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Nonlinear functionals in existence theorems
for reaction-diffusion systems

B. KAZMIERCZAK (WARSZAWA)

THE NOTION of nonlinear functional is used to prove the existence of solutions for time-independent
reaction-diffusion systems, in which nonlocal terms may"occur and whose coefficients may depend
on first derivatives.

Introduction

THIS WORK was stimulated by the interesting papers [2] and [3] of FITZGIBBON and
MORGAN, who used the notion of nonlinear functionals in existence proofs for some
time-independent reaction-diffusion systems. Its aim is to generalize, in a way, one of the
theorems in [2]. The generalization consists in the fact that we do not assume a separable
structure of the functional (as in [2]) and consider a more general type of equations than
those discussed in [2] or [3]. The coefficients of elliptic operators may depend on u
(and z) whereas the right-hand sides may have nonlocal terms and depend on the first
derivatives of u (and 2, of course). However, we were forced to impose more complex
conditions than those in [2] or [3].

1. Setting of the problem and main assumptions

We consider the following system of elliptic equations:
—L[uJu; = Fi[u] in D,
u; = t; ondD,
where 1 < 7 < m and there is no summation over ¢. In subsequent assumptions a € (0, 1)
will be a fixed number.

A. D is a bounded domain in R, n
generality we may assume that z; > 0,

(1.1)

> 1, with boundary of C?*« class. Without losing
T2 1, s 100 R = (D4g4 005 Tn) € 1.
.
B.For:=1,...,m:
1) t; € C?*o(D) N C***(3D),
2) Fi: CYD) — C*(D),

3) L[u] = Z Aji(z, w(x))05; — C(z, u(z), du(z)) - V,

where all Aj; are of C! class in every compact subset of D x R™, and for every finite
= (uy,...,un) €ER™ z € D and £ € R™, £ # 0, there exists a real s > 0 such that

Z Aji(z, w)€;& > sE*.

=1
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Here C : D x R™ x R™ — R™ and C is of C'! class in every compact subset of its
arguments,
[}
REMARK. In the above notation F; should be treated as an operator. In particular it
could be of the form

Filu](z) = ¢i(@)(Vui(2)) + fi(z, u).

u
Let M be a closed unbounded (in general) subset of the space R™.
C. There exist a C'2(M, R") function H such that
1) H(u) tends to plus infinity for ||u|| tending to infinity, where || || denotes a norm

in R™;
2) there exist finite N € R' and a bounded function A* : RY — R! such that for all
we CHD, M), ||u||co < u:

S {1 = B)sbp + BApa (e, w(@)} Hiju(@)us () 2 (2)
t,j=1y...,m0
p,z=1,..., n

+ Y BH @) Filulz) < M@ H (uz) + N

J=l,...,m

forall 2 € D, 3 € [0,1]. (§,, denotes Kronecker’s delta, u; , denotes d.u; and H;
denotes the partial derivative of H with respect to u;).
|

The next assumption describes the relation between A*, L, D and s (comp. B). First
of all, one can notice that every A;;(z,u) > s.

D. Let u € CX(D, M), Hul]cf,@-) < wand ¢ € C*(D,[0,1]). Let
L%[u):= ¢L[u] + (1 — ¢)sA.
We assume that for all the possible solutions U of the linear scalar problem

—L%(z, u(z))f = Ap(x)¢ + [ in D,
(=g ondD,

with A < A*(u), there exists a finite constant /' independent of ¢, u, f and g such that

||U||Cn(§) < ]\'7”9”(:“(5) ¥ ||f”C“(E)'

(1.2)

]
REMARK. By standard results on eigenvalues of elliptic operators it is possible to give
explicit conditions implying D.
D*. There exist § > 0, J € {1,...,n}, n € R, and continuous functions ¢ : R™ —
R! and z : R™ — R! such that for all non-negative u and u € M, ||u||lgm < u we have:
1) Cy(z,u,p) < c(u) for all z € D and p € R™™;

2) n > sup z7;
zeD

3) s(z(w))? — e(u)z(u) > 1;
4) sup {exp(+(u)) ~ exp(IENIN (W) <16
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LEMMA. D* implies D. Besides, for every u and ¢ (such as in D) we have A*(u) <
A(#,u)» Where A(4 ., is the smallest eigenvalue of the operator (—£?[u]) (defined in D).
L]

Proof. Fora given u € C*(D, M) with ||ul| co5, < 2 let My := M N{o € R™:

llo|| € u} and ¢y = sup ¢(o). If ¢y = ¢(0*), then let 2y = z(0*). Now we can
aEM[u)

proceed (with slight modifications) as in the proof of Theorem 8.8 in [4]. Thus, first let

us note that £#(z, u(z)) can be written as 5 ajg(a:)c’?]z, and ayy(z) > s. Without losing

generality we may take J = 1. Let us define

h(z) = (|9l comy + [exp(z(a™)n) — exp(z(e ™)z )]l f* (| copy»
where f* = f + ApU. Then, according to D*.1, 3 we have
—L?[ulh = exp(z(0 ™)) [an(z)(2(0%))* — 2(o*)Ci(x, (@), Fu@N)|| ] cop)
> exp(z(07)2n)[s(2(07))* = 2(a")e(w@MI f*ll cogm)
> eap(z(o")e)s((0")) = 2(0)e@) ||l oo, 2 exp(z(@)en)llf* || o)
Now, we take v = U—h. Then v = g—h < 00ondD and L?[u]v > f*+||f*||co) 2 0
in D. Hence from the maximum principle (see for example Theorem 8.1 in [4]) we infer

that v < 0,ie. U < hin f._Similarly, if v = U + h, then in the same way we can prove
that v > 0, ie. U > —h in D). Thus, we obtain an implicit bound for U

1Ullcoy < Ngllcomy + WIS llcom)s

where W = sup|ezp(z(o*)n) — exp(z(c*)z,)]. Thus
zeD

HU”c“(ﬁ) = ||9||Cﬂ(75) + W||f||cﬂ(ﬁ) + W’\”U”cﬂ(ﬁ)'
Hence, for A satisfying D*.4 we obtain the inequality
”UHCU(E) < (“g”cﬂ(ﬁ) & ‘/V”f“c"(ﬁ))‘s—l-

To prove the second part of the Lemma suppose that, for some r and u, we have A =
A*(u) = A(pu). But then, according to the first part of the Lemma, we would be able to

obtain a priori estimates in C'(D), which is impossible.
|

As in [2], solutions of (1.1) will be approximated by solutions of the “bounded” prob-
lems. Namely, let £ € C?(R™, [0, 1]), k} € C*(R"™, [0, 1]), where 7 > 0 and

o, [ 1 for|lul|<r, 1. _J1 forlp| <,
e Q) = {0 for [[ul| > 2r, **® =0 for ||p|| > 2r,

(|lp|| denotes a R™™ norm of p). We choose k¥, k. in such a way that their first and
second derivatives tend to 0 in C" norm for r tending to plus infinity. Let

K [u](z) := k3 (u(z))ks(Qu(@)).
Now, for v € C3(D,R™) let
(1.3) L.[v]:= K [v]L[v] + 1 = K.[v])sA — K, [v]C[v] -V,
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where for the sake of simplicity we have denoted C(z,v,dv) by C[v]. Let w = Tv be
the unique C?**%(D) solution of the problem:

—L.[v]w; = K, [v]Fi[v] inD,
w; = 1; on aD,
1 < @ < m. For every finite positive r the operator T is a bounded linear operator
from C?(D) to C?*%(D). Thus, it is continuous in C?(D) and it maps all of C?(D) onto

a bounded subset of ' 2+a(D). Due to the Schauder fixed point theorem there exist a
C?*(D) solution of the system

—L,[ulu; = K, [u]Fi[v] in D,

1.4
(4) u; =t on gD.

In the subsequent section our aim is to prove that for 7 sufficiently large the solution of
(1.4), is also a solution of the initial system (1.1) with values in M. To do this we impose
two other assumptions. They concern the possibility of a priori estimates and invariance
of M. .
E. There exists a continuous function @) : R® — R! independent of r, such that if
u, € C%(D) satisfies (1.4); and ||u,(z)|| < P for z € D, then ||du.(z)|| + ||0?u.(z)] <
Q(P) for all z € D. (|| || denote norms in R™, R"™ and R"'™, respectively).
| |

REMARK. If F' has no nonlocal terms, then E follows for example (under some addi-

tional conditions) from sections VIII.1-4 in [S].
|

F.Ift = (t;,...,1y) € C***(D, M) and u, satisfies (1.4),, then u,(z) € M for all
z € D.

2. Existence theorem

Now, we are in a position to prove our existence theorem.
THEOREM. Assume A, B, C, D, E and F. Then, there exist at least one C**%(D, M)
solution of (1.1).

| |
Proof. The proof of the theorem will consist in showing that the solutions of (1.4),
are bounded in C” norm uniformly in r. To prove this fact let u, be a smooth solution
of (1.4), and let H,.(z) := H(ur(z)). By a straightforward calculation we conclude that
H, satisfies, according to C and (1.3), the following identity:
—Lo(z,ur(z)H, = X (ur)K [u;)(2)H, + N + B.(z) in D,
H,.=H(t) on 3D,
where A* is defined in C and D, u = ||ﬂr||00(5) and B,(z) < 0 for z € D. Now, let
H ... denote the unique smooth solution of the linear problem:
—Lo(z,up(2))z = A" (ur)Kp[ur](z)2+ N inD,
z=h, ondD,
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where h, € C***(D) and H(i(z)) + € > he(z) > H(i(z)) for all z € D and some
e > 0, which can be taken arbitrarily small. According to Lemma, the functions H,. are
bounded in C'”(D) norm uniformly in 7.

Let R,. := H,. — H,. Then R,. satisfies the identity:
—Lr(x,ur(@))Rre = A (ur)Kr[ur)(@)Rre — Br(z) in D,
Rre = ’_le on aDa
where C%(D) 3 h, — 0 as e — 0 uniformly on D. According to the second part of
Lemma 1.2 and Theorem 4.4 in [1] we can find a function R, > 0 satisfying the same
equation but with zero boundary condition. If S, := R, — R,, then
—Lr(z,ur(2))Sre = A" (ur) K [u,)(2)S7e in D,
Sre = he on BD
As S, egzﬁ and h, < e uniformly in on @D, then due to Lemma we conclude that
H,(z) < H,(z)+ K e for some finite positive K and all e — 0. Thus H (u.(z)) < H,(2),
where by H, we have denoted the unique in W29(D), ¢ > r, limit of H,.. Itis boundﬁd
in C'' norm uniformly in r. According to C we conclude that u, is bounded in C°(D)
norm uniformly in r by some finite constant P. Due to E this implies boundedness of .,
in C'! and C? norms. Thus, for sufficiently large 7, u,. is a solution of the problem (1.1).
The Theorem is proved.
-
REMARK. It is easy to note that when coefficients of L do not depend on u then
we can get rid of the auxiliary Laplacean and take # = 1 in C and D with £, [v] :=
L — K, [v]C[v]-V in (1.3).

3. An example

Let us consider the following system of equations (comp. [2] p. 36):

—dy L(z, u(z))u(z) = us(z) — wp(@)ua(z) + w(z) [ Ki(z,u(y))dy,
D

~dy L@, u(@))ux(z) = us(@) — w(@)uz(@) + ux(z) [ Koz, u(y))dy,
D

—ds Lz, u(@)us(2) = i (2)ua(x) — us(x) + wi(z) [ Ki(z, u(y))dy,
D

(w1, uz, u3)(x) = (t, 12, t3)(z) forz € OD,

where d;, d,, ds are positive constants and L is the same as in B.3 Dividing the i-th
equation by d; we obtain the system of the form (1.1). First of all, we note that by taking
c(u) = 0 we can deduce the existence of A* fulfilling the assumption D. Now, let

M:={uecR:u; >0,i=1273}

We assume that .
I. Ky, K,, K3 are smooth in every compact subset of D X M.
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IL. Fori = 1,2,3,all 2 € D and all u € C%D, M)
[ Ki(z,u(y))dy < min{d;, d3, 2ds}\*.
D

]

First of all we note that, if {(z) € M for all 2 € D, then F is fulfilled. The proof

is almost exactly the same as that in [2] (Lemma 2.1). Due to the classical result of

Ladyzhenskaya and Ural'tseva (Sec. VIIL.1-4 in [5]) the assumption E is fulfilled. By

taking

H('U,) = dlu, + dzUz + 2d3ﬂ3

(as in [2]) one can verify check that C is fulfilled due to II, B and Lemma 1.2. Thus the
system possesses at least one solution of class C2+*(D, M).
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