex scalar-valued dissipation potential which is asumed
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to obey the normality rule {see e.g. [2, p. 74|}. Furthermore, some writers have
interpreted the work by Ziegler differently from what is done here. HouLsBY
and PUZRIN [4, Sec. 4.1], for example, refer to Ziegler’s orthogonality condition
and therefore their approach deviates from the present one, since the vital part
of their derivation is that the dissipation potential is a homogeneous function.
SH1ZawA and ZBIB [3, Sec. V.3.1.] refer to the principle of maximal entropy pro-
duction rate, but do not obtain any condition for the multiplier in the normality
rule (c.f. plasticity multiplier) which plays an important role as the present work
shows. On the other hand RAJAGOPAL and SRINIVASA [5] make an extensive
study on “maximum rate of dissipation criterion”, but they do not see the differ-
ence between the dissipation, where the terms have the form of force times flux,
and the dissipation function whose variables are fluxes only. Furthermore they
do not derive the normality rule, but just write it without obtaining a condition
for the multiplier in normality rule. There are also writers, see e.g. [6], who just
introduce the normality rule and refer to Ziegler.

2. Derivation of the Clausius—Duhem inequality

This section derives the Clausius-Duhem inequality which plays the central
role in the thermomechanical verification of the material models and in the
derivation of the normality rule.

Verification of a material model starts from the selection of the set of inde-
pendent variables which describe the process which has to be modelled. When
thermomechanics is used two kind of independent variables are present: control-
lable variables and internal variables. The independent variables present in the
basic laws and axioms of thermomechanics are called controllable variables. The
other independent variables are called internal variables.

The controllable independent variables for thermomechanical processes in
deformable solids are: The strain tensor € and the specific entropy s which is a
scalar-valued quantity. The strain tensor € is a second-order tensor describing
both mechanical and thermal deformation.

The internal variables and their form are determined by the material model
under consideration. Since the present paper studies time-dependent deformation
in general, the inelastic strain tensor &' is one of the internal variables. In order
to extend the scope of the this paper more internal variables are introduced.
The second-order tensorial quantity « is introduced to represent any number of
internal variables, which can be scalars, vectors or tensors of any order. In the
theory of visco-plasticity, for example, the variables & are used for description
of hardening.
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The specific internal energy u is written as:
(2.1) u=u(e, €, 0 8,h(&)),

where the notation the notation A(Z) indicates that the system V" may be
thermodynamically inhomogeneous. This means that, e.g. the material proyerties
for elastic deformation can vary from point to point.

For the sake of simplicity this paper studies material models which [also)
model elastic deformation. Thus, the present formulation is for cases whee the
response of the system consists of elastic and inelastic deformation or pure elas-
tic deformation. This means that the difference & — €' belongs to the descrption
of state. Also thermal expansion can be simulated. By neglecting thermodnam-
ically inhomogeneous systems the above assumption reduces Eq. (2.1) to the
following form:

(2.2) vw=u(e— €, as).

Some writers {see e.g. MAUGIN |7, Sec. 2.3]} replace the difference € — ¢! by the
elastic strain tensor €°. However, it is not acceptable. Variable € is a contrdlable
state variable whereas notation &' refers to an internal state variable. Th:rmo-
dynamics does not define a difference between a controllable state variabk and
an internal state variable.

Instead of the specific internal energy u, the state of solids is usualy de-
scribed by the specific Helmholtz free energy 1 which is a Legendre partial
transformation of the specific internal energy wu. This is done because wriing a
material model using the specific internal energy u is very difficult, giver that
the specific entropy s is an argument of the specific internal energy w. It is very
difficult to construct a constitutive model as a function of the specific entrepy s.
In the formulation of the specific Helmholtz free energy 1 the specific ertropy
s is replaced by the absolute temperature 7'. Since the absolute temperatire T'
is a well-known quantity for a human being, writing a material model usiig the
specific Helmholtz free energy 1 is much simpler than doing so with the sjecific
internal energy u.

State functions are obtained as partial derivatives of the specific inernal
energy u with respect to the state variables. Due to the introduction  the
specific Helmholtz free energy % state equations take the forms

o o(...) - (...
(2.3) o= p-—-—————a(s e and B = A e
and further
(2.4) 5= —?-M, where p=1(e—¢&,T).

or
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In State Equations (2.2) and (2.3) the notation o stands for the stress tensor,
is an internal force and p is the density.

The principle of conservation of energy, also referred to as the first law of
thermodynamics, can be stated as follows: The time rate of change of the sum
total of the kinetic energy K and the internal energy U in the body is equal to
the sum of the rates of work done by the surface and body loads in producing
the deformation (or flow) together with heat energy that may leave or enter the
body at a certain rate. Thus the following is obtained:

D
(2.5) D—t(K+U)=P“’“+Q.
In Basic Law (2.5) P®" is the power input of the external forces and Q is
the heat input rate. The local form for the first law of thermodynamics is called
the energy equation (in the non-polar case) or the equation of balance of energy.

It has the following form:
(2.6) pi=0:t+pr—V.q,

where r is the heat source per unit mass and where ¢ is the heat flux vector.
The second law of thermodynamics can be written in the form

: -G -
2.7 S > —¢p—dA = dV
(2.7) e jl{ T i / P T av.,
av v
where S is the entropy rate and 7 is the outward unit vector for volume V,

the surface of which is denoted by 9V. The local form of the second law of
thermodynamics takes the form

s VT
(2.8) pTé+V-(j’—YZ—1—-¢i—pr > 0.
The internal energy U and the entropy S are defined by
(2.9) U = /pudV and S = /pst.
v 1

Combination of the local forms of the first and second law of thermodynamics,
i.e. Egs. (2.6) and (2.8), is called the Clausius-Duhem inequality. For the present
set of state variables [see Eq. (2.4)s] it takes the following form:

y s

(2.10) 0:£‘+B:a—?-(j’2 0.

Based on the Clausius-Duhem Inequality (2.10) the specific entropy produc-
tion rate §' is introduced. It is defined by

r R . VT

(2.11) T & = G:E'JrB:OL—T-é' (= 0.
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3. Principle of maximal rate of entropy production
applied to time-dependent deformation

This section studies the principle of maximal rate of entropy production
and derives its consequence: the normality rule. Time-dependent deformation is
considered.

The principle of maximal rate of entropy production was first propossd by
ZIEGLER [1, p. 134). It should be pointed out that this principle as proposed
by ZIEGLER {see e.g. [8, pp. 271 and 272|} is not (yet?) a basic law of physics,
contrary to those discussed in the previous section. In Ziegler’s own words, the
principle of maximal rate of entropy production is quite general ZIEGLEE and
WEHRLI [9, p. 186]}.

According to ZIEGLER [8, p. 272] the physical foundation of this principle is as
follows: From the physical point of view this principle is particularly appealing,
since it may be considered as an extension of the second fundamental law. In fact,
if a closed system tends towards its state of maximal entropy, it seems reasonable
that the rate of entropy increase (the specific entropy production rate) under
prescribed forces would take a maximum value, i.e. the system should approach
its final state along the fastest (shortest) possible path.

3.1. Normality rule for time-dependent deformation when material model
= (¢, a,...) is expressed by fluxes

Investigation of the exprmbi(m for the specific entropy production rate $' in
Eq. (2.11) shows that §' is dcpcudent upon both forces and fluxes (proc esses)
For example, in the expression o : &' the term o represents the force and &'
describes the flux. Furthermore, ZIEGLER [1, p. 129] assumes the existence of
the specific dissipation function {see also ZIEGLER [8, p. 76]}

(3.1) p=op( & e—¢,aT).

The concept of the specific dissipation function ¢ is that in case of an actual
process (i.e. when the maximum is present) it contains the same information (ex-
cept for temperature T) about the state and the process as the specific entropy
production rate $', but the arguments of ¢ are only fluxes (£, &, q) [and state
(e — &', &, T) |, whereas the expression for §' contains also the conjugate vari-

ables [0, B,— (VT) /T). This can be seen in Eqs. (2.11) and (3.1). The specific
dissipation function ¢ is defined by {see ZIEGLER [1, Eq. (4.3)] and [6, Eq. (5.1)]}

; 1 g
(3.2) For an actual process ¢ := T§' = TP g =10,

Ziegler did not cast his above-presented concept into an exact mathematical
framework. The author therefore proposes the following formulation for the prin-
ciple of maximal rate of entropy production:
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The process is investigated at a certain state (¢ — &', o, T') and the values
for the fluxes (&', &, ¢') have to be determined in order to maximise the specific
entropy production rate §' . The state gives the values for the state functions
[0, B, — (VT)/T) as follows: State Equations (2.13) give the values for the forces
o and B . Since the state (¢ — &', &, T') is known, the temperature T is known
and therefore the state function — (ﬁT)/T, is also known. Thus, the values for
the state functions [0, B, — (VT)/T] are known.

Based on the above discussion the problem can be expressed in the following
way: It is assumed that the state is known, i.e. the set (e — &', &, T') is assumed to
be known. This implies that the values for the forces [o, B, — (VT) /T are known.
The question is, what are the magnitudes of the fluxes (£, &, ) which maximise
the specific entropy production rate §'? At the same time also Definition (3.2)
has to be satisfied.

To make the evaluation shorter General Problem (2.11) is not evaluated but
the concept by TRUESDELL and NOLL [10, p. 295] is followed by assuming that
the specific entropy production rate §' is separable into mechanical and thermal
part as follows:

(33) 8" = bige + fton -
Based on Expression (3.3) Eq. (2.11) yields

(3.4) pTéL)C = 0:¢' 4+ Bra&x (> 0)
and

r VP
(35) pTSénn i= = T—v— q (2 0)

Quantity p Téfoc is often called intrinsic dissipation, whereas Quantity pT' sl
is referred to as thermal dissipation.

Usually Mechanical Problem (3.4) and Thermal Problem (3.5) are studied
separately. Since the derivation of the normality rule for a thermal problem
follows the same steps that will be taken when the mechanical problem is studied,
the thermal problem is not studied here.

Based on the above the principle of maximal rate of entropy production is
written in the following mathematical form:

maximise with respect to the fluxes (¢, &)

(3.6) éioc(e',(x,u,ﬁ)zp—T(0:£'+B:o&)
subject to:
(37) Tloc = =+ ‘Ploc(ila X € — E!, CX,T) e 'éioc(glﬂ X, g, B) = Oa

T
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where T, = 0 is a constraint and (). is the specific dissipation function for
mechanical behaviour. It is worth noting that the specific dissipation function
¢ is dependent on the fluxes present in the Clausius-Duhem inequality [see
Inequality (3.4)] and on the state variables [see Eq. (2.2)]. In this case this
means that the function .. is dependent on sets (&1, &) and (e — ¢, &, T). The
general maximisation problem (where the specific entropy production rate §' is
not separated) follows the above concept.

Both é{oc and T, are assumed to have at least continuous second partial
derivatives with respect to the arguments (&', &). It should be pointed out that
also Inequality (3.4) must be satisfied. Applying LUENBERGER |11, p. 225], the
first-order sufficient condition for the point (&', &) to be a local maximum is

a .
ﬁ (Stoc + ’\TlOC) = O’
(38) 3
Ja (é{oc + /\T]OC) =0 and Tjpc = 0,
where X is the Lagrange multiplier. As mentioned by ARFKEN [12, p. 946] the
method based on Lagrange multipliers will fail if in Expressions (3.8); and (3.8)2

the coeflicients of A vanish at the extremum. Therefore, also special points where

OTi0c OTloc

3.9 — =0 and — =0

(3.9) T an 5o

must be studied. The above-mentioned coefficients of A are
d d

(310) @ Tloc and -5‘; Tloc -

The above indicates that there are two different cases for evaluation of the local
maximum; utilisation of Expressions (3.8) referred to as Case A, and the special
case described by Expression (3.9) referred to as Case B.

Starting with Case A:
Substitution of Egs. (3.5) and (3.6) into Eqgs. (3.8); gives

1 1 a(1010('. 1 )

3.11 S MPRNY [N YL Y
iy pT (T ae' pT
which yields to following result:

A a@lo

12 e :

(3.12) &= g P
Similarly Eq. (3.8)2 gives

A ( ocC
(3.13) p= 22

A-1" o0«
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By substituting the results in Eqgs. (3.12) and (3.13) into Eq. (3.8)3 and re-
ordering the obtained equation, the following result is obtained:

(3.14) go10c(é‘,d;£—£‘,o¢,T):ﬁ(%:él+%o—c:d).

It is worth noting that the value of the Lagrange multiplier A is dependent on the
set (¢ — €, &, T). This is based on the definition of the maximisation problem,
which assumed that the value of the set (& — &', &, T) is known and that the
values for the corresponding fluxes (¢', &) have to be determined. This implies
that for a certain set (¢ — &', &, T) a unique value for is obtained. Thus, the
following holds: A = A(e — ¢\, &, T).

By extending the definition for homogeneous functions given by e.g. WibD-
DER [13, pp. 19 and 20] the following is achieved: A function ¢(z,y, z, u,v) is
homogeneous of degree w in variables = , y and z in a region R if, and only if,
for z, y and 2z in R and for every positive value of k the following holds:

(3.15) ol by bz, uv) = ol 2u9).

Sometimes the definition is assumed to hold for every real k, and if the values
of k are restricted to being positive, the function ¢(z,y, z,u,v) is said to be a
positive homogeneous function.

Euler’s theorem on homogeneous functions {see original form in e.g. WIDDER
[13, p. 20]} for the above extended definition reads

, .
(3.16) w(z,y,z,u,v) = 3 + 3y y+ 5

In the special case that the Lagrange multiplier A is a constant the extended
Euler’s theorem for homogeneous functions [Theorem (3.16)] and Result (3.14)
indicate that the specific dissipation function ¢ is a homogeneous function of
degree (A —1)/X in the variables (&' &).

The following notation is introduced:

A
(3.17) poi= — which gives A= ﬁ—ﬁ—l .
Equation (3.17), shows that the multiplier 4 = p(e — €, &, T) can be any
real number excluding g = 1. This means that in Case A the dissipation function
©loc cannot be a homogeneous function of 1/ = 1.

Continuing with Case B:

The candidates for the extremum points defined by Eq.(3.9) are investigated
next. Substitution of Eq.(3.7) into Eq. (3.9); gives
i a(p loc 1 8Saloc

——0=0, which gives o=p

3.18 : = :
(B T o9¢t  pT dE!
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Correspondingly the following is obtained:

a‘p loc
oa

Instead of Expression (3.14) Case B gives

(3.19) B=p

d—(pl-% g + Q—C@D—C &
851 d(x

Comparison of Eqs. (3.18)9, (3.19) and (3.20) with Eqgs. (3.12), (3.13) and
(3.14) shows that the special points defined by Case B give the same solution as

Case A except that joc is a homogeneous function of degree 1(= 1/pu).

(320) L)o:lotl(éi'l a’) £ — Ei! , T) =

Concluding from Cases A and B the following can be said:

At the start of this chapter the following problem was set: The state is known,
which means that the set (¢ — &', &, T) is known. Due to State Eqgs. (2.3); and
(2.3)2 this implies that the values for the forces (o, B) are known. The magni-
tudes of the fluxes (&', &) have to be determined in order for the specific entropy
production rate §' to be maximised. At the same time also Definition (3.2), has
to be satisfied. The result was as follows:

As a result the following normality rule was achieved:

0 loe— Lo, T
(3.21) = jip Ploc(£ ,Ota.Ei £l o, T)
£

and

a‘ploc(éiad; £ — Eiv (X,T)
dx

The specific dissipation function ¢, has to obey the following condition:

(3.22) B=up

’ 7, o0 .
(3.23) soloc(s‘,a;e—s',a,ﬂw( ;ﬂwg—;a) :

The first-order sufficient condition for the point (£, &) to be a local maximum
is that Eqgs. (3.21), (3.22) and (3.23) hold. If ¢, is a homogeneous function,
according to Eq. (3.23) it is a homogeneous function of degree 1/pu. If )¢ is
not a homogeneous function, the value for p = u(e — €', o, T) is obtained from
Eq. (3.23).

Equations (3.2), (3.21) and (3.22) show that the specific dissipation function
Ploc 1s & scalar potential, and it is therefore also called the specific dissipation
potential.

The second-order both necessary and sufficient conditions for a local max-
imum lead to matrices so extensive {see LUENBERGER [11, pp. 226 and 227|}



DERIVATION OF THE NORMALITY RULE... 511

that investigating them is very complicated and it hardly provides any practical
results.

However, in practice, when constitutive models are evaluated the explicit
form for the specific dissipation function ¢, is assumed and the forces (o, B)
are determined by Normality Rule (3.21) and (3.22).

3.2. Normality rule for time-dependent deformation when material model
»° = ¢°(o, B;...) is expressed by forces

This section gives the normality rule for time-dependent deformation when
the material model is expressed as a function of state functions, i.e. forces instead
of the rates of internal variables, i.e. fluxes.

Normality Rule (3.21) and (3.22) assumes that the material model is ex-
pressed by the fluxes (&', &). If the conjugate forces (o, B) are desired as the
arguments of the material model, the specific complementary dissipation func-
tion f . is introduced. It is a Legendre partial transformation of the specific
dissipation function j,.. The transformation is defined by

3.24) p o (G,ﬁ;ﬁ—ei,a,T) = gEE
loc
+[3:c'x—upcp|oc(éi,c'x;£—si,a,T),

where the superscript ¢ in notation ¢f . refers to the complementary function.
Based on Normality Rule (3.21) and (3.22) and Definition (3.24) the coef-

ficient in Expression (A.3) of Appendix A take the values ¢ = pp and b = p.

Thus, Expression (A.6) of Appendix A gives the following normality rule:

0o, Bie— € T)

(3.25) £'=p 5
and

: 9pf,. (0, B;e — e o, T
(3.26) 5 = DBl B LB BB

ap

Substitution of Transformation (3.24) and Normality Rules (3.21), (3.22) and
(3.25), (3.26) into Expression (3.23) gives

; awc T a(PC
(3.27) QD;COC(U,B;E,—E,CX,T):(I—[L) (—0‘?—:0“}‘7&2:8) .

The first-order sufficient. condition for the point (o, §) to be a local maximum
is that Eqgs. (3.25), (3.26) and (3.27) hold. If ¢},. is a homogeneous function,
according to Eq. (3.27) it is a homogeneous function of degree 1/(1 — ). If ¢},
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is not a homogeneous function, the value for p = (e — €', o, T) is obtained from
Eq. (3.27).

It is worth noting that the specific complementary dissipation function ¢y
cannot be a homogeneous function of degree 1 in the variables (g, B), since ac-
cording to Expression (3.27) in such a case the quantity p would be zero and
Transformation (3.24) would vanish. This means that if the specific complemen-
tary dissipation function ¢f;, is a homogeneous function of degree 1, Transfor-
mation (3.24) vanishes and it must be replaced by a different transformation.
This new transformation is used when time-independent processes are modelled.

Equation (B.17) of Appendix B shows that if the specific dissipation function
¥loc 18 a homogeneous function of degree 1/u (# 1), the specific complementary
dissipation function ¢f . is a homogeneous function of degree 1/(1 — p).

4. Discussion and conclusions

The present paper refers to thermomechanics as a science which is a combina-
tion of thermodynamics and continuum mechanics. Since the field of the present
work is the evaluation of constitutive equations for solid materials, the applica-
tion of thermodynamics with internal variables was an obvious choice from the
many dialects of thermodynamics.

The topic of this paper is the derivation of the normality rule for time-
dependent deformation using the principle of maximal rate of entropy produc-
tion. This principle is due to ZIEGLER |1, p. 134]. Since Ziegler did not cast
his principle into an exact mathematical framework, it is done in this paper.
The standard formulation of the principle of maximal rate of entropy produc-
tion is shown to give a normality that is suitable for material models describing
time-dependent processes.

The principle of maximal rate of entropy production is not usually used to
obtain the normality rule but instead of that often the approach by the French
school of thermodynamics is followed. The French school of thermodynamics
assumes that the dissipation potential is a continuous and a convex scalar valued
function of the flux variables. It is also non-negative function with a zero value
at the origin of the space of the flux variables. According to the French school
of thermodynamics, if the dissipation potential satisfies the above-mentioned
properties, the normality rule is a sufficient condition for satisfaction of the
Clausius—Duhem inequality. The above description is based on LEMAITRE and
CHABOCHE [14, Sec. 2.4.3]. The principle of maximal rate of entropy production,
however, assumes that real processes follow a path which maximises the entropy
production. At the same time the Clausius—-Duhem inequality is satisfied. The
approach by the French school of thermodynamics is mainly a mathematical
construction. Since thermomechanics describes natural events a more physical
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background is needed, the author proposes to use the principle of maximal rate
of entropy production.

If the state is expressed by the quantities (¢ — €', &, T") and the material
model is given by the specific dissipation function whose variables are the fluxes
(¢', &) and the state (e — €', o, T'), the mechanical part of the normality rule was
shown to take the form

85010C(éi’fx;g._gi’a,T) - B:#pa‘pioc(éii--')‘

o¢' da

(41) o=upup

It was also shown that the specific dissipation function ¢, has to obey the
following condition:

b Bote <3 . B
(4-2) ‘Ploc(s"a;g_elia,T):u( ﬁploc,€1+ ‘Ploc.a) .

gt I

According to Expression (4.2) if ¢y is a homogeneous function, it is a ho-
mogeneous function of degree 1/u. If ¢y is not a homogeneous function, the
value for = p(e — €', &, T) is obtained from Equation (4.2).

In the case where the material model is given by the specific complemen-
tary dissipation function whose variables are the forces (o, 3) and the state
(e — €', &, T), the specific complementary dissipation function @} is a Legendre
partial transformation of the specific dissipation function .. In this case the
mechanical part of the normality rule was shown to take the form

st il Dot :
(07676 E!aﬁT) a.nd d:pd(‘ploc(o-"").

g acpfoc
(4.3) £ =p P B

As above a condition for the dissipation potential was obtained. It is

C C

(5 helo iz ) = (- ) (Bl gy x5
According to Expression (4.4) if ¢f,, is a homogeneous function, it is a homoge-
neous function of degree 1/(1 — ). If f . is not a homogeneous function, the
value for p = p(e — €', &, T) is obtained from Equation (4.4).

This paper does not give any examples on the application of thermomechanics
for material model verification, but the reader is asked to study, for example,
the lecture notes by SANTAOJA [15].

Appendix A. Legendre transformation

The investigation is started with a given scalar-valued function F, which is
assumed to be a function of two independent sets of tensorial variables, which
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areul,...,u™ and w!,...,w" ie.
(A1) F=F@,...,u™w, . .., w").
The new independent set of second-order tensorial variables y!,...,y™
assumed to be defined by
: OF (u!,...,u™ w! ... w" _
(A.2) v 1= o i ,Bu,i B ), i=1,...,m,
where a is a coefficient independent of u*,w? and ¥* (i = 1, ..., mand j = 1,
J

n). The variables u® are called the active variables and the variables wi are
called the passive variables of the transformation. A new function 2, called the
Lagende partial transformation, is introduced. It is defined by

(A.3) b (YL, ¥y wl . wh)

The variables w? and y* are given arbitrary variations dw’/ and 5Y'. Thus,
Eq. (A.3) gives

o8

2
(Ad4)  Sb0(,.... ¥y, wl...,w ‘”. Zb—— Sw

m m n
o o oF : oF ;
e 3. ) 1, 40y . i A —
_'E (y':0u' + dy':u’) E- a———aui.éu jgla*awj.éw y
which yields

2L G0 L <~ B8 .
(A.5) l bW:ay +Y bo—s oW

i=1 1=1
_Z(y—a——) su’ +Zu 5y—zn:a%:6wj.
=l i=1 j=1

According to Eq. (A.2) the first term on the right-hand side of Eq. (A.5)
vanishes, giving the following equations:

b BII e s W T W55 g W)

(A6)  wi= - ,

= e o T
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OF (ul,...,u™ w!', ..., w")
a ;

(A7) v Swi !

Appendix B. Legendre transformation of a homogeneous function

The Legendre transformation of a homogeneous function is investigated here.
It is shown that the Legendre transformation of a homogeneous function is a ho-
mogeneous function. This does not hold if the original function is a homogeneous
function of degree one.

A scalar-valued function F of m different tensorial variables u',...,u™ is
studied. Function F' is expressed as follows:

(B.1) F=Fu"...0™

is assumed to be a homogeneous function of degree w and therefore it satisfies
the following definition and equation:

(B.2) F(ku!,...,ku™) := k¥ F(d!,...,u™)
and
JoF oF
1 1y W o
(B3) wF(u,,un)—(é-u—lu ++&l—mum),
where k is an arbitrary positive real number {see e.g. WIDDER [13, p. 19 and 20]}.
Next, m second-order tensors ¥*,... y™ are introduced by defining
, aF(ul,. .., u™) _
(B.4) Y o= u B . i=1,...,m,
where a is an arbitrary coefficient independent of both u' and ¥* (i = 1,...,m).

The Legendre transformation §2 of the function F' is defined as in Appendix
A, ie.

(B.5) b2(¥,...,Y™) := Zyi:ui—aF(ul,...,um),

where the coefficient b does not depend on the tensorial variables u’ and y*
(i=1,...,m).
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Substitution of Definition (B.4) into Expression (B.3) gives

1 m o
B.6 F(ul,...,u™) =~ Lot
(B.6) Wl = Y v
which yields

m

(B.7) ZYi:uizawF(ul,...,um).

i=1

Substituting Eq. (B.7) into Legendre Transformation (B.5) gives

(B.8) F',...,u™ =c2(v',....,¥Y™),
where the coefficient c is
b
(B.9) L= :
aw—a

Once again the definition of variables y' is used. Thus, the variables Y' in
Eq. (B.4) are substituted into the arguments of {2 on the right-hand side of

Eq. (B.8) and the following equation is obtained:
OF(u',...,u™) dF(ul,...,u™)
u™ )

1 my __
(B.10) F(u',...,u )-c()(a 5l yeees @ 3

If the variables in Eq. (B.10) were changed by replacing u’ by ku’, Eq. (B.10)
would take the following form:

(B.11) F(ku',... ku™)

i aaF(kul,...,kum) OF (ku',...,ku™)
=c a(kul) jaisyl a0k um) .

The definition of a homogeneous function given by Definition (B.2) allows Eq. (B.11)
to be written in the form

(B.12) kY F(ul,...,u™)

_ k¥ F(ul,...,u™)] Jlk¥ F(ul,...,u™)]
—cﬂ(a 0k ul) — Bk u™) )

For the partial derivatives of the arguments of the Legendre transformation {2
on the right-hand side of Eq. (B.12), the following equations hold:

w1 OF(ut, .. . .0™) s k¥ F(ul,...,u™)]

B ok B’ aku)

§ = Ly
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Substitution of Definition (B.4) into the left-hand side of Eq. (B.13) yields

1. .., ; OkYF(ul,...,u™)] ,
B.14 = k9Lt = SRR =1,...
S g” X ok ) I S

.

Substitution of Eq. (B.8) into the left-hand side of Eq. (B.12) and Eq. (B.14)
into the right-hand side of Eq. (B.12) gives the following equality:

(B15) kv ‘Q(‘Y]a- » ’Y'rn) — fz(kw—l Yl»- -.,kw_l Ym) ‘

Changing the variables by replacing &“~! by ¢ allows Eq. (B.15) to be written
in the form

(B.16) /@D oyl y™) = 2@ty . ty™).

Equation (B.16) therefore shows the Legendre transformation $2(y!,...,¥™)
to be a homogeneous function of degree w/(w — 1), where w is the degree of the
original function F. This does not hold for the case w = 1, as can be seen in
Egs. (B.9) and (B.16).

If the original function F were a homogeneous function of degree u = 1/k,
the function {2 would be a homogeneous function of degree 1/(1 — u). As above,
this does not hold for the case p = 1.
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Pseudoviscoelastic behavior of TiNi shape memory alloys
under stress-controlled subloop loadings
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(2) Toshiba Ceramics Co., Ltd.
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THE SUPERELASTIC BEHAVIOR of TiNi shape memory alloy under various subloop
loadings were investigated. The results obtained can be summarized as follows. (1) In
the case of subloop loading under strain-controlled conditions, the reloading curve
passes through the unloading-start point. In the case of stress-controlled conditions,
the return-point memory does not appear. (2) In the case of subloop loading un-
der stress-controlled conditions, strain increases under constant stress in the loading
process and decreases in the unloading process. (3) In the case of subloop loading un-
der stress-controlled conditions, stress decreases under constant strain in the loading
process and increases in the unloading process. (4) The above-mentioned behavior
concerning the return-point memory and the pseudoviscoelastic behavior similar to
creep and stress relaxation, appear according to the martensitic transformation and
the reverse transformation based on the variation in stress and temperature.

Key words: Shape memory alloy, superelasticity, subloop, return-point memory,
creep, stress relaxation, titanium-nickel alloy, stress control.

1. Introduction

IN SHAPE MEMORY alloys (SMAs), the shape memory effect and superelastic
characteristics appear based on the martensitic transformation (MT) [1-7]. In
practical applications of SMAs, SMA elements are subjected to various thermo-
mechanical loadings. In order to design SMA elements, the thermomechanical
properties of SMAs are important.

Recently it has been reported that the deformation behavior under subloop
loadings is different between the strain-controlled condition and the stress-contro-
lled condition [8]. Although the return-point memory appears in the subloop
loading under the strain-controlled condition, it does not appear under the stress-
controlled condition. In the case of the stress-controlled condition, temperature
increases due to the MT in the loading process and decreases due to the reverse
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transformation in the unloading process. Both the stress and strain vary ltased
on these variations in temperature, and therefore the return-point memory does
not appear in the case of stress-controlled conditions [9]. Recently it has been
also reported that creep deformation and stress relaxation appear in SMAs inder
the subloop loadings [10].

In the present study, the superelastic behavior of TiNi SMAs under various
loading conditions are investigated experimentally. The conditions to caus: the
return-point memory are discussed. The pseudoviscoelastic behavior of treep
deformation and stress relaxation under the subloop loadings with the stress-
controlled condition is also discussed.

2. Experimental methods
2.1. Materials and specimens

The material tested was a rectilinear Ti-55.4wt%Ni SMA wire, 0.7{ mm
in diameter, produced by Furukawa Electric Co. Its straightness was slape-
memorized through shape-memory processing. This was done by holding the
wire rectilinear at 673 K for 60 min followed by cooling in the furnace. The
reverse-transformation finish temperature Ay was about 323 K.

2.2. Experimental apparatus

The SMA testing machine was used. The machine was composed of the ten-
sile machine and the heating-cooling device. Displacement was measured ty an
extensometer with gauge length of 20 mm. Temperature was measured by acher-
mocouple, 0.1 mm in diameter, which was pressed on the specimen at the ceatral
part of the gauge length.

2.3. Experimental procedure

In order to investigate the superelastic properties of the material, the folow-
ing five kinds of thermomechanical tension tests under various loading condiiions
were carried out by keeping the ambient temperature T'=353 K above Ay con-
stant. Stress and strain were treated in terms of nominal stress and noninal
strain, respectively. Therefore the stress-controlled and strain-controlled condi-
tions mean the load-controlled and displacement-controlled conditions, respec-
tively.

1. Full-loop loading under constant strain rate and stress rate

In the tension test, the full-loop loading and unloading were applied under
constant strain rate € and stress rate ¢. The MT completes in the loeding
process and the reverse transformation completes in the unloading preccess.
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2. Subloop loading under constant strain rate
Strain rate € was kept constant during the loading and unloading processes.
In the loading process, it was unloaded before the completion of the MT. In
the unloading process, it was reloaded before the completion of the reverse
transformation. The subloop-loading processes were repeated.

3. Subloop loading under constant stress rate
Stress rate ¢ was kept constant during the subloop-loading and unloading
processes. The subloop-loading processes were repeated.

4. Subloop loading under constant stress
Stress was kept constant during the MT in the loading process and during
the reverse transformation in the unloading process for a certain duration.
Variation in strain was observed under constant stress.

5. Subloop loading under constant strain
Strain was kept constant during the MT in the loading process and during
the reverse transformation in the unloading process for a certain duration.
Variation in stress was observed under constant strain.

3. Experimental results and discussion

3.1. Full-loop superelastic behavior under constant strain rate and stress rate

The stress-strain curves obtained by the tension test under constant strain
rate € and stress rate o are shown in Fig. 1. As it can be seen, in the case
of £ =1%/min, the overshoot occurs at the MT-start point Mg in the loading
process and the MT progresses in the region of the upper stress plateau till
the MT-end point Mp. In the unloading process, the undershoot occurs at the
reverse-transformation start point Ag and the reverse transformation progresses
in the region of the lower stress plateau till the end point Ap.

On the other hand, in the case of constant stress rate &, the overshoot at the
point Mg and the undershoot at the point Ag do not appear. Both the MT and
the reverse transformation progress with a certain slope of the curve between
the points My and M; and between the points A; and Ay, respectively. The
larger is the stress rate, the more steep will be the slope of the curve. The stress-
strain curve under constant stress rate is similar to that under high strain rate
[11, 12]. If the strain rate is high, the overshoot and undershoot do not appear,
and temperature increases due to the MT in the loading process and decreases
due to the reverse transformation in the unloading process. The variation in
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Constant stress rate g
Strain rate £=1%/min —

M

Stress MPa

Loading

—p
Unloading

Strain %

Fi1G. 1. Stress-strain curves for full-loop loading under constant strain rate £ and stress rate g.

temperature under constant stress rate is similar to that under high strain rate.

3.2. Subloop superelastic behavior under strain-controlled condition

The stress-strain curves obtained by the subloop loading test under constant
strain rate € = 1%/min are shown in Fig. 2. In the test, the process (A;, B; and
C;) corresponds to unloading and the process (C;, D; and A; ) to reloading. The
process (A;, B;) and the process (C;, D;) are elastic. The reverse transformation
appears in the process (B;, C;) and the MT appears in the process (D;, Aiy1).
The MT stress decreases under cyclic deformation [13]. Therefore the MT stress
plateau during the reloading process (D;, A;4+1) decreases with an increase in
the number of cycles N. The reloading curve (C;, D; and A;41) passes through
the unloading-start point A;. Therefore the return-point memory is observed in
the case of the strain-controlled condition.

700
600
Mg
500
£
s 400
g 300
@
200 Ag
100 Strain rate d¢/dt=1%/min
0 - | ' A I} I 't
0 1 2 3 4 5 6 7 8 9
Strain [%]

FiG. 2. Stress-strain curves for subloop loading under constant strain rate €.
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3.3. Subloop superelastic behavior under stress-controlled condition

1. Stress-strain curve
The stress-strain curves obtained by the subloop loading test under con-
stant stress rate ¢ are shown in Fig. 3. As it can be seen, strain increases
in the early stage of unloading (A;, B;) and decreases in the early stage of
reloading (D;, E;). The variation in strain is lager under low-stress rate.

% 1000
do/dt=1MPa/s Unloading A ;—B,—C,—D;
o L Reloading D;—E,—F,—A,;
]
E : B; F
600
§ B,
@ 1
Q 1
400 !
& Cz Y /
C,
200 iAg ——== Strain-
H controlled
0 l‘ .
0 2 4 6 8 10
_Strain %
O =1 MPa/s
b) 1000 o
do /dt=10MPa/s Unloading 4;,—B;—C,—D;
wiv | Reloading D;—E;,—F,—A;
Ms ] Al - :AJ MF
]
A A : i !
g o0 / I Lt 4__B_, L7178,
w 1 1 FJ
Ewll /a4
W E 1 _._: .._l_ - :
i D, C; .
200 F : 2 2 T4 ——— Strain-
v ] ! 1 controlled
; Ar : : i '
0 2 4 6 8 10
_ Strain %
O =10 MPa/s

F1G. 3. Stress-strain curves for subloop loading under constant stress rate &.

These strain behaviors are quite different from those under constant strain
rate observed in Fig. 2. In the reloading process, the stress-strain curve
does not pass through the unloading-start point A;. Therefore the return-
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point memory which is observed under the strain-controlled condition does
not appear under the stress-controlled condition.
2. Variation in temperature

The variation in temperature obtained during the subloop loading under
0 =1MPa/s is shown in Fig. 4. In Fig. 4, the variation in temperature is
shown as a function of the accumulated strain path Z|AL/L|. As it can
be seen, temperature increases due to the MT in the loading process and
decreases in the early stage of unloading (A;, B;). Temperature decreases
due to the reverse transformation in the unloading process and increases
in the early stage of reloading (D;, E;).

E1 B2 E2
so0 Ms_Al Bil Cl1 D}l F1 A? C2 D:2 F2 Mf %1
700 | I : ; { : 359
! di
600 | 7= | mpLoadiig. | oo v
& A\ : —>Unloading .
E 500 / \ //"ﬁ\ == SIMT 355 &
/ \ ; o -
@ 400 p—< L= 2 L5 A las 8
(7] P \ \l [}
£ ’ N ‘l 351 =
300

3 \ / g
200 r 349

wo | — Stress -

---- iTemperature
0 345
0 s 10 15 20 25 30 35 40

EIAL/L| %

Fi1G. 4. Variation in temperature for subloop loading under constant stress rate 0=1 MPa/s.

3. Condition for progress of phase transformation

The condition for the progress of the MT and the reverse transformation
is governed by the kinetics of the phase transformation [14, 15]. The con-
dition for the progress of the phase transformation under subloop loadings
is shown on the stress-temperature phase diagram in Fig. 5 [9]. The condi-
tions for the start and finish of the MT and the reverse transformation are
expressed by the transformation lines Mg, My, Ag and A, respectively.
Each transformation progresses in the transformation strip between the
start line and the finish line. As it can be seen, the MT progresses if the
state of stress and temperature varies to the direction in which the volume
fraction £ of the M-phase increases. The reverse transformation progresses
if the state varies to the direction in which £ decreases. Based on this con-
sideration, the MT must progress in the early stage of unloading (A;, B;)
under constant ¢ and strain increases as observed in Fig. 3. The reverse
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transformation must progress in the early stage of reloading (D;, E;) and

strain decreases as observed in Fig. 3.

a)
Mg (5=1)

Stress

j{on lines

M(5=54)

M (£=0)

As(&=1)
Am(&"—fC)

Ar(5=0)

Temperature

Path for progress of phase transformation

b)

Stress

T,

Temperature

Paths for progress and stop of phase transformation

FiG. 5. Conditions for progress of the MT and the reverse transformation under subloop
loadings: a) Path for progress of phase transformation, b) Path for progress and stop of phase
transformation.

3.4. Strain behavior under constant stress

The stress-strain curve obtained by the subloop loading test under constant
stress is shown in Fig. 6. In the loading process (O, A4) and the unloading process
(B, (), stress rate was 1 MPa/s. Stress was kept constant during the process
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(A, Mp) following the point A and during the process (C, Ar) following the
point C. The condition of constant stress will correspond to very low stress rate.
Therefore, as observed in Figs. 3, 4 and 5, the MT progresses under low stress
rate or constant stress due to decrease in temperature, resulting in increase in
strain. The reverse transformation also progresses under constant stress due to
increase in temperature, resulting in decrease in strain. The increase in strain
under constant stress is similar to creep deformation and the decrease in strain
under constant stress is similar to creep recovery after unloading which appear in
the viscoelastic material. These creep and creep recovery in SMA must appear
owing to the MT and the reverse transformation, respectively, based on the
variation in temperature.

1000
Full loop under d o /dt= 1MPa/s
S Constant stressat A > Mrand C = AF
_ o i ety e
& 600 | i |
= ]
w 1
g :
E 400 | ;
7} e
200 ——ets fl
1 A S
1
)
0 1 L
0 2 4 6 8 10

Strain %

FIG. 6. Stress-strain curves for subloop loading under constant stress during loading
and unloading.

As observed above, temperature varies due to the phase transformation dur-
ing loading and unloading, and temperature returns to the ambient temperature
with lapse of time under constant stress, resulting in variation in strain. In order
to confirm the strain behavior during variation in temperature under constant
stress, the heating-cooling test under constant stress was carried out. The rela-
tionship between strain and temperature obtained by the test is shown in Fig. 7.
In the test, at first, strain eg=4% at the point A was applied at temperature
T° =333 K. Following the loading to the point A and keeping stress og — 460
MPa at the point A constant, the specimen was cooled down to T; = 303 K which
was followed by heating up to T, =393 K. The heating and cooling under con-
stant stress were repeated twice. As it can be seen in Fig. 7, strain decreases due
to the reverse transformation between Ag and Ap in the heating process. In the
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cooling process, strain increases due to the MT between Mg and Mp. There-
fore, it is important to note that, even if the ambient temperature is constant in
applications of SMAs, creep and creep recovery must appear if the temperature
varies based on the phase transformation in the subloop loadings.

10

O p=460MPa

Strain %

270 290 310 330 350 370 390 410

Temperature K

F1G. 7. Variation in strain during heating and cooling under constant stress.

3.5. Stress behavior under constant strain

The stress-strain curve obtained by the subloop loading test under constant
strain is shown in Fig. 8. In the loading and unloading processes, stress rate was
30 MPa/s. Strain was kept constant for 10 min during the loading process (A;, B;)
and during the unloading process (C;, D;). As it can be seen in Fig. 8, stress
decreases under constant strain during (A4;, B;) and increases during (C;, D;).
The decrease in stress and the increase in stress stop on the upper stress plateau
and on the lower stress plateau of the stress-strain curve under low strain rate,
respectively.

The variations in stress and temperature during the first step of the subloop
loading (O, Mg, A; and B);) are shown in Fig. 9. In the test, stress rate was
constant during loading (O, Mg and A;) and strain was kept constant during
(A1, By). Asit can be seen in Fig. 9, temperature increases due to the MT during
loading (Mg, A1). Both the stress and temperature decrease markedly just after
keeping the strain constant at the point A, and remain constant thereafter till
the point B;. Although temperature varies due to the MT in the early stage
under constant strain, temperature approaches the ambient temperature after
the early stage. The decrease in stress under constant strain is similar to stress
relaxation, and the increase in stress under constant strain is similar to stress
recovery after unloading which appear in the viscoelastic material. These stress
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relaxation and stress recovery must appear owing to the MT and the reverse
transformation, respectively, based on the variation in temperature.

In the experiments of the present study, temperature was controlled to keep
the ambient temperature constant. Therefore the variation in temperature of
the material depends on the heating and cooling conditions. This means that the
variations in stress and strain which appear based on the MT due to the variation
in temperature, depend on the size of the SMA elements and the conditions of
heat transfer between the SMA elements and atmosphere. Therefore, in order
to design the SMA elements, this pseudoelastic behavior must be taken into
account in the case of the stress-controlled subloop loadings.

™ Constant strain at 4A:—Biand Ci— D:

700 Mg 4,

Mg
600 |

500 |

400

Stress [MPa]

300

200 T
do/dt=30MPa/s

d & /dt=1%/min

Strain [%]

Fic. 8. Stress-strain curves for subloop loading under constant strain during loading
and unloading.

800 358
4. Loading : do/dt=30MPa/s at 0—A,
700 & . ; 357
M Constant strain at A;—B; _
., 600 356 £
[
B 500 QB E
355 =
2: 400 Stress E
w [-*]
£ 300 = &
w s @ B 353 @
i Temperature a
100 352
0 . : ‘ 351
0 100 200 300 400 500 600 700

Time [s]

Fi1G. 9. Variations in stress and temperature during subloop loading with constant strain.
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4.

Conclusions

The superelastic behavior of TiNi SMA under various subloop loadings has

been investigated. The results obtained can be summarized as follows.

1. In the case of subloop loading under strain-controlled conditions, the reload-
ing curve passeses through the unloading-start point. In the case of stress-
controlled conditions, the return-point memory does not appear.

2. In the case of subloop loading under stress-controlled conditions, strain

increases under constant stress in the loading process and decreases in the
unloading process.

3. In the case of subloop loading under stress-controlled conditions, stress
decreases under constant strain in the loading process and increases in the
unloading process.

4. The above-mentioned behavior concerning the return-point memory and

the pseudoviscoelastic behaviors similar to creep and stress relaxation ap-
pears according to the MT and the reverse transformation based on the
variation in stress and temperature.
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NOVEL HIGH-ACCURACY computational techniques for solid mechanics problems are
presented. They include fourth-order and arbitrary-order finite difference methods
based on Pade-type differencing formulas and a meshless method which uses radial
basis functions in a “finite difference” mode. Some results illustrating high perfor-
mance of the suggested numerical methods are displayed.

1. Introduction

AT PRESENT, though the finite element method (FEM) is a universally accepted
numerical tool in computational solid mechanics, the trend has been observed
toward developing alternative techniques in the context of problem-oriented
methodologies (for example, for solving problems with large deformations and
moving discontinuities). Besides, one can see considerable interest in increasing
the accuracy of numerical methods in a broad sense. The merits of high-accuracy
methods can be manifested at least in two ways.
First, they may serve as high-resolution tools capable of describing properly
fine details of solutions (for example, stress concentrations in small regions).
Second, they can provide engineering accuracy with relatively small numbers
of degrees of freedom. As a result, operation counts and hence computational
costs dramatically go down (mainly due to reducing by orders of magnitude the
operation counts for both direct and iterative solvers of algebraic systems).
In the present paper, novel ideas are presented concerning applications of
high-accuracy techniques to solid mechanics. They include:
(1) a finite difference method based on fourth-order compact differencing (CD)
operators;
(ii) an arbitrary-order schemes for parallel calculations based on linear combi-
nations of second-order CD operators (multioperators);
(iii) a meshless method which uses radial basis functions in a finite-difference
mode.
The above methodologies are aimed at different areas of applications. While
(1), (ii) show their peak performance in the case of relatively simple geometries
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(for example, in the case of simply shaped plates and shells), using (iii) makes
sense if the problem formulations include complicated forms of boundaries or/and
an expected solution is that for which meshless methods are preferable.

Though (iii) differs in a significant way from (i) and (ii), both types of tech-
niques, in contrast to the majority of the existing methods for solid mechanics,
have in common the strategy of a direct discretization of governing equations
rather than following their weak formulations. It makes them compatible when
using them in the framework of the domain decomposition approach.

Below, the outlines of the methods followed by estimates of their performance
in the case of testing solid mechanics problems are presented.

2. High accuracy schemes based on compact differencing
2.1. Fourth-order method

The well documented second-order difference schemes seem to be not popular
in solid mechanics applications since they are approximately as accurate as the
simplest FEM methods but they are considerably less flexible. However, recent
advances in computational fluid dynamics have shown that high-order schemes
can be highly competitive. Among such methods there are the so-called compact
schemes which exploit Pade-type differencing formulas which can be viewed as
rational functions of difference operators defined at compact stencils.

The simplest compact differencing formulas for the first and second deriva-
tives are due to Collatz and Numerov. Supposing a uniform mesh with the mesh
size h, the approximations to the derivatives at each grid point x; =jh look as

DW= (I + Ag/6)7! Ao/ (2h) = 8/dx — (h/180) 8° /92 + O(h®),
(21)  D® = (I + Ag/12)7 Ay/h? = 8?/0x® — (h*/240) 8% /028 + O(R®),
Nofj = fiv1— fi-1,  DBafj= fin1 —2f; + fi-1,

where I is the unity operator. The above formulas are not only fourth-order
approximations, but they also have very small numerical coefficients in their
truncation errors thus providing a very high accuracy.

Using Eqs. (2.1) for spatial x, y, z coordinates, one can easily discretize any
form of solid mechanics equations. For example, for the biharmonic equation in
the Cartesian coordinates describing the Kirchhoff plate, one has

Bjw = DI DPw + Dé,z)Dz(lz)w & QDQZ)DLQ) w=q,

where q is a loading function. To calculate Bpw where w is a known grid function,
one needs only to perform several tridiagonal Gauss eliminations. The solutions
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of the above equation can be obtained by using the standard iteration procedures.
Since By, is a self-adjoint positive operator in an appropriate Hilbert space, the
convergence estimates for preconditioned iterations can be quite favorable. In
the case of simply supported plates, it is advantageous to solve the biharmonic
equation by sequentially solving two Poisson equations.

As an example of applications, consider a Kirchhoff plate occupying in the
(z,y) plane the domain £2: —I <z <, 0 <y < m. The flexural rigidity of the
plate D(z,y) is supposed to be a sufficiently smooth function of its arguments,
the only exception being its possible discontinuity at z = 0. It is supposed also
that the plate may be strenghthened by a stiffener with the bending and torsional
rigidities B and C respectively. Then the z-displacement w of the plate satisfies
the biharmonic equation in both subdomains — < z < 0, 0 < y < m and
0 <z <0<y < m with proper boundary conditions at 92. At z=0, the
variational principle |1] gives the following “jump” conditions:

(2.2) w]=0. [ws]=0. [Dwar +vwy)|= ~(Cus)s,

{{D(w,m + vwyy)} e+ 2{D(1 - V)w,zy}.yw = —(Bw yy) yy

where v is the Poisson coefficient and for a function f(z,y), | f | means f(+0,y)—
f(=0,y). In the particular case B=C=0, [D]=0, one has the interface condi-
tions for the domain decomposition approach applied to plates with smoothly
varying thickness.

Considering as an example the simply supported plate, we discretize the bi-
harmonic equation using the above fourth-order compact differencing operators.
To satisfy (2.2), a fifth-order formulas which relate w (-0, y) and w . (+0,y) to
w and w gz, at the “left” and “right” nodes respectively were constructed. Using
them, a complete set of algebraic equations can be derived. In general, they can
be solved by either direct or iterative solvers. The results presented below are
obtained by alternately solving the “left” and “right” biharmonic equations.

The results of calculations with the standard-second order and the present
fourth-order schemes for the square simply supported plates with a stiffener
shown in Fig. 1 are presented in Table 1 for a sinusoidal load.

The bending and torsional rigidity of the stiffener were chosen as B=2 and
C= 2 respectively. The rigidity of the first plate D=1, (Fig. 1a) was assumed for
both sides of the plate while the rigidity of the second plate was set to different
values for each side of the plate (D=1, z <0, D=2, z >0, Fig. 1b).

In the Table 1, the Ly norms of the solution errors é and the corresponding
mesh convergence order k are displayed for several N x N meshes, the reference
“exact” solution being obtained using a very fine mesh.
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L7 77

Fic. 1. Plates with stiffeners.

Table 1.
Plate D=1 D=1,z<0;, D=2,z>0
Scheme Second order Fourth order Second order Fourth order
Nx N é k 8 k ) k 1) k
8x8 6.574e -3 3.532e-5 5.883e-3 4.941e-5

16 x 16 1.582¢-3 | 2.06 | 4.715e—-6 | 2.91 | 1.395¢-3 | 2.08 | 5.045e-6 | 3.29
32x32 | 3.870e-4 | 2.03 | 3.100e-7 | 3.93 | 3.386e-4 |2.04 | 3.212e-7 | 3.97
64 x 64 | 9.566e -5 2.02| 1.818e-8 | 4.09 | 8.339e-5 | 202 | 1.874e-8 [ 4.10

As it may be seen from the Table 1, the present approach gives the solutions
which are by several orders of magnitude more accurate than those obtained by
the standard FD method (the latter is approximately as accurate as the FEM
with linear elements). From the practical viewpoint, it means dramatic reduction
of computational costs. For example, the fourth-order result for the 8 x 8 mesh
is more accurate than the second-order one for 64 x 64 mesh. Note that the best
algebraic solvers for two-dimensional cases give O(N?logN) operation counts.

2.2. Arbitrary-order discretizations

The standard FEM and FD methods (as well as the above described ap-
proach) are not able to enjoy in full measure the smoothness (or local smooth-
ness) of exact solutions of many elasticity problems. Generally, they provide
mesh-convergence orders which do not exceed the discretizations orders (the so-
called “saturation” property). In contrast, accuracies of “saturation-free” meth-
ods depend on the numbers of existing exact solution derivatives (an interpo-
lation with nodes chosen as zeroes of Chebyshev polynomials may serve as an
example). On some occasions, the convergence can be exponential.

To increase the approximation the orders admitted by exact solutions smooth-
ness, one usually tries to increase the values of some parameters defining the dis-
cretizations (for example, polynomial orders of local interpolants). In many cases,
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it may complicate the resulting formulas and create some problems when imple-
menting the constructed algorithms. An alternative way was suggested in [2] in
the context of the parallel computational fluid dynamics. Its essence is using
linear combinations (“multioperators”) of special types of basis operators hav-
ing relatively simple structures to provide theoretically arbitrary-order schemes.
Recently [3], the idea was extended to the case of centered discretizations ap-
propriate for solid mechanics equations.

To describe the extension, we return to operators (2.1) and consider without
any loss of generality the z-derivatives only. Changing the coefficients 1/6 and
1/12 by a parameter ¢, we obtain one-parametric families D;(,l)((:) and D;z)(c)
approximating the first and second derivatives with the second (rather than the
fourth) order. Fixing now M distinct values of ¢, (¢ = ¢1,¢a,...cpr), one can
define multioperators for the z-derivatives |3]

DS\-II) Z'Vz lcz M Z'YDZ)(Q

where v; and 7; satisfy the following linear systems:

M M

(2.3) Z’yj=1, Zc:?qu:rk, k=1,2,...M -1,
j=1 j=1
M M

(2.4) Y H=1, Y &%= F=L%..M-1
j=1 j=1

where 7 and 7, are known constants obtainable from the Taylor expansion
series for the actions of D&l)(ci) and D‘g)(ci) on sufficiently smooth functions
projected into the space of grid functions. For example, in the case of M= 3, one
has (r1,72) = (1/24,3/640) and (7, 72) = (1/6,1/30).

The above systems with the Vandermonde matrices are known to be always
uniquely solvable. Moreover, their solutions can be easily obtained in analytical
forms.

One can prove the following

THEOREM 1. Let u € C?*M and v1,v2,...,v1, 71,72, ...90m denote the
solutions of (2.8), (2.4) forc; #¢j, i # 3, 4,j=1,2,...,M. Then

DY) =a8/8z + 0(h*M), DY) = 9%/02% + O(h*M).

To relax the ill-conditioning property of systems with the Vandermonde ma-
trix when M — oo, we suppose that ¢; are zeroes of the Chebyshev polynomials
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for an interval [cmin, Cmax). Further limitations on the choice of ¢; in the case of
second derivatives follow from the requirement that multioperators must be neg-
ative definite, thus providing good convergence properties of relevant iterative
procedures. For M= 3, the sufficient conditions can be obtained in an analytical
form [3].

Using multioperators for each coordinate, one can discretize any solid me-
chanics equation. The resulting schemes are especially advantageous when using
parallel machines (at least, M processors are needed). In that case, the 2M-th
order admitted by the degree of solutions smoothness is realized by simultaneous
and synchronous calculations of actions of basis operators. So the computational
costs, when calculating actions of multioperators on a known grid function, turn
out to be the same as those in the case of a single basis operator with a simple
architecture.

To illustrate possible peak performance of the multioperators method, we
consider the following BVP for the Poisson equation

Au = —27% sin Tz sin 7y,
mv?}eg:[O’l] X [0, 1]. u'arz:O

Its exact solution is sinwz sinwy. The same exact solution can be obtained for
the biharmonic equation describing bending of a square plate

(2.5) AAu = 4rtsinwzsinty, x,y € 2

with boundary conditions u|gp=0; 0%u/dx?=0 for z=0,1; 0%u/dy*=0 for
y=0, 1.

Sixth-order operators Dﬁ) corresponding to the z and y coordinates (M =3)
with proper restrictions imposed on ¢, c2,c3 were used to approximate the
Laplace operator. In the case of problem (2.5), the biharmonic operator was
considered as the square of the Laplace one.

The results for both problems for several meshes are shown in Table 2 (N x N
stands for the number of grid points while k is the estimated mesh-convergence
order).

As it may be seen from Table 2, the numerical solution accuracy is very high
even if only 4 grid points are placed in each spatial directions. Again, the most
important output of using the methodology is the possibility of obtaining an
engineering accuracy with a very small number of degrees of freedom since it
means computational costs savings up to many orders of magnitude. However,
it should be emphasized that the technique exploits the solution smoothness.
So its efficiency depends on the quality of meshes in the case of complicated
geometries. In that case, one may suggest to use it in the framework of a domain
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decomposition by constructing subdomains with “good” and “bad” boundaries.
The latter category can be treated by using other methods. In particular, the
multioperators method can be combined with the meshless radial basis function
technique described in the next section.

Table 2.
Problem Poisson eq. Biharmonic eq.
N x N ) k ] k
4 x4 2.3le-6 4.62e -6

6 x6 3.28e—-7 4.81 6.57e-7 | 4.81
12 x 12 6.23e-9 5.72 1.24e-8 | 5.73
24 x 24 1.01e-10 5.95 | 2.0le-10 | 5.95

3. Using meshless interpolants in a finite differencing mode

Recently, considerable attention has been paid in computational solid me-
chanics to the so-called meshless methods allowing to discretize PDEs using
scattered nodes. They have some attractive features. In particular, they do not
require structured or unstructured grids thus automatically obviating the diffi-
culties of constructing high quality meshes needed, for example, in the case of the
above described technique. Meshless methods are known to greatly simplify the
solution procedures in the cases of large deformations, changing geometries etc.
Among the first meshless methods, there are generalized finite difference [4] and
smooth particle hydrodynamics [5] methods. The majority of existing meshless
methods exploit the least squares principle to construct meshless approximations.
In these approaches, the approximated functions and their approximations, in
general, do not coincide at the nodes. They are used mainly in the framework of
the Galerkin method (their extensive review can be found for example in [6]).

Another approach is using radial basis functions (RBF), that is the functions
of arguments which are distances between current point and nodes. In contrast
to the least squares approximations, RBF interpolants satisfy the interpolation
conditions stating that they are equal to the interpolated functions at nodes. It
was found that the RBF interpolation procedure has the potential for being very
accurate providing in some instances exponential convergence. The overview and
the relevant references concerning RBF can be found, for example, in [7].

Unlike the least-squares types methods, RBF applications to PDE s are based
mainly on the collocation and boundary elements strategies [8-10]. The merits
of the collocation RBF techniques are simplicity of boundary conditions for-
mulations and absence of numerical integration procedures typical for some
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meshless Galerkin-type methods. However, serious problems may arise due to
the ill-conditioning property of the resulting linear systems. To circumvent the
difficulty, some remedies were proposed. They concern locally supported RBF
[11-13]; preconditioning [14] and domain decomposition [15].

We consider here another way of using the RBF suggested in [16]. The idea is
to define for each node a local set of neighbour nodes (“stencils”, following finite
differencing terminology), to construct for the set an RBF interpolant and the
resulting approximations to derivatives at the node. The approximation formulas
can be then used when discretizing the PDE of interest.

The procedure is completely analogous to the finite difference one. It differs
from the latter in

(1) using arbitrary spaced nodes instead of grid points,
(2) using RBF instead of polynomials when constructing numerical differentia-
tion formulas.

Comparing with the collocation approach, the governing equations are ap-
proximated at each node rather than satisfied at the node. Using local RBF
supports greatly relaxes the ill-conditioning limitation. Assuming on good RBF
approximation properties, one may expect reasonable high accuracy.

In what follows, the technique is presented in more details.

3.1. RBF approximations to derivatives and RBF schemes

Suppose one has a set X = {x1,x2,...,Xa} C 2 of nodes in a computational
domain 2. Let X; = (x",x{,..., J))) X; C X,x; € X; be a “cloud” of
nodes surrounding each node x;. 'Ihe node w1ll be referred to as a center of
the cloud. Following the finite difference terminology, we shall however use the
notion “stencil” instead of cloud.

Suppose further that u(x), x € §2 is a sufficiently smooth function. Denoting

u(x;) = u;, let us introduce “internal” numbering for a subset X;: if x; = xg)

()

then u; = u;’ where k is some number from (1,2,..., Nj).
We construct for each X; an interpolant

N;
sD(x) = 3 e a(lIx - x|,
k=1
where || - || is the Euclidean norm, bg) are the entries of the matrix which is

inverse of the coefficients matrix AY) = {agk} = {o(]x: — x;; )||} arising from
the interpolation conditions s(j)(xfcj)) = ug), Bl 2.9

For any linear differential operator D one can construct then the approximate
formula [Du); ~ cfcj)[qu(Hx (J)Il )]; where the notation [Df]; = Df|x=x;



HIGH-ACCURACY DISCRETIZATION. . . 539

()

is used. Substituting the expression for ¢;”’, one may write finally

N;

[Du]; = 3 (ep) P,

1=1

(3.1) (e0)? =3 82 De(llx —xPIN];, §=12,..., M.
k=1

The coefficients (CD)EJ ) depend only on D and the coordinates of the nodes
belonging to the j-th stencil. They do not vary during the solution processes (if
nodes are not moving) and can be calculated during preprocessing.

In the following, we shall suppose that D is an operator of derivatives with
respect to Cartesian coordinates. Then (3.1) may be viewed as usual numeri-
cal differentiation formulas written for stencils X;. Such formulas are used for
discretizations of PDEs when each internal node considered as a center leads
to algebraic systems with sparse matrices typical for a conventional finite differ-
ence method. It is worth noting that it is possible to use “oriented” stencils for
skew-symmetric operators, thus introducing an upwinding used in fluid dynamics
applications.

Differencing formulas (3.1) can be readily extended to the case when deriva-
tives are specified at data points (for example, near the boundaries where the

Neumann boundary conditions are used). In that case we suppose that values

fi=f(x ) are specified at some nodes of the j-th stencil xgj), x2]), ) x,(;7

() (J) (J)
Xg'y +ovy Xg

while functlonals Df | e are given at X; where D is a linear

operator. It is assumed that xg ) and Xp () possibly coincide for certain 7 and k.

The corresponding RBF interpolant has the form

p v
sDx) =3 aro(|lx — x| + Zbka #(lIx — =),
k=1
Pg< N]1
where (z) indicates the action of D on ¢ as a function of x. Requiring that

Sl = He
D4l) ez = DF L0
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one obtains the following linear system:

A11.--P1p Do1y...Doyq a h

(3.2) ®p1--Ppp Dépr...Dopg p | _ Ip
. D¢ni...Dé1p D?¢11...D%*¢y by Dfi |’

\D¢g..Ddy D?¢g1..D%,/) \b, Df,

¢ij = d(lxi — x511), Doij = Db(||x — xjl|)lx=x,, D*dij = D?$(|1x — %;|[)|x=x-

Assuming that matrix (3.2) does not degenerate (this is the case for certain
types of @), one can solve the system for coefficients ay, br. Applying operator
D to s(x) at a node x;, one obtains the following generalization of (3.1):

14 q
Do~ C{ ety B Dk,
k=1 k=1

where the coefficients C,(Ca) and B;(ca) depend on the coordinates of the nodes

forming the j-th stencil while D, is supposed to be the operator of the ath-
order derivative in one direction or another.

It is of interest to estimate the actual accuracy of (3.1) in the cases when D
is the operator of the first or second partial derivatives and N; are reasonably
small numbers. Unfortunately, in contrast to the usual FD formulas, the Taylor
expansion series are not very efficient here. It is due to degeneration of the
coefficient matrix in the limit of vanishing distances between neighbour points.

There are some estimates of the h-convergence in the case of cardinal inter-
polation [25], when nodes z; are generated by the Cartesian grid with N; = oo.

A natural but not a general way to estimate the approximation errors for
relatively small V; is their direct calculation for certain classes of functions. Of
course, it gives only some impression concerning the RBF performance in a finite
difference mode. The results of the calculations for Hardy multiquadrics (MQ)

(3.3) o(r) =+ OV, 2= 4yl

with C' = 1 are presented in [16]. Figure 2 shows Ly - norms of errors in the
case of the first and second derivatives of f(z) = exp(2(x + y)) when using the
stencils indicated herein.

It can be seen from Fig. 2 that the norms can be well presented by the power
laws h? where h is the distance between nodes while p =2, 4,6 for stencils 1, 2, 3.
For a fixed h = h., enlarging the stencils increases the accuracy of the derivatives
discretization. However, one should not expect that this will continue when the
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number of nodes V; = K in the stencils increases without bound. When K — o0,
the accuracy of the interpolation which provides differencing formulas is expected
to tend to that of the cardinal interpolation [26], for h = h,.
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F1G. 2. Mean-root-square errors vs. mesh size and the corresponding RBF stencils. Solid
and dashed lines correspond to first and second derivatives respectively.

In the figure, the result obtained with the second-order-accurate centered
finite difference formula for the first derivative are also shown (marked by aster-
isks). They are close to those for the stencil 1.

Discretization at each node of a given PDE can be proceeded in a stan-
dard finite difference manner by changing derivatives with their approximations.
Assembling then the resulting algebraic equations and using the boundary con-
ditions (which, if needed, can be discretized as well), one obtains a global system
for unknown nodal variables.

In the linear case, its matrix is a sparse one and the system can be solved
using direct or iterative methods. In the numerical experiments described below
the direct nested dissection method [27] was used. It should be noted that con-
dition numbers for “global” systems were found to be quite acceptable. However,
though the present technique suggests N; < N, ill-conditioning of a system like
(3.2) can not be ruled out if Nj is too large or distances between the nodes are
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too small. In the calculations, the situation has been encountered only in the
h-convergence studies when very small values of h, the characteristic distances
between nodes, were used. In those cases, quadro precision arithmetic was ex-
ploited. The preconditioning ideas of [14] seems to be quite attractive to deal
with such cases.

Summing up, to solve a PDE using the present RBF approach, one shoald:

(i) Specify the nodes distribution in the considered computational doman;

(ii) For each node z; considered as a center, specify a stencil with N; nodes
surrounding xj;

(iii) For each stencil, obtain the “differencing” coefficients (for example (C))(J )
in (3.1)) by solving linear systems;

(iv) Substitute the approximations to derivatives at each node in the PDE
and form the resulting “global” system by assembling together the nodal
approximations;

(v) Solve the global system.

It should be noted that steps (i)-(iii) can be viewed as a preprocessing pro-
cedure once the nodes distributions and stencils are net supposed to be changed
during calculations. In nonlinear cases, only steps (iv) and (v) have to be included
in iterations.

Since the RBF approach is based on the finite difference principle, the theo-
rem stating that O(h*) convergence follows from

(i) O(h¥) approximation to governing equations,

(i) stability of a schemes in the present case.

Unfortunately, it is difficult to prove both properties in a general case of
arbitrarily spaced nodes and arbitrary stencils. However, the potential for sat-
isfying (i) and (ii) was discussed in [16] where it was shown that the RBF ap-
proximation to the Laplace operator using stencil 1 from Fig. 2 is a negative
definite one (the Hilbert space of double-periodic nodal functions with the in-
ner product (u,v) = h? Zi,j u;;v;; where u;; and v;; are defined at grid points
x; = ih,y; = jh of the Cartesian grid was assumed). As a result, in that case
(as well as in the cases of other stencils shown in Fig. 2), very fast convergence
was observed when using the simplest iterative procedure for inverting the cor-
responding L, operators.

In the calculations described below, h-convergence was always seen at least
for the considered ranges of h and all the considered stencils.

Though general RBF methodology is really a meshless one and a random
nodes distribution can be used, the most accurate numerical solutions can be
expected only if a “proper” distribution is specified depending on the problem to
be solved. Moreover, the strategy of choosing stencils in the present approach,
as in the finite difference methods, plays an important role.
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Since the calculations presented below are aimed mainly at comparisons with
other methods, either triangulated or Cartesian meshes were used as nodes dis-
tributions. As to step (ii), different strategies were used when specifying stencils.

In the following, the MQ radial basis functions will be considered only. We
set C'= 1 in (3.3) when carrying out the majority of the calculations described
below since we are not aware of the existence of a theory giving an optimal
choice of C'. Of course, judging from the results presented in |17, 18], the solution
accuracy is expected to be lower than that for a more successful choice of C'.

3.2. Numerical examples

EXAMPLE 1. KIRCHHOFF PLATES

We consider below two cases of the Kirchhoff plates for which exact solutions
are available. Their bending is described by the biharmonic equation. In the
particular case of simply supported edges, a solution procedure can be reduced
to successive solutions of two Poisson equations.

The first case is a square plate problem described by (2.5). The calculations
were carried out using seven-points “simple” (or RBF-1) and nineteen-points (or
RBF-2) “enlarged” stencils (Fig. 3), the fourth-order technique from Sec. 2 and
the FEM method with linear elements. The L, norms of errors are displayed
in Fig. 4. As it is seen, the “simple” stencils and FEM show second-order mesh
convergence while the RBF with “enlarged” stencil and CD method are fourth-
order accurate. At the same time, the RBF solutions are more accurate than
their counterparts of the same order.
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FiG. 3. A triangulated mesh in a square domain. The “simple” stencil for the node A and the
“enlarged” stencil for the node B are shown by white and black markers respectively.
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Fig. 4. Mean-root-square errors vs. mesh size for the biharmonic equation in a square domain.

Dashed lines without markers and with markers correspond to the RBF “simple” and “enlarged”

stencils respectively. Solid lines without markers and with markers correspond to FEM
and compact scheme of fourth-order respectively.
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As the next testing example, we consider bending of a simply supported
rhombic plate subjected to a uniform load. In that case, there is a singularity
of the exact solution which has an adverse effect on the accuracy of numerical
methods. The problem is investigated in [20] in the context of performance of
several finite element methods. Then the most accurate solutions obtained with
21 degrees of freedom elements using both uniform and non-uniform meshes are
compared with the present RBF and CD results.

Figure 5 displays the relative center displacement errors (on a percentage
basis) vs. the number of nodes in the computational domain for two values of
the rhomb angle. The exact solution considered as a reference one was obtained
using the technique described in [21], while the most accurate are the solutions
obtained with the fourth-order CD and sixth-order CD-based multioperators
schemes. However, the mesh-convergence orders in all cases are not so high as in
the previous example. Moreover, the performance of the fourth and sixth-order
methods is approximately identical though the latter is slightly more accurate.

EXAMPLE 2. TORSION OF PRISMATIC BARS
According to the elasticity theory, solutions of the bar torsion problems can
be obtained by solving the Dirichlet problem for the Poisson equation

A¢ = _2! X € Q: ¢|dﬂ = 0!

where (2 is a bar cross-section domain. The corresponding stress components
can then be expressed in terms of x- and y-derivatives of ¢. In the case of
cross-sections with boundaries which contain “incoming” angles which rounded
vertices, it is of interest to predict accurately the stress concentrations near the
rounded corners where high gradients are possible (it is known that stresses
become singular when the corresponding curvature radii tend to zero).

We consider the geometry of a bar cross-section shown in Fig. 6 which was
investigated in [22] using very accurate semi-analytic method. The cross-section
is characterized by the radius r of the rounded corner and the “shelf” length A,
the “shelf” thickness being assumed to be unity. The asymptotics in the case
r — 0 was investigated in [19, 22|. To describe properly the stresses near point
C for small r, high-accuracy methods are needed.

The RBF calculations were carried out using triangulated meshes (one of
them is shown in Fig. 6). The meshes are defined by numbers M and N of nodes
uniformly distributed along the boundary PQ) and the boundary RS, respectively.
Thus the condensation of nodes near C' can be achieved by increasing M.

To compare the solution K= grad ¢ in C with the results of [22], the ¢ deriva-
tives were approximated using the third-order four-points formula. The calcu-
lations were carried out for three meshes M=11, N=20; M=21, N=40 and
M=41, N=80 showed that the difference between the results corresponding to
the second and the third meshes could be estimated as 0.2%.
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FiG. 6. L-shaped domain with rounded incoming corner.
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FiG. 7. The stress concentration parameter K vs. radius of the rounding.

Figure 7 displays the K values obtained for A=3 and r=0.5,0.3,0.1,0.05
using the “simple” stencil defined on the coarsest mesh (markers as squares) and
finest mesh (markers as stars), the difference between the values being about
1.2% (an exception is the case r = 0.05). The curve depicted in Fig. 7 corresponds
to the “almost exact” solution for A = oo. Since the influence of A is quite
insignificant in the domain A > 3 (the results for A=3 and A=4 differs by
0.2%), the agreement is rather good.
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Another comparison with the solution from [22] is shown in Fig. 8. In the
figure, the ratio K/A for the fixed value r/A = 0.1 is presented as a function
of 1/A. Again one may see that the present results (markers) agree closely with
those from [22] (solid line).
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Fic. 8. The parameter K/A vs. 1/A. The solid line and markers correspond to results from
[22] and the present results respectively.

EXAMPLE 3. CANTILEVER BEAM

Consider now the application of the described approach to one of the 2D
clasto-statics problems, namely to the cantilever beam problem which is popu-
lar when verifying meshless methods (see for example [6], [23]). The governing
equations this time are

Ozza + Ozyy = 0, Ozyz + Oyyy = 0,

where, assuming the plane-stress case, oy = (ugz + vvy)E/(1 — 12), 04y =
(uy+v2)E/(2(1—012)), oyy = (vy+rvuz)E/(1—1v?) and u, v are displacements
in the z- and y-directions and F is the elasticity modulus. We set E = 1000,
v = 0.3 as in [23]. As boundary conditions, the displacements defined by the
exact solutions were used. The exact solutions for the cantilever beam problem
can be found in [24].

The equations were approximated at nodal points which were distributed in
the same manner as those in the above cited publications.

Though an optimal choice of stencils is beyond the scope of the present paper,
different strategies of their forming were tried. One of them was as follows. For
each center x;, the stencil was defined as a set of nodes which fall on a domain



548 A.I. TorLsTYKH, M. V. Lipavskil, D. A. SHIROBOKOV

S; . x; € S; with a prescribed shape of its boundary and a prescribed char-
acteristic length R ( the latter was, for example, a circle radius, the edge of a
rectangle etc.) or a characteristic area.

In the present case, grid points of regular M x N meshes were used as nodes.
The beam length and width are L—=12 and D=2 respectively.

Figure 9 presents L., solution errors as functions of the mesh size h; in the
z-direction for several stencils with nodes falling on circles, squares, ellipses with
the axis length ratio 2 : 1 and rectangles with the aspect ratio 2 : 1, the area of
the supports being 20h§ and SOhg. The L., errors are defined as

1/2
Luw = (Z(Ui — uei)? + (v — 'Uei)z/zu?zi + Ugi) ,
i

i
where ue; and ve; are the exact values at a i-th node and the summation is
carried out over the nodes of the computational domain.
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Fic. 9. The cantilever beam problem: relative errors of displacements vs. mesh size hy
for several stencils and areas of supports.

As seen in Fig. 9, the influence of the supports type is not very significant in
the present case, the best choice being ellipses. As may be expected, enlarging
stencils improves the accuracy and the convergence rate. However, it does not
necessary mean that the improvement will continue by including more and more
nodes in stencils.

Once the numerical solutions for displacements are obtained, the correspond-
ing stress calculations may be viewed as a postprocessing procedure. A rich vari-
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ety of RBF approximations to derivatives using different stencils can be used. In
the present particular case, finite difference formulas were found to be effective.

Figure 10 presents the relative errors in the stresses o;, and o4, as defined
in [23] for the calculations with the elliptical supports.

13Lg

4

107 4

10'23

10™ 45 . .
10 1

F1G. 10. The cantilever beam problem: relative errors of stresses vs. mesh size h, for two
areas of ellipsis.

EXAMPLE 4. NONLINEAR SHELL DEFORMATIONS

As another example of the present RBF technique application, we consider
a nonlinear shell problem described by the Karman-Foppl equations [28].

Based on the Kirchhoff assumptions, the equations for a plate having thick-
ness h=const read

Ul axx + w'xw,zz 4 0.5(1 + U)(“?,ry + w,yw‘gjy) + 05(1 == V)(U],,yy + w,zw,yy) = 0,

Uz yy + WyWyy + 0.5(1 + V) (U1 2y + WaW zy) + 0.5(1 — v)(Ug ze + Wywzz) = 0,

DAAw = g+ (Eh/(1 — v®)){[u1,z + vugy + 0.5w,2,I 2 ().5):/'11{2!,,]11),mc
+ [ugy + vur 2 + O.Swi‘ + 0.5uw?m]w,yy + (1= v)[ury + uge + weowylw gy}

In the above equations, 11, ug, w are the displacements of a plate middle surface
corresponding to the Cartesian coordinates z, y, z respectively. It is supposed
that the coordinates origin is at the surface, the axis z being normal to it.
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In the following, simply supported edges or clamped edges will be assumed. In
both cases, the boundary conditions for the first two equations and the condition
for the third equation are

ul|p = ue|r =w|r =0.

The second condition for the third equation in the clamped edges case has the
form dw/0n=0 where 9/dn is the operator of the derivative in the direction
normal to the boundary. In the case of simply supported edges, it reads

Aw + (1 — v)kow/On = 0,

where k is the curvature of the boundary. By using the condition, one can avoid,
as indicated in [29], a manifestation of the Babuska-Saponjan paradox which is
an essential difference between the solutions corresponding to round plates and
plates with polygonal boundaries with the number of vertices tending to infinity.

In the calculations, grid points of an unstructured triangulated grid were
assumed as RBF nodes with the above described RBF-1 and RBF-2 stencils.
To discretize the fourth derivatives, the RBF formulas for second derivatives
were sequentially applied, special types of RBF operators being used near the
boundaries.

As a test problem, consider bending of a round plate with simply supported
or clamped edges under uniform loading. Due to the central symmetry, the highly
accurate solution can be obtained by solving ordinary differential equations. The
solution is used as a reference one. For the triangulated mesh, the number of
nodes N along the radial directions were chosen to be N=6,11,21.

Table 3. Simply supported edges.

“simple” stencils “enlarged” stencils
Q| N=6 N=11 | N=21 N=6 N=11 | N=21
L | 0.63957 | 0.67898 | 0.69090 | 0.70145 | 0.69596 | 0.69532

0.5| 0.28053 | 0.29235 | 0.29592 | 0.29971 | 0.29761 | 0.29728
0.46222 | 0.47478 | 0.47869 | 0.48400 | 0.48091 | 0.48030
0.68697 | 0.69773 | 0.70141 | 0.70817 | 0.70407 | 0.70311
0.95080 | 0.95867 | 0.96192 | 0.97005 | 0.96499 | 0.96368
1.12568 | 1.13163 | 1.13459 | 1.14343 | 1.13788 | 1.13638

[ I

In Tables 3 and 4, the center displacements of the plate W = wcenter/h are
presented for various values of the dimensionless load Q = q(R/h)*/E and the
above mentioned values of N, h and R being the plate thickness and the plate
radius, respectively. The Poisson coefficient is assumed to be 0.3. For comparison,
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the reference solution ( column “ref”) and the results for the linear case with
(@ = 1 (string “L” in Tables 3) are also included in the tables. It should be noted
that the exact solution for the latter case is W = .695625.

Table 4. Clamped edges.

“simple” stencils “enlarged” stencils
N =6 N=11 | N=21 N=6 N =11 N =21 ref
0.15725 | 0.16459 | 0.16704 | 0.16536 0.16744 0.16789 0.16785
0.30479 | 0.31693 | 0.32094 | 0.31906 0.32173 0.32234 0.32250
0.55499 | 0.56900 | 0.57538 | 0.57537 0.57501 0.57524 0.57625
0.75126 | 0.76252 | 0.76619 0.77366 0.76824 0.76773 0.76956

SN )

As it can be seen, the difference between the RBF and reference solution
does not exceed 0.5% for N = 21 in the case of the RBF-1 stencil and 0.2% for
N =11 in the case of the RBF-2 stencil.

As an example of a more complicated geometry, Fig. 11 presents the depen-
dence “W vs. Q" where W and @ are the above defined variables. The plate
boundary is given by r = R(1 + cos(6¢)/5) in the polar coordinates (r, ¢), the
nodes distribution being shown in the figure. One can see considerable difference
of the results obtained in the frameworks of linear and nonlinear theory.
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F1G6. 11. A mesh for a plate with complicated geometry. @ vs W. Solid and dashed lines
correspond to simply supported and clamped edge respectively.
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