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Geometrical aspect of symmetric conservative systems 
of partial differential equations 

S. PIEKARSKI (WARSZAWA) 

IN MATHEMATICAL PHYSICS, ooe often encounters systems of the first-order co~ervation laws which im­
ply the additional conservation law and, as their special cases, symmetric conservative and symmetric 
hyperbolic systems. In particular, systems of the first-order conservation laws which imply the addi­
tional conservation law are interestmg from the point of view of phenomenological thermodynamics, 
where the additional conservation law is interpreted as the entropy law. In this paper the geometrical 
description of such systems, based on the geometrical approach proposed b>: PERADZYl'IISKI [7, 8) and 
PIEKARSKI [5] is discussed. It should be stressed that this description is dtfferent from that usually 
applied in the theory of conservation laws (H.H. JOHNSON [14]). The applications of the discussed 
formalism to the symmetric systems are also mentioned. 

1. Introduction 

IN MATHEMATICAL PHYSICS, one often encounters systems of the first-order conserva­
tion laws which imply the additional conservation law and, as their particular cases, the 
symmetric conservative systems. Such systems are of interest from the point of view of 
phenomenological thermodynamics where the additional balance law is often interpreted 
as the entropy balance [1-4]. In [5], the geometrical approach proposed by PERADZYNSKI 
was applied in order to integrate the constraints imposed on a system of conservation laws 
by the second law of thermodynamics. The application of this approach to dissipative fluid 
theories will be discussed elsewhere [6]. 

In this paper, we will discuss a geometrical aspect of symmetric conservative and 
symmetric hyperbolic systems. The applications of the proposed formalism to symmetric 
systems and to the systems of conservation laws consistent with the additional conservation 
law are also mentioned. 

In order to maintain the self-consistency of presentation, basic definitions and prop­
erties known from literature are presented in Sec. 2. In Sees. 3 and 4 we discuss the 
coordinate-free formulation of the theories of symmetric conservative and symmetric hy­
perbolic systems. Such a coordinate-free formulation can be of some use in practical 
calculations because it shows how do the changes of coordinates work in this case. In 
Sec. 5 we introduce the alternative geometrical representation of discussed systems of 
P.D.E. and apply it in order to describe the process of symmetrization. For simplicity, we 
restrict our discussion to the quasi-linear systems of the first-order equations with van­
ishing production terms. All our results remain valid also for systems with non-vanishing 
productions. Throughout this paper, we frequently use the exterior products of scalar and 
vector-valued differential forms; such product is well-defined only if in all tensor products 
forming the result the "vector index" is permuted into the same position but, for sim­
plicity, this operation is not denoted explicitly. For similar reasons, when the operation 
of a total contraction can be done only in a unique manner, we do not write elementary 
contractions between particular indices explicitly. Except where noted to the contrary, 
the Einstein summation convention for repeated indices is assumed. 
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The approach presented here can be generalized to the case of the coordinate-free the­
ory of symmetric conservative systems of P.D.E. for the cross-sections of the arbitrary dif­
ferentiable fibre bundle. However, such a generalization is outside the scope of this paper. 

2. Systems of conservation laws consistent with the additional conservation law 

Let us discuss a first-order system of quasilinear partial differential equations of the 
following form 

k i( )8yi (2.1) w j . Yi' ~ = 0, 
UXi 

where (xi), i = 1, ... , n are the independent variables, (Yj), j = 1, ... , m are the 
dependent variables, and wk j i, k = 1, ... , m are smooth, real functions. 

The independent variables shall be interpreted as a local parametrization of the affine 
space A, whereas the dependent variables shall be interpreted as the parametrization of 
the manifold Q [5, 7, 8]. As a consequence, the solution of Eq. (2.1) defines the function 
f from the affine space A into the manifold Q. 

Let T A be a translation space of A and let el' ... 'en be a basis in T A. By r;. we 
shall denote the space dual to T A' and a basis in r;., dual to the basis el' ... ' en in T A, 
shall be denoted as F 1, ••• , pn; 

(2.2) 

where bf, is Kronecker's symbol and (, ) denotes the action of a form on a vector. 
The natural base vectors 8xi, i = 1, ... , n of the coordinate system 

(2.3) Rn 3 (x~, ... , Xn) ---+ a + Xtet + ... + Xnen E A 

(where a denotes an arbitrary point of A) can be identified with the corresponding vectors 
ei from the basis e1, ... , en whereas the natural base forms dxi of this coordinate system 
can be identified with forms pi introduced by the relation (2.2). The derivative f. of the 
function f, : A ---+ Q, is given by 

(2.4) 

where 8y j, j = 1, ... , n are the natural based vectors of the coordinate system (y j ), 
j = 1, ... , m on Q. 

As it has been observed by PERADZYNSKI [7, 8], the system (2.1) can be written by 
means of the contractions of f. with the fields of the two-point tensors wk, 

(2.5) k = 1, ... ,m 

and if the system (2.1) is determined, then it can be geometrically represented by a 
corresponding m-dimensional vector subbundle of T*(Q) ® TA (by T*(Q) we denote the 
cotangent bundle of Q ). 

In order to see that, let us compute such contractions explicitly 

k k i · OYj' i' 
(2.6) (w , f.) = (w j dy1 ® ei, ~8yj' ® F ) 

UXi' 

_ wk .id ri'{)Yi' _ wk _i8Yi = o 
- 1 u .,u· - 1 . 

J t OXi' OXi 
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From geometrical point of view, the fields of the two-point tensors wk define a set of local, 
linearly independent cross-sections of the corresponding m-dimensional vector subbundle 
of T * ( Q) ® T A. Of course, different choices of linearly independent cross-sections define 
different equivalent forms of the discussed system of P.D.E. The fields w 1, ... , wk are 
the vector-valued differential 1-forms on Q with values in TA and closed forms define 
conservation laws; if 

(2.7) 

then locally 

(2.8) 

and 

( 
k ) k ) f) vk,i 8yj f) k i 

w ,J* = (du ,J* = -::l-~ = ~(u ' (Yj')) = 0 , 
UYj U Xi UX i 

(2.9) 

where uk ,i are the components of uk in the basis et, ... , en 

(2.10) 

Hence, by a set of conservation laws we mean such a m-dimensional vector subbundJ of 
T* ( Q) 0 T A which is locally spanned by sets of cross-sections composed of closed 1-f{ [ms. 

Let A k, k = 1, ... , m be smooth, real functions defined on Q. Then the vector-valued 
differential 1-form given by 

(2.11) 
m 

fl = L Akduk 
k =l 

defines the quasilinear partial differential equation which is implied by the set of conser­
vation laws 

m 

(2.12) (fl , /*) = L Ak(duk , !*). 
k=l 

We shall say that a system of balance laws, defined by a set of 1-forms du1 , ••• , dum, 
implies an additional conservation law if the equation 

m 

(2.13) 0 = dfl = I: d,\k A duk 

k=l 

has a non-trivial solution (by non-triviality we mean here that not all Ak are constant). 
Then locally 

(2.14) fl = ds, 

and the conservation law defined by (ds, /*) is usually called the entropy balance whereas 
the functions Akt k = 1, ... , m are called Lagrange-Liu multipliers [1]. In the rest of 
this paper, the l .. form s shall be called the entropy 0-form, and the expressions of the 
type ( ds, f*) shall be alternatively denoted as div s. Of course, if s satisfies the condition 

m 

(2.15) 
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then 

(2.16) 
m 

s' := s + L akuk , 
k=l 

where at, ... , am are arbitrary real constants, satisfies 
m 

(2.17) ds' = L(Ak + ak)duk. 
k=l 

S. PIEKARSKI 

In other words, the solution of the equation for the entropy 0-form is determined up to 
the linear combination of the conservation laws. 

3. Symmetric conservative systems 

The condition 
m m 

(3.1) . df2 = d( L Akduk) = L dAk A duk = 0 
k=l k=l 

which states that the 1-form n is closed, means, at the same time, that the 1-form ~ given 
by 

m 

(3.2) 

is closed. 
If the condition (3.1) is satisfied, then locally both forms are given by differentials 

(3.3) f2 = ds , ~ = dF, 

which are related by the identity 
m 

(3.4) F = L Akuk- s. 
k =l 

Let us assume that the functions A1, ... , Am form a local coordinate system on Q. In 
these coordinates, the differential dF is given by 

m 8F 
dF = L 8A . ® dAk. 

k=l k 

(3.5) 

After comparing Eq. (3.5) with Eqs. (3.2) and (3.3)2 we see that 

k 8F 
(3.6) u = 8Ak . 

As a consequence, the discussed system of conservation laws takes the symmetric conser­
vative form 

(3.7) k = 1, ... ,m, 

where F i are the components of F in the basis e, . . . , en 

(3.8) F = F iei . 
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From the above remarks it follows that the system of conservation laws which implies an 
additional conservation law can be transformed into the symmetric conservative form if 
and only if the Lagrange-Liu multipliers form a local coordinate system on Q. 

In order to write the symmetric conservative system in the coordinate-free form, we 
shall represent Eq. (3.6) as a contraction of the differential dF with the field of natural 
base vectors of the coordinate system (,\ k), k = 1, ... , m 

(3.9) _ ( 8F ·) - · 8F i _ 8F 
dF 8 a)..k - a>.. i 0 d>..J 8 8)..k - {)>..i bk - a>..k · 

Let us consider a class of affine transformations of coordinates on Q 

(3.10) ~k' = Ak'k>..k + ck', k, k' = 1, ... , m, 
where Ak' k is a nondegenerate real matrix and ck' are real numbers. The set of vector 
fields corresponding to natural base vectors of the coordinates of the type (3.10) form a 
n1-dimensional commutative Lie algebra .C (multiplication is defined as a commutator of 
vector fields). · 

Let b 1 , ••. , b m be any set of vector fields forming the basis of this algebra. The explicit 
form of vector fields b1 , ••• , bm is given by 

(3.11) bk = c~a)..j' j = 1, . . . ' m' 

where Cl is a constant and nondegenerate matrix. The coordinate lines of coordinate 
systems of the form (3 .10) are then the integral curves of the vector fields of the form 
(3.11). Our symmetric conservative system can now be written as 

(3.12) div(dF 8 bk) = 0, k = 1, ... , m. 

The coordinate systems of the form (3.10) correspond to Lagrange-Liu multipliers. These 
multipliers are always defined up to additive constants but this arbitrariness leaves the 
vector fields from .C invariant. The symmetric conservative system which in a particular 
system of coordinates takes the form (17) implies the additional balance law given by 

(3.13) __£__ [>.. k ()Fi - Fil = 0 .· 
OXi OAk 

However, such an additional balance law depends on the choice of a coordinate system of 
the form (3.10) . The symmetric conservative system written in the coordinate-free form 
(3.12) does not imply any particular additional conservation law but the whole family of 
conservation laws. 

Hence, as a coordinate-free definition of a symmetric conservative system we can 
take a pair (.C , F) composed of an m -dimensional commutative Lie algebra .C of vector 
fields together with a vector-valued 0-form F defined on Q and with values in T A. In 
literature, one sometimes discusses symmetric conservative systems generated by a single 
scalar potential (9-11 ]. From a geometrical point of view, the natural question concerns 
the relation between the coordinate-free definition of a symmetric conservative system as 
a pair (.C, F) and the scalar potential function. The Lie algebra .C defines a distinguished 
covariant derivative, which is uniquely determined by a condition that vector fields from .C 
are absolutely parallel. This covariant derivative can be generalized to the cross-sections 
ofT A 0 T(Q) (T(Q) means here the tangent bundle of Q; in order to define this covariant 
derivative more precisely, we have to reduce the bundle TA 0 T(Q) to make it associate 
with tensor bundles on Q). 
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Let L be a cross-section of TA 0 T(Q) and let us assume that the covariant derivative 
of L vanishes. Let ~ be a real function on Q. 

The vector-valued 0-form F which occurs in the coordinate-free definition of a sym­
metric conservative system can be now defined as the contraction of L with the differential 
d~ of~: 

(3.14) F := L 8 d~. 

Hence, as a coordinate-free definition of a symmetric conservative system generated by a 
single scalar potential we can take a triple (.C, L, ~)where .C is the already described Lie 
algebra of vector fields, L is a cross-section of TA 0 T(Q) which is absolutely parallel 
with respect to the connection determined by .C and ~ is a real function on Q. 

Let (.\k), k = 1, ... , m be a such coordinate system on Q that its natural base vectors 
8>..k' k = 1, ... , m belong to .C. Then L can be written in the form 

(3.15) L = LLikei0 8>..k =Lei® (LLika>..k) = Lei 0 di, 
i,k i k i 

where L i k is a constant matrix, ( ei ), i = 1, .. . , n is a basis in T A and 

(3.16) """ "k di := ~Lt a>..k 
k 

are vector fields from .C. In order to write the discussed system explicitly, we have to 
insert Eq. (3.14) into Eq. (3.12). The class of symmetric conservative systems generated 
by a single scalar potential, introduced above, is a bit more general than that discussed 
in literature., A detailed discussion of such systems is outside the scope of this paper and 
shall be not given here. 

4. Symmetrical hyperbolicity of symmetric conservative systems 

In order to define symmetrical hyperbolicity of symmetric conservative systems in a 
coordinate-free manner, we have to introduce first the notion of a chronological structure 
which is very similar to the chronological structure on the Galilean space-time [12]. Let 
'ljJ be a non-zero form from TA.; 0 f. 'ljJ E TA.. By the inertial basis corresponding to 'ljJ 
we shall mean such basis e1, ..• , en in T A that 

(4 .1) 
( '1/J , et) = 1 

('lf;, et) = 0, l = 2, ... , n , 

and the form 'ljJ itself shall be called the chronological form [5, 12]. Each inertial basis 
defines a class of coordinate systems on A of the form 

(4.2) IRn 3 (t , Zt)---+ a+ te1 + Ztel E A, 

where a is an arbitrary point of A. Such coordinate systems shall be called the coordinate 
systems corresponding to 'ljJ . As it can be easily checked, the transformation rule between 
different inertial bases corresponding to the same chronological form is 

(4.3) 
l = 2, ... , n , 

l' = 2, ... , n, 

where Bf' is an arbitrary non-singular ( n - 1) X ( n - 1) matrix, and f3t are arbitrary real 
numbers. · 
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Hence, the symmetrical hyperbolicity of a symmetric conservative system can be invariantly 
described in the terms of three objects; the Lie algebra £, the vector-valued 0-form F 
and the chronological form 'lj;. 

5. Geometrical representation of symmetric systems 

In this section we shall give a geometrical representation of symmetric systems. 
Let us consider a system of P.D.E. which is defined by a set of vector-valued 1-forms 

wk, k = 1, ... , m in the manner described in Sec. 2. Let R,k, k = 1, ... , m be fields 
of forms on Q with the additional property that for each q E Q the forms n k( q) are 
linearly independent. 

Let us define a cross-section"' of T*(Q) ® T*(Q) ® TA by the formula 
m 

(5.1) "':= 2:: nk 0 wk. 
k=l 

The discussed system of P.D.E. can be equivalently written in terms of the contraction of 
"' with f* (we assume that the index corresponding to R,k remains uncontracted and the 
contraction is taken with respect to these remaining indices for which it is well-defined); 
such a contraction gives 

m n 

(5.2) ("',/*) = (:L:nk®wk,J*) = :L:nk(w\f*) = o, 
k=l k=l 

what is equivalent to 

(5.3) 
8y · 

k=~. ,m ( wk, J*) = wk / 8x~ = 0. 

It can easily be checked that such cross-sections of T*(Q) ® T*(Q) ® TA which are 
"symmetric in the first two indices" define symmetric systems of P.D.E. 

In other words, the symmetric systems can be identified with the cross-sections of 
[Sym(T*(Q) ® T*(Q))] ® TA, where Sym denotes the operation of symmetrization. 

We shall say that a system of P.D.E. which is invariantly defined as a m-dimensional 
vector sub bundle S ofT* (Q) ® TA can be symmetrized if, for the system w 1, ... , wm 
of linearly independent cross-sections of S, there exists a set of linearly independent 
cross-sections 'R1 , ••. , nm of T*(Q) which are such that 

m 

(5.4) L nk ® wk E C{[Sym(T*(Q) ® T*(Q))] ® TA} ' 
k=l 

where C {[Sym(T*(Q) ®T*(Q))] ®TA} denotes the set of cross-sections of [Sym(T*(Q)® 
T*(Q))] ® TA. 

The relation (5.4) can be alternatively written in terms of the exterior product 
m 

(5.5) :L:nk 1\ wk = 0 
k=l 

(see the notational convention for the exterior product of scalar and vector-valued forms, 
mentioned in Introduction). 
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In order to illustrate the meaning of this definition explicitly, let us write Jlk, k = 
1, ... , m and wk, k = 1, ... , min coordinates 

(5.6) nk = njdyi, wk = wk/dyi 0 ei. 

Then Eq. (5.4) means that the "field of two-point tensors" given by 
m 

(5.7) 2:::: nk 0 wk = nj,wk /dyi' 0 dyi 0 ei 

k=l 

is symmetric in the first two indices and the discussed system of P.D.E. takes the following 
symmetrical form: 

(5.8) (R.j,wk/dyi' 0 dyi 0 e;,J.) = nj,wk/:=: = 0. 

Of course, symmetrizability of a given system of partial differential equations does not 
depend on the choice of the forms w 1 , ••• , wm. 

Let f2 1 , ... , Qm be the another set of linearly independent cross-sections of the vector 
bundle S. Then 

(5.9) 

and 

detMf =f 0 

m m m 

(5.10) LRk 0 wk = LRk.0 Mff21 = LRkMf 0 il1 

k=1 k=l 1=1 

what shows that the transformation rule for "symmetrizing forms" is 
m 

(5.11) Rk~f?/=l:RkMf. 
k=l 

Another obvious observation is that the solution of Eq. (5.5) for the forms R t, ... , R m 

is defined up to multiplication by a non-vanishing real function. 
Every field of "symmetrizing forms" R 1, ... , R m defines a covariant derivative on Q; 

such covariant derivative is uniquely determined by a condition that the fields n 1 ' •.• ' n m 

are absolutely parallel. In general, the torsion corresponding to this covari~nt derivative 
does not vanish. The torsion of this connection vanishes if and only if the fields of forms 
n 1' ... 'n m are given by differentials of real functions 

(5.12) R k =dlk, k=1, ... ,m, 

and the functions It, ... , 1m form a coordinate system on Q. For convenience, we shall 
say that fields of forms n 1' ..• ' n m are "aholonomic" if this torsion does not vanish 
and that fields of forms n 1' •.• ' n m are "holonomic" if the corresponding torsion van­
ishes. 

In the theory of symmetric systems, one often symmetrizes system of P.D.E. by multi­
plying it by a matrix of the second derivatives of a certain function [13]. Our geometrical 
picture immediately suggests the following 

OBSERVATION. The detem1ined system of the first-order quasi-linear P.D.E. can be 
symmetrized by holonomic fields of 1-forms if and only if in a certain coordinate system it 
can be symmetrized by a matrix of the second derivatives. The corresponding coordinate 
system is not determined uniquely. 
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Proof. Let the discussed quasi-linear system be symmetrizable by a holonomic system 
of 1-forms d1~, ... , d!m· We will show that in a certain class of coordinate systems our 
system of P.D.E. can be symmetrized by the matrix of second derivatives. Let us write 
the relation m 

(5.13) L d/k 1\ wk = 0 
k=l 

in a certain coordinate system (1Jj), j = 1, ... , m on Q: 

~a,k k 
(5.14) L...J -a d17j "w = o 

k=l 1]j 

(for convenience, the terms w\ ... , wm remain in the coordinate-free form). In particu­
lar, we can choose the coordinate syst~m (1Jj), j = 1, .. . , min such a way that a/k/ a1Ji 
is a symmetric and constant nondegenerate matrix 

a,k 
(5.15) -a = Ekj , Eki = Ejk, detEki ~ 0. 

1]j 

The coordinate systems (/k), k = 1, ... , m and (1Jj), j = 1, ... , m are then related by 
the affine transformation 

(5.16) 

where gk, k = 1, ... , m are arbitrary real numbers. Let us define the real function 
J-l : Q ~ R which in the coordinates (1Jj), j = 1, . . . , m is given by 

1 
(5.17) J-L := - Eki1Jk1Ji + 9i1Ji . 

2 
Then 

(5.18) 

and 

(5.19) 

which shows that our system of P.D.E. can be symmetrized by the matrix of the second 
derivatives of the function J-l (the derivatives are computed in the coordinate system (1Jj), 
j = 1, ... ,m ). 

In turn, let us assume that in the coordinates (1Jj), j = 1, ... , m the discussed system 
of P.D.E. can be symmetrized by the matrix of the second derivatives of the function 
H,H:Q~R: 

(5.20) 

Then 

(5.21) 

and 

(5-.22) 
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define the holonomic system of forms which symmetrizes our system of partial differential 
equations. The forms (5.22) are the differentials of the coordinate lines of the coordinate 
system ( 1 k ), k = 1, ... , m which is defined by 

8H 
/k := 01Jk . (5.23) 

Let us now consider a system of balance laws defined by the set of 1-forms du1, ••• , dum 
in the manner discussed in Sec. 2. If such a system can be symmetrized, then the corre­
sponding fields of the symmetrizing 1-forms are either aholonomic or holonomic. In the 
latter case, the identity 

m 

(5.24) L d!k 0 duk E C {[Sym(T*(Q) 0 T*(Q))] 0 TA} 
k=l 

implies 
m 

(5.25) L d!k A duk = 0, 
k=l 

what means that this system is symmetric conservative in the sense described in Sec. 3. 
The condition (5.25) can be written also in the coordinate-free manner; the symmetrizing 
1-forms are then dual to the basis b1, ... , bm of the algebra £ (see Sec. 3). The further 
discussion depends on whether the considered system of conservation laws can be trans­
formed to the Cauchy form. If this is not the case, then the only thing we know is that in 
certain coordinates the system can be symmetrized by a matrix of the second derivatives. 
In turn, if the discussed system of P.D.E. can be transformed to the Cauchy form in the 
direction of the chronological form 7/J E TA, 7/J 'f 0, then uk 0 7/J, k = 1, ... , m form 
a coordinate system on Q (see Sec. 2) and the differentials d/k, k = 1, ... , m can be 
written in these coordinates: 

(5.26) 0/k k' 
d/k = o(uk' 0 7/J) d(u 0 7/J). 

On the other hand, any symmetric conservative system must satisfy 

(5.27) 

what contracted with 7/J gives 

(5.28) 

and hence [ 5] 

(5.29) 

m 

ds = L!kduk, 
k=1 

m 

d(s 0 7/J) = 2: /kd(uk 0 7/J) 
k=l 

8(s 0 t/J) 
o(uk 0 t/J) = /k. 

Combining (5.29) with (5.26) we see that in this case the discussed system of P.D.E. can 
be symmetrized by the matrix of the second derivatives 

(5.30) 
o(uk 0 t/J)o(uk' 0 t/J) ' 

http://rcin.org.pl



614 s. PiEKARSKI 

which is formed by differentiating the projection of the entropy 0-form s on the chronologi­
cal form 'ljJ; the derivatives are computed in the coordinate ·system ( uk 8 1/J ), k = 1, ... , m. 
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