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On the mechanical energy dissipation in small deformation 
elasticity and the simple analytic expression for the viscous 
kink-shaped solitary wave 

A. BLINOWSKI (WARSZAWA) 

WAVE PROPAGATION in the material abruptly changing its elastic moduli with the change of the 
deformation sign is considered. According to Cz. Eimer, such a material models the behavior of 
a cracked linear elastic medium under one-dimensional deformation. The solution obtained earlier 
for the shock propagation is compared now with the, proposed by the present author, simplt! analytic 
expression for diffuse shock propagation in Eimer's material endowed with the Voigt viscosity. ft is 
shown that neither the propagation velocity, nor the total mechanic dissipation power depends on 
the viscosity coefficient. These quantities retain, for arbitrary viscosity, the same values as in the case 
of discontinuity propagation in a purely elac;tic material. The slope of stress (strain) wave-profile 
changes with the viscosity change, tending to infinity if the latter tends to zero. The results obtained 
prove that an apparent paradox of a well-defined dissipation power, which can be calculated in the 
framework of purely elastic model within the small deformation approach in spite of the fact, that 
even the dissipation mechanism had not been defined earlier, can be explained on the basis of the 
limit transition for the viscoelac;tic solution. 

1. Introduction 

RECENTLY the present author considered [ 1] a simple, purely mechanical, description 
of one-dimensional discontinuity propagation scheme in the elastic material governed by 
the homogeneous constitutive stress-strain relation of order one (modeling, according to 
Cz. EIMER [2-5], a cracked, initially linear, elastic material)e ). 

In the case of one-dimensional problem the nonlinearity reduces to the step-wise 
change of the elastic modulus at zero strain; it is assumed that its value is higher in the 
compressed regions than in the extended ones. The linearity of the constitutive relation in 
the regions of constant strain sign made it possible to obtain some effective discontinuous 
solutions in the closed analytical form. In all cases considered, the mechanical energy 
dissipation rate could be readily found, despite the fact that no dissipation mechanisms at 
the discontinuity had been previously assumed. In the framework of a purely mechanical 
model this bare fact is visible much clearer than usually when it is served wrapped in ther­
modynamic formalism obscuring the problem. In the present paper we shall demonstrate 
that the apparent paradox of the non-vanishing dissipation in non-dissipative material 
can be explained on the ground of the viscoelastic model as the limiting case. The au­
thor believes, that these considerations would help to shed some light on the problem 
of admissibility of the viscous terms frequently introduced into numerical algorithms for 
suppressing the numerical instabilities at the shock front. 

( 1 ) Writing the mentioned paper [1] the author wac; not aware of the results obtained by MASLOV and 
MosoLOv [6, 7). In his general considerations (in the paper [1]), the present author in fact proceeded in the 
same way ac; the authors of [7); particular applications of the theory, however (presented in [1 ]), are completely 
different from the examples considered in [7). 
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2. Results for elastic medium 

Let us shortly summarize some results of the paper [ 1]. We started there from the 
displacement continuity condition in the following form 

(2.1) v1~ + U c{; = vk + U c{>, 
where v denotes the material velocity, c is the strain and U stands for the velocity of the 
interface between the regions of positive and negative strain. Upper indices (·)R and (·)L 
denote the right- and left-hand values of a quantity (·), lower index (·)o denotes the value 
at the interface. 

The next condition - the momentum balance - has the following form: 

(2.2) (a1~- ak) + pU(v1~- vk) = 0, 

or 

(2.3) 

where c1 = cL and c2 = cR are the sound velocities in the compressed and in the 
extended regions and p is the mass density. It was assumed in [1] (we shall adopt this 
assumption also for this paper) that the compressed zone is situated at the left-hand side 
of the interface. 

Combining Eqs. (2.1) and (2.3) one can easily obtain the following expression for the 
interface velocity 

c~c{( - ctcb' uz = --=--~-
c{( - cif 

(2.4) 

In the framework of the purely mechanical theory we define the dissipation rate D in 
any material region as the difference between the power of external forces and the energy 
growth rate: 

(2.5) D = -a(a)v(a) + a(b)v(b) 

l [ Y(t) 1 b 1 l -~ J -(pc2c2 = pv2)dx = J -(pc2c2 + pv2)dx 
dt 2 y 2 ' 

a (t) 

where Y (t) is the current position of the interface, a < Y (t) < b. As long as the 
material outside the interface behaves as purely elastic, the exact position of a and b is 
not important here. Performing differentiation and tending with a and b to Y (t) one 
obtains: 

(2.6) D = p{ - cickv,f + c~t:~v/(- ~U[(ci(ck)2 + (v1f)2
)- {c~(c~)2 + (v1f) 2

)]} • 

The last result combined with Eqs. (2.1 ), (2.3) and (2.4) yield the following relation 
for dissipation rate D in terms of material constants and strain values at both sides of the 
interface (compare [1 ]): 

(2.7) D _ 1 R L( 2 2) ( 2 R 2 L)j( R L) - -pc0 c0 c2 - c1 c2c0 - c1c0 c0 - c0 • 
2 . 

Relations (2.1) and (2.2) are valid for any material independently of its viscous or 
plastic properties, and the possible presence or absence of discontinuity, while relations 
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(2.4) and (2.7) were derived under the assumption of purely elastic behavior of material 
outside the discontinuity surface. 

3. Viscoelastic solution 

In this section we shall forget about the results mentioned above and we shall attempt 
to find a smooth solution describing the propagation of kink-shaped solitary wave in an 
Eimer type viscoelastic medium. 

Beginning from this point we shall consider Voigt-type viscoelastic material with the 
following constitutive relation for a one-dimensional case: 

(3.1) a = dw(c:)/ de: + Ji€, 
where w = pc2c: 2 /2 is the volumetric elastic energy density, Ji denotes effective one­
dimensional viscosity. We assume that the value of c (sound velocity) is not constant. 
In [ 1] we assumed according to EIMER ([2-5]), that c was a function of the sign of the 
stress, or- what meant the same- of the sign of the strain. For the case of viscoelflstic 
material the situation is not so simple and, in order to generalize Eimer's model on the 
viscoelastic material, we should answer the question: what should be equal to zero at the 
moment of the crack opening: stress or strain? We shall leave this question open for the 
future discussion assuming here that the value of c changes only with the change of the 
strain sign. We can also expect the change of viscosity due to the crack opening, we shall 
assume however for the sake of simplicity, that this change can be neglected, i.e. that 
Ji = const. 

In the case of viscoelastic materials we shall look for the continuous solutions only, 
thus it will be convenient to rewrwite relation (2.5) in the following form: 

(3.2) D = Jb [!_(av)- p! (v2 
+ c2

c;
2
)] dx ax at 2 2 

a 

1 Li R2 L2 R2 
--Up((v -v )+(cfc: -c~c: )). 

2 
It is not difficult to observe that the second right-hand term vanishes due to continuity 

of velocity and vanishing strain values at the interface. The last fact is a consequence of 
the velocity continuity assumed and, consequently, by virtue of Eq. (2.1), also the strain 
continuity at the interface between the compressed and the extended regions. Performing 
differentiations under the integration sign, making use of the equation of motion 

{)a 
(3.3) ax = piJ' 

and recalling that av 1 ax = t, one readily obtains the expected familiar result: 

b 

(3.4) D = J p;t2 dx. 
a 

We shall look for the continuous smooth displacement function u(x, t), defined in the 
infinite region, satisfying the following equation of motion: 

a2u Ji a3u a1u 
(3.5) c2 ax2 + p {)x2at = at2 
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and giving rise to the bounded quasi-stationary stress and strain kink-shaped distribution 
which moves from the left to right-hand side with the constant velocity U. We sh~ill 
assume, the same as earlier, that c~ 00 < 0 < .s!, where lower indices (·)-oo and (·)00 

denote values at minus and plus infinity. We shall confine our considerations to the class 
of solutions with bounded stress values, thus we have to assume continuity of velocity at 
the interface. The displacement u and velocity v continuity requirements together with 
Eqs. (2.1), (2.2), (these conditions must be fulfilled, of course, also for the continuous 
solutions) as well as with Eq. (3.1) and with the assumption Ji = canst., yield at once the 
following set of contin!Jity conditions at the interface: 

a) U
L _ UR 
() - ()' b) vtf=v1~=vo, c).s~=£~=0, 

(3.6) 
d) (1 L _ (1R 

() - ()' e) ( 
{)2u ) L ( {)2u ) R 

8t8x 0 = 8t8x 0 

For stationary motion one can assume, without any loss of generality, that at the 
interface x- Ut = 0. 

We shall look now for the displacement fields of the following form: 

(3.7) u(x, t) = f(x- Ut) + v0 t + x0 

satisfying Eq. (3.5), conditions · (3.6) and the prescribed boundary value conditions at 
infinities: .s ( oo) = .s!, .s (- oo) = .s ~ 00 , where .s ~ 00 and .s! can be arbitrarily taken, 

provided the mentioned earlier inequality c~ 00 < 0 < .s! is satisfied e). 
Using the standard considerations one arrives at the following expression: 

.s~(l - exp[aL(x - Ut)].+ aL(x - Ut))/ aL + v0t + uo 

(3.8) u(x,t) = 
for x- Ut < 0, 

.s~(l - exp[aR(x - Ut)] + aR(x - Ut))/ aR + v0t + u0 

for x- Ut > 0. 

Function u( x, t ), given by Eqs. (3.8), supplies proper asymptotic strain values both at 
plus and minus infinity and meets all continuity conditions (3.6) except, maybe, condition 
(e) of the velocity gradient continuity. To satisfy this condition, the following relation 
should be fulfilled: 

(3 .. 9)1 c~ 00 Q'L = c~O'R. 

Expression (3.7) must be, of course, a solution of Eq. (3.5), and to this end the 
following two relations must be satisfied: 

(3.9)2 c2 - ~Q'L U - U2 = 0 
1 p ' 

(3.9)3 C~- ~aRU- U2 = 0. 
p 

e) Since we are looking for the bounded asymptotic values of strain in infinities, and since the velocity and 
the strain values are, for the field described by Eq. (3.7), mutually connected by the relation v = - U e + vo, 
the velocity gradients in infinities should be equal to zero; thus, prescribing the strain values at infinities we 
prescribe in fact the stress values (or, equivalently, velocities). 
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Three relations (3.9)1 (3.9)2 and (3.9)3 constitute the system of three algebraic equa­
tions for the three unknown parameters: U, a.R and aL, which should be expressed in 
terms of the boundary values and material constants. 

From Eqs. (3.9) one can readily obtain the following relation for propagation velocity: 

c2c.R _ c2c.L 
U2 = 2 oo 1 - oo 

c.R _ c.L oo - oo 
(3.10) 

Substitution .of Eq. (3.10) into Eqs. (3.9)2 and (3.9)3 leads to the following relations 
for o:.L and a R: 

(3.11) 
a. L = c.!p(cf- c~)/JIV(c~c. lj.; - cic.~ oo )(c.lj.; -c.~)' 

a R = €~ 00 p(cf- d)/JIV(c~c.lj.; - cic~ 00 )(clj.; - €~ 00 ) • 

Differentiation of expression (3.7) yield the following expression for£: 

(3. 1Z) t (x t) = { a.LUc.~ exp[a.L(x- Ut)] for x- Ut < 0, 
' aRU c.{! exp[a.R(x - Ut)] for x- Ut > 0. 

Substitution of Eqs. (3.12) into Eq. (3.4) yields the following integral expression 
. 0 00 

(3.13) D = JiU2 
( £~~aL2 I exp(2aL Od~ + £:! aR' I exp(2aROd~) . 

- 00 0 . 

Performing integration an making use of expressions (3.10) and (3.11) we arrive at the 
final expression for D 

(3.14) D = ~pc. R EL (c2 _ c2). flc2 c. R _ c2c.L )/(c.R _ c.L ) . 2 oo - oo 2 1 V ~ 4 2 oo 1 - oo oo - oo 

4. Discussion 

Relations (3.10) and (3.14) indicate that, at least for the material under consideration, 
neither the propagation velocity nor the total dissipation of the stationary kink-shaped 
wave depends on the viscosity; moreover, the dissipation and veloCity values are exactly 
the same as in the case of a discontinuous solution for the elastic material. 

The only difference between formulae (3.10) and (3.14) versus their counterparts (2.4) 
and (2.7) consists in the presence of strain values in infinities instead of the values at both 
sides of the interface. It is evident however from relations (3.11) and the expression (3.7) 
that with the viscosity coefficient tending to zero, the values of strains and velocities in 
every point, no matter how close to the interface, tend to the asymptotic values at infinity. 

The only important wave-motion parameter which depends on the viscosity coefficient 
is the strain (stress) wave profile slope. 

It should be underlined here that, contrary to the case of Jl --+ 0, for which the limit 
transition in the solution turned out to be obvious, there is no immediate limit transition 
for c1 --+ c2 . Linear parabolic equation of motion for the Voigt viscoelastic material 
does not admit any bounded solitary wave-type solution. Probably some non-stationary 
viscous terms should be added to the expression (3.7) in order to obtain correctly both 
limit transitions; this problem, however, is outside the scope of the present paper. 
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