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Steady-state plane Lamb's problem for a fluid-saturated 
poro-elastic medium 

R. STAROSZCZYK (SZCZECIN) 

IN THE PAPER the time harmonic plane Lamb's problem for a fluid-saturated porous elastic solid is 
investigated. The considerations are carried out on the basis of Biot's dynarrucal theory of consoli­
dation. The problem is solved by means of the Fourier transformation technique. The solutions are 
derived in the form of improper integrals, which have been evaluated in a numerical way, described 
in the paper. In a limiting case of no pore fluid in the medium, the solutions obtained are shown 
to reduce to those known in the classical theory of elasticity. Ac; an illustration, some results of 
numerical calculations performed for the material parameters corresponding to a water-filled coarse 
sand are presented. 

1. Introduction 

IN ENGINEERING practice we often deal with the dynamical interaction problems in which 
the motion of homogeneous half-space is induced by a structure vibrating at its free 
surface. Mathematically, these problems lead to mixed boundary value problems for 
which, as a rule, it is impossible to find closed analytical solutions. For this reason we 
usually apply approximate discrete methods. When constructing a discrete model of the 
problem, it is often necessary to solve the problem consisting in the determination of the 
dynamical response of the half-space to a load applied at a certain area of its surface. The 
latter problem, which may be regarded as one of the fundamental problems in the field 
of wave propagation phenomena, is known in the classical theory of elasticity as Lamb's 
problem. The solution to this problem for both harmonic time-dependent and impulsive 
loads as well as a method of evaluation of the obtained improper integrals were proposed 
by Lamb in 1904 (ACHENBACH [1], EWING et a/. [4]). As concerns a fluid-saturated 
poro-elastic medium, the problem in question was treated by PAUL [8, 9]. In his first 
paper [8] PAUL considered the plane problem of propagation of disturbances excited by 
an impulsive line load applied at the free surface of the half-space. The second paper 
[9] dealt with the axisymmetric problem of deformation of a porous elastic half-space 
subjected to a suddenly applied uniform load within a circular area of its boundary. In 
both the papers considerations were confined to the case of non-dissipative medium (i.e. 
the internal friction between the skeleton and the pore fluid was neglected). The solutions 
for displacement and stress fields were obtained in the form of double improper integrals, 
resulting from the application of the integral transformation method. These integrals were 
evaluated by employing the contour integration method; in the paper [9] the displacements 
were determined with the help of ·the Cagniard-de Hoop technique. SEIMOV eta/. [10] 
studied both plane and axisymmetric problems for dissipative two-phase poro-elastic solid. 
For these problems analytical expressions describing displacements of the medium were 
derived. For a particular case of non-dissipative medium and an impulsive line load, the 
method of numerical evaluation of the obtained improper integrals by means of contour 
integration was also presented. 

http://rcin.org.pl



500 R. STAROSZCZYK 

In the present investigation the plane harmonic in time Lamb's problem for a fluid­
filled porous elastic solid is discussed. The analysis is carried out on the basis of BlOT'S 

(2] dynamical theory of consolidation. In order to solve the problem at hand, the Fourier 
integral transformation method is applied. The improper integrals derived are evaluated 
in a numerical way, described in the paper. It is shown that, in a limiting case of no pore 
fluid, the results obtained agree with those for a purely elastic solid. The paper concludes 
with some results. of numerical computations, performed for the material parameters 
pertaining to a water-saturated coarse sand. 

2. Formulation of the problem 

We consider the plane problem of motion of a fluid-saturated poroelastic solid, occu­
pying the half-space z ~ 0 (Fig. 1). The motion of the medium is excited by a harmonic 
time-dependent load, applied at the free boundary of the half-space z = 0. Our aim is to 
determine dynamic displacements of the skeleton and the pore fluid due to the applied 
surface tractions Qzz (x ) exp(iwt), q5 (x ) exp(wt) and Qxz (x ) exp(iwt), with w being the 
angular frequency of oscillations. 

q (x)eiwt 
s 

q (x)eiwt 
xz 

~~~~~~~~~~~~~~~~~-x •. u.U 
-' : · .. · ·.··. · ..... .. · · .. · .. · ..... : : ... · .. ·.a ·. : .· :· : : .· _.: · .. ·.': : >. : .< _. .. · ... . · 
· fluid- saturated · · · · · . · · · · · · · · · · · · · 
·. ·poro-e lastic mediu·m. · ·. : · · · . · · ·. · · · . · · · . · . · 

· · ·.:. :. :. · .. : .. · .. ·. : ·. · .· · ~~w, vi ·.·.·. ·. ·. ·.· .. _.: 

FIG. 1. Coordinate system and surface load components. 

In the plane 0 x z coordinate system the equations of motion of a fluid-saturated 
poro-elastic medium may be written, in actordance with BlOT [2], in the following form: 

V'2( P div u + Q div U) = :t2

2 (pu div u + P12 div U) + b :t div( u - U) , 

V'2(Q divu + RdivU) = :t2

2
(Ptzdivu + PzzdivV)- b :t div(u- U), 

a2 a 
N"\7 2 rot u = at

2 
(p 11 rot u + p12 rot U) + bat rot(u- U), 

(2.1) 

a2 a 
0 = at2 (Pt2 rot u + P22 rot U) - bat rot(u- U) , 

where "\7 2 denotes the Laplace operator, t is time. In the latter equations u = [ u, 0, w ]T 

and U = [U, 0, W]T denote the displacement vectors of the skeleton and the pore fluid, 
respectively. N, A, Q and R are elastic moduli of the medium, P = 2N + A. The 
stress-strain relations have the form 

aij = 2N e i j + bij(A div u + Q div U), 
(2.2) 

s ~ Q div u + R div U , 
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with the strain tensor components in the skeleton 

1 
eij = Z(ui,j + Uj,i), 

501 

where O"ij denotes the stress tensor in the skeleton, s is the tension in the fluid, Oij is the 
Kronecker symbol, i and j take the values 1, 2, 3. The mass coefficients p1 t. p 12 and p2z, 

appearing in Eqs. (2.1), are related to the real densities Ps and Pw of the skeleton and 
the pore fluid, respectively, by means of the formulae 

P11 = (1- n)ps + Pa, 
(2.3) Ptz=-pa, 

P22 = npw + Pa , 

with n being the porosity of the solid matrix and Pa denoting the apparent mass coefficient, 
which expresses the effect of internal coupling of the motion of both the components of the 
medium. The damping parameter b is related to the commonly used filtration coefficient 
k f; for the steady-state flow this parameter may be expressed by the formula 

2 
b = n Pw9 

kf 

where g is the gravitational acceleration. In a case of high frequency oscillations, the 
coefficient b should be corrected, for instance in a way proposed by BlOT [2]. 

Equations of motion (2.1) must be supplemented by the boudary conditions at the 
free surface z = 0. For the problem under consideration we express them in terms of the 
stress tensor components as follows: 

(2.4) 

O"zz (x, O) = -qzz (x ) , 

O"xz (x, O) = -qxz (x ), 

s(x, 0) = -q8 (x ) , 

where for the sake of brevity we omitted the time factor exp(iwt). In the above equations 
the functions qzz , qxz and qs denote the components of the surface load : qzz (x) is the 
load applied to the skeleton normally to the surface z = 0, qxz ( x) is the load applied to 
the skeleton tangentially to the free surface, and, finally, q8 (x) is the load applied to the 
pore fluid normally to the boundary z = 0. It seems to be somewhat artificial to split the 
total load, acting at the free surface, between both the components of the poro-elastic 
medium, because in practice it may be unrealistic to load one of the components without 
loading another one. But very often the partition of total stresses between the skeleton 
and the pore fluid cannot be determined a priori, for example, when the external pressure 
q0 is applied to the surface of the two-phase medium by means of a rigid, impervious 
element (what is typical for engineering practice). In this case the boundary conditions 
at z = 0 should be written in the form 

O"zz (x,O) + s(x,O) = -qo(x), 

w(x,O) = W(x,O). 

The boundary value problem of this type was analysed in the paper by STAROSZCZYK 
[12], where the problem of harmonic vibrations of a rigid plate being in contact with the 
fluid-filled porous solid was considered. Generally, it seems that the approach consisting 
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502 R. STAROSZCZYK 

in splitting up the external loads is useful in all such cases in which we are interested in 
finding the distribution of the stresses between both components of the medium. 

3. Solution of the steady-state Lamb's problem 

In order to solve the boundary value problem, defined by Eqs. (2.1) and (2.4), it is ex­
pedient to carry out a decomposition of the displacement vectors of both the components 
of the medium by applying the Helmholtz resolution formula (ACHENBACH [1]): 

u = grad 4> + rot$ , 
(3.1) 

U = grad ~ + rot l!' , 

where¢ and~ are the scalar potentials for the skeleton and the pore fluid;$ = [0, 7/J, O]T 
and l!' = [0, lfJ, O]T are the vector potentials for both the constituents of the solid, respec­
tively. The components of the displacement vectors are related to the potentials by means 
of 

(3.2) 

8¢ /)'lj; 
u=---

fJx fJz' 
u = f)~ - f}ljl 

fJx fJz' 

8¢> /)'lj; 
w=-+-{)z fJx ' 
w = f)~ + f}ljl . 

8z fJx 
Substituting Eqs. (3.2) into Eqs. (2.2) we get the relevant components of the stress tensor 
in terms of potentials: 

(3.3) 

Insertion of (3.1) into the equations of motion (2.1) yields, for the variations harmonic in 
time, the following set of equations: 

(3.4) 

r11 \1
2¢> + r12 \1 2~ = -k~('ru¢ + 112~) + k~if(¢- ~), 

T12\1
2</> + T22\12~ = -k~(/124> + /22~)- k~if(</>- ~), 

\1
27/J = -k;(/11 7/J + 1121fJ) + k;if('lj;- lfJ), 

0 = -k;(/127/J + /221fJ)- k;if('lj;- lfJ). 

In these equations, the following dimensionless elastic and dynamic coefficients appear: 

p Q R 
H=P+2Q+R, (3.5) Tu = H' Tt2 = H' T22 = H' 

(3.6) Pu P12 .P22 
P = Ptt + 2p12 + P22 , /11 = -, /12 = -, /22 = -, 

p p p 

with p being the total mass density of the skeleton-fluid aggregate. In Eqs. (3.4) also the 
dimensionless damping parameter f appears, 

(3.7) 
b 

!=-. 
pw 
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The parameters kc and kr are the wave numbers defined by 

with Vc and Vr being the reference velocities of dilatational and rotational waves, respec­
tively: 

(3.8) 
1 

Vc = (H/p)'Z, 
1 

Vr = ( N / P )'Z · 

The first two Equations (3.4) describe the propagation of dilatational waves, while the 
remaining two- that of rotational waves. It is known (BlOT [2]) that in the fluid-filled 
porous medium two dilatational and one shear wave may propagate. From the analysis of 
Eqs. (3.4) one can deduce that the potentials for the skeleton and the pore fluid are, for 
the case of time harmonic variations, coupled to each other by means of certain complex 
coefficients. Accordingly, we may write the general solutions of Eqs. (3.4) in the form 

(3.9) 
¢ = ¢1 + <1>2' 

iP = iP1 + iP2 = €1 </>1 + €2</>2, 
If! = €3'lj;. 

Hereafter the subscripts 1 and 2 refer to the dilatational waves of the first and the second 
kind, respectively, and the subscript 3 refers to the shear wave. The coupling coefficients 
are given by 

(3.10) 
Ej = -(ru19j -111 + if)/(r1219j -112- if), j = 1,2, 

€3 = -(/12 + if)/(/22- if)· 

The parameters 191 and 192 are the complex roots of the following quadratic equation: 

(3.11) 

The boundary value problem under consideration is solved by employing the exponen­
tial Fourier transformation over x, defined for a function f(x, z) by the pair of equations: 

00 

(3.12) f*(~, z) = J f(x, z)ei~x dx, 
-oo 

(3.13) 
1 00 . 

f(x, z) = 
2

71' J f*(~, z)e-t~x d~, 
-00 

where ~ is the transformation parameter. The Fourier transforms of tfte displacements 
(3.2) are given by: 

(3.14) 
u* = -i~</>* - d~*, 

U* = -iCifJ* - dlf!* 
~ dz ' 

w* = dd:* - i~'lj;*, 

W* = diP* - iCV!* 
dz ~ ' 
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and the transforms of the stress tensor components (3.3) have the form: 

* H [ d2¢* c2 (32 A-* '(32 d'lj;* ( d2(p* 2 *) l a zz = Tn dz2 - ~ ( Tn - 2 h_, - 2z ~ dz + Tt2 dz2 - ~ (p , 

(3.15) a* = -N (2i~d¢* + d
2

'1j;* + ~2 '1j;*) 
xz dz dz2 ' 

* H [ (d2¢* ,2A-*) (d2

{P* 2Ji.*)] s = Tt2 dz2 - ~ 'f.l + T22 dz2 - ~ ':¥ ' 

with (3 = (N / H)t/2. 
In view of Eqs. (3.9), the appropriate expressions for the transformed potential func­

tions are 

(3.16) 

where 

(3.17) 

¢*(~, z) = At(~)e-v•z + A2(~)e-vzz' 

([>*(~, z) = t:tAt(~)e-v1 z + t:2A2(~)e-vzz, 
'lj;*(~, z) = A3(~)e-v3 z, 

tJ!*(~, z) = t:3A3(~)e-v3 z, 

Vk=~2 -k~fh, k=1,2, 

v; = ~2 - k;1J3, 1J3 = (/n/22- 1f2- i/)/(1'22- if)· 

The Sommerfeld radiation conditions require that ¢, {P, 'lj;, tJ! and their first derivatives 
with respect to x and z should tend to zero as lxl and z approa.ch infinity. Thus, the 
following inequalities must .be satisfied: 

Revk ~ 0, k = 1,2,3. 

On inserting the functions (3.16) into Eqs. (3.15) and then into the transformed boundary 
conditions (2.4 ), we arrive at the following set of three algebraic equations with unknown 
functions At(~), A2(~) and A3(~) 

[

1Jt- 2(
2
, 1]2- 2(

2
, -2i(J-L3] {At} 1 { q;z} 

-2i(J-Lt, -2i(J-L2, 2(2 - 1J3 A2 = N k2 q;*z · 
1]3, 1]4, 0 A3 r qs 

(3.18) 

In the above set of equations the following dimensionless parameters appear: 

(3.19) { ( = ~/kr, Jlk = Vk/kr = ((2
- (321Jk)tf2

, ReJ-Lk ~ 0, k = 1, 2, 
Jl3 = v3j kr = ((2 - 1J3)t/2, Re Jl3 ~ 0; 

(3.20) 1]3 = 1Jt(T12 + C:tTz2), 
1]4 = 1J2( Tt2 + t:2T22). 

By expanding the main determinant of the matrix of coefficients of Eqs. (3.18) we obtain 
the function 

(3.21) 

This function is called the Rayleigh function for the fluid-filled porous solid, since if we 
make it equal to zero, we get the dispersion equation, which determines the parameters 
of the surface waves propagating along the free boundary of the half-space filled with the 
two-phase medium. 
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Substitution of the functions Aj((), obtained from Eqs. (3.18), into Eqs. (3.16) and 
then into Eqs. (3.14) yields the Fourier transforms of the displacements of the medium. 
By carrying out the inverse transformation (3.13) we arrive at the solution of the prob­
lem at hand in the form of improper integrals. For convenience, we write the derived 
displacement functions separately for each of the components of the loading function 
q(x ): 

a) qzz :f 0, qxz = qs = 0 

(3.22) 
i oo q* e-i(;; 

u = 
2

7r N j ([(2(2
- ih)(TJ4Et - 1]3E2) + 2J.l3(T/3J.l2- T/4J.lt)E3] z~(() d(, 

- oo 

(3.23) 
1 00 

w = 
2

7r N j [(2(2
- fh)(7J4J.ltEt - 1J3J.l2Ez) 

- oo q* e-i(;; 
+2(2(7]3J.l2- 7]4J.lt)E3] z~(() d(; 

b) qxz :f 0, qzz = qs = 0 

(3.24) 
1 00 . q* e-i(x 

u = 27r N J J.l3[2(
2
( -7]4E1 + 7]3E2) + (2(2 - d3)(7J4- 1]3)E3] X~(() d(' 

- oo 

(3.26) 

(3.27) 

where Ek = exp( -J.LkZ), k = 1, 2, 3. In the above relations the dimensionless parameters 
appear 

X = krX, z = krz . 

The expressions for the pore fluid displacement functions U and W may be obtained 
from Eqs. (3.22)-(3.27) by replacing Ek by EkEk (k = 1, 2, 3), respectively, in the corre­
sponding equations. 

The solutions (3.22)-(3.27) are valid for any load function q(x) exp(iwt), for which 
the Fourier transform q* ( () exp( iwt) exists. The latter holds if the functions qzz ( x ), 
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Qxz(x) and q8 (x) satisfy Dirichlet's conditions and are absolutely integrable in the interval 
(-oo, oo) (SNEDDON (11]). 

Now let us consider a limiting case of no pore fluid in the medium. To this end we 
assume that elastic constants Q = R = 0, the real pore fluid density Pw = 0 (what 
implies p12 = P22 = 0) and the damping parameter b = 0. By substituting these constants 
into Eqs. (3.5)-(3.7) we get the following values of dimensionless parameters: 

(3.28) 

r 11 = 1, 

/11 = 1, 

f = 0. 

T12 = T22 = 0, 

{12 = {22 = 0' 

Moreover, from Eq. (3.5) it follows that H = 2N + A and, by virtue of (3.8), the 
reference velocity of dilatational wave Vc = [(2N +A)/ p]ll2 is the same as for the case 
of purely elastic solid, provided that N and A are Lame's constants. Accordingly, the 
parameter {3 = [ N / (2N + A) p 12 is the ratio between the velocities of ideally elastic 
shear and dilatational waves. On putting Eqs. (3.28) into the set of Eqs. (3.4) we see that 
the second and fourth equations disappear. Thus, the set (3.4) reduces to two equations 
with two unknown functions </> and 7/J - the potential function.s ~ and 1]/ for the pore 
fluid become indeterminate. · Therefore, the relations (3.9) and (3.10) can no longer be 
applied. From the dispersion equation (3.11), which describes the parameters of two 
dilatational waves propagating in the two-phase medium, it now follows that '19 1 = 1 and 
'!9 2 is indeterminate. So, the formulae obtained cannot be applied directly in the case of 
single-phase medium. In order to avoid this disadvantage it is useful to suppose in further 
analysis that both dilatational waves are the same, i.e. to assume that also '19 2 = 1. In 
addition, from the last of Eq. (3.17) it is seen that '19 3 = 1, too. Accordingly, we can write 

(3.29) 

Substituting the above relations into Eqs. (3.19) we can see that now the functions f..L k 

(k = 1, 2, 3) are real-valued and may be expressed as follows: 

f..L1 = f..L2 = ((2- {32)1/2 = 0'1' 

f..L3 = ((2 -1)1/2 = 0'2. 
(3.30) 

The latter relations yield the following form of the function (3.21): 

(3.31) 

where Fe(() is the Rayleigh function for an ideally elastic medium (ACHENBACH [1 ], 
EWING et al. [4]). By insertion of Eqs. (3.29)-(3.31) into Eqs. (3.22)-(3.25) we arrive at 
the following expressions for the displacement functions: 

a) Qzz :f 0, Qxz = 0 

i Joo 2 _ _ q;z exp(- i(x) d( 
u = 

2
7r N ([(2( - 1) exp( -a1z)- 2a1a2 exp( -a2z)] Fe(() , 

-oo 
w = - 1

- Joo a 1[(2(2 - l) exp( -a1:Z)- 2(2 exp( -a2:Z)]q;z e;(;i(X) d(; 
27r N e( 

-00 

(3.33) 
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b) Qxz =j: 0, Qz z = 0 

(3.34) 
1 Joo ( 2 _ ( 2 _ q;z exp( -i(x) d( 

u = -- a 2[ -2 exp( -a1z ) + (2 - 1) exp( -a2z)] F ( , 
27r N e( ) 

- 00 

(3.35) 
i Joo _ 2 ~ q;z exp( -i(x) d( 

w = - N ([2a1a 2 exp( -a1z)- (2( - 1) exp( -a2z)] F ( . 
27r e ( ) 

- 00 

One can check that for a particular case of concentrated force Q0, normal to the boundary 
z = 0 at x = 0, the integrals (3.32) and (3.33) coincide with those known in the classical 
theory of elasticity (ACHENBACH [1]). To prove this it suffices to assume Qz z(x) = Q0b(x), 
with b ( x ) being the Dirac delta function, and to remember that, in view of Eq. (3.19), 
( = ~I kr and J-lk = Vk I kr. Similarly, it can also be shown that for a case of the 
load applied tangentially to the free surface z = 0 the integrals (3.34) and (3.35) are 
equivalent to the solutions, which can be easily derived on the basis of the classical theory 
of elasticity. Thus, we can ascertain that in the limiting case of no pore fluid the derived 
solutions (3.22)- (3 .25) for the fluid-saturated poro-elastic medium agree with those for 
the purely elastic solid. 

4. Numerical calculations 

The integrands of the derived solutions (3.22)-(3.27) of the proble!D discussed are 
multi-valued functions of complex variable. Because of their complicated form it is not 
possible to evaluate the improper integrals (3.22)-(3.27) analytically. Therefore, it remains 
to compute them in an approximate way, by the use of numerical integration. In this case 
there are, generally, two possible approaches. The first one consists in carrying out the 
contour integration over the complex (-plane around a closed path. Before the Cauchy 
integral theorem is applied, the integrands must be made uniform functions by introducing 
suitable branch cuts in the complex plane. The advantage of this rather complicated 
method of integration is that it enables us to obtain separate information about each of 
the waves propagating in the half-space (EWING et al. [4]). 

qo x,u,U 

:· ~ :: : .. · .. : :.··. ·. :· .· ·: ·. ~· :o.· ~ :.·ci · .. · .. ~· ··: · .. · ·: :. ·: . .. . 
• • • • • • • • .. .. • • 0 

·. · ~ ·. ·. ·. ·. ·. ·. ·. ·. ·.i,·w.w. ·. ·.:::: ·>: 
FIG. 2. Surface load in a form of strip function. 

In the present investigation we apply the second approach that consists in carrying out 
the numerical integration along the real axis Im ( = 0. In order to present this method, 
we confine our attention to the particular case of the surface load in the form of a strip 
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function of constant pressure q0, acting over a segment -a ~ x ~ a and applied normally 
to the boundary z = 0 (Fig. 2). Accordingly, we write the boundary condition at the free 
surface as the function 

(4.1) lxl ~a, 
lxl >a, 

for which the Fourier ~ransform (3.12) is 

(4·2) * (() = 2q0 sin (a 
qzz kr( ' 

with a= kra. 
By substituting Eq. ( 4.2) into Eq. (3.23) we get the vertical displacement of the skeleton 

at the point x = 0 and z = 0 in the form 

_ . 2qo Joo sin (a . Joo 
w(O,O) =- 1rN fh('f/4/lt- 'f/3/12)(F(() d( = I(()d(, 

() () 

(4.3) 

with w = kr w being the non dimensional displacement. The integrand of Eq. ( 4.3) has 
in the half-plane Re ( ~ 0 four singular points: three branch points (ok (k = 1, 2, 3), 

a 

b 

leigh pole 

'-plane 

FtG. 3. a. Distribution of the singular points of the integrand (4.3) 
in the half-plane Re( ~ 0. b. Variation of the integrand (4.3) 

(real and imaginary parts) along the half-axis Re ( ~ 0, Im ( = 0. 

http://rcin.org.pl



STEADY-STATE PLANE LAMB'S PROBLEM 509 

introduced by the roots /-Lk (3.19), and one simple pole (oR being the zero of the Rayleigh 
function F((), given by (3.21). The distribution of these points in the complex half-plane 
Re ( 2:: 0 is shown in Fig. 3a. In the same figure we sketch the variation of the integrand 
I of the function ( 4.3) with ( along the positive real half-axis Im ( = 0; (t, ( 2, ( 3, ••• 

are the successive zeros of the function sin (a . It is seen that in the first subinterval 
0 :::; Re ( :::; (I the integrand considered is a very irregular function. This is due to the 
location of the singular points very close to the path of integration. Especially distinct is 
the influence of the Rayleigh pole (oR; in the neighbourhood of this point the integrand 
can assume very large values (in the limiting case of nondissipative medium - infinite 
ones). Because of this strong irregularity in the first subinterval, a special numerical 
technique should be applied in order to ensure satisfactory accuracy of evaluation of the 
integrals discussed. The application of the methods which use interpolation formulae (e.g. 
KRYLOV and SKOBLYA [5]) has met only moderate success, because in this case it,is difficult 
to estimate the error of computations. It was found out that more effective is to employ 
the iterative Romberg's algorithm combined with the Richardson's extrapolation scheme 
(DAHLQUIST and BJORCK [3]), because this method allows us to attain the desired accuracy 
of calculations in a simple manner, namely through the densification of nodal points in 
a region of strong irregularity of the integrand. In the interval Re ( 2:: (I the integrated 
function varies much more regularly and familiar numerical quadrature formulae (e.g. 
those of Cotes or Gauss-Legendre) may be used successfully. For Re ( 2:: (I the integrand 
oscillates around zero in such a way that both the real and imaginary parts of the integrals 
over the successive subintervals (k :::; Re ( :::; (k+I tend monotonously to zero in their 
absolute values. In addition, they alternate in sign for each two neighbouring half-cycles. 
Thus, the values of the integrals may be treated as terms of a certain convergent alternating 
series. In the case of slow convergence of this series it is very effective to employ either 
a procedure of multiplied averaging of the partial sums of the series (DAHLQUIST and 
BJORCK [3]) or to carry out Euler's transformation of the series (LONGMAN [6]). 

For the general case x f. 0 and z f. 0 and for the functjons (3.22) and (3.24)-(3.27) the 
behaviour of the integrands is more complicated. However, the method of computations 
described above is still useful, since the most dominant influence on the integrands of 
Eqs. (3.22)-(3.27) is exerted by the function F( (), which occurs in the denominators of 
all the integrals considered. 

In accordance with the analytical solutions (3.22)-(3.27) of the . problem discussed, 
some numerical calculations were performed for water-saturated coarse sand. As an 
example, we present the results obtained for the case of surface load in the form of 
the strip function ( 4.1 ), applied to the skeleton normally to the free surface z = 0. By 
substituting Eq. ( 4.2) into Eq. (3.22) and (3.23) we can write the skeleton displacement 
functions u and w in the following dimensionless form: 

1rNkru 00 
· 

-- = J !((() d( =lui exp(iou), 
2qo 

(4.4) 
0 
00 

(4.5) = J L(() d( = lwl exp(iow), 
() 

where J( ( () and L( () are the functions of the dimensionless dynamic and elastic par­
ameters (3.5)-(3.7) and of the dimensionless variables x = krx, z = krz, a = kra. The 
quantities lui and lwl are the complex moduli of the dimensionless displacements, Ou and 
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8w denote complex arguments (phase angles) of the horizontal and vertical displacements, 
respectively. ~Relations similar to Eqs. ( 4.4) and ( 4.5) may be written for the pore fluid 
displacements U and W. In the numerical computations the following data were used: 

N = 3.75 X lOx Pa, A = 2.82 X 109 Pa, Q = 1.38 x 109 Pa, 

R = 9.2 X lOx Pa, n = 0.40, k f = 0.01 m/s, 

Ps = 2.65 X 103 kg/m3
, Pw = 103 kg/m3

, w = 4.34ls-1
. 

The latter data correspond to the following dimensionless parameters: 

Tu = 0.4924, T1z = 0.1903 , r 22 = 0.1269, 

/It = 0. 7990, /12 = 0.0, /22 = 0.2010, j = 18.163. 

~ 
I a 

--- skeleton 

--- pore water 
I• •I 
· qzz=qo 

a 

2o 

3o 

4o 

So 
o~'<D 0 l/)l/) 0 <D <D 0 C»~.B r-- (T') 

z ON N CJN (T') l/)a) ...; 0 N 
II-.- II .-N 

II NN II N(T')oo (T') (T') 
xoo )( 00 

X 
00 X 0~)( ~ ~ 

00 00 00 00 0 0 

FtG. 4. Amplitudes of dimensionless horizontal displacements (coarse sand, kr a = 0.1 ). 

Figures 4 and 5 illustrate the variation of the amplitudes of the dimensionless displace­
ments ( 4.4) and ( 4.5) of the skeleton and the pore water for the case of dimensionless 
frequency parameter a = kra = 0.1. It is seen that the displacements of both the com­
ponents of the medium differ significantly only in the relatively small region in the vicinity 
of the zone of excitation. For the data taken in the computations we may consider the 
displacements mentioned above to be approximately the same at the distances greater 
than about 2a - 3a from the origin of the coordinate system (the latter correspond to 
about 1/30-1/20 of the length of rotational wave). So, in many applications we may treat 
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FIG. 5. Amplitudes of dimensionless vertical displacements (coarse sand, kr a = 0.1 ). 

the medium as a single-phase one; especially when we are interested in wave phenomena 
occurring far away from the sources of disturbances. Such an approach forms a frame­
work of some practical methods- for instance the boundary layer theory, formulated by 
MEI and FODA [7]. 

5. Conclusions 

In the paper the steady-state, time harmonic plane Lamb's problem for the Biot's 
medium is considered. The analytical solution to the problem at hand is derived in the 
form of improper integrals of complex variables. It is shown that for a limiting case of 
no pore fluid in the solid the solutions obtained reduce to those known in the theory 
of elasticity. Because of a complicated form of the integrals derived, their evaluation is 
possible only in an approximate way - but the accuracy of calculations may be easily 
controlled. Numerical analysis shows that the displacements of the skeleton and the pore 
fluid differ significantly only in the relatively small domain close to the excited zone. 

The analytical solutions obtained are useful in the construction of discrete models of 
the steady-state structure-soil interaction problems, in which we deal with poro-elastic 
half-space. Since the solutions derived fulfil the radiation conditions for regular semi­
infinite region, it is sufficient then to carry out the discretization only in the eontact zone 
between the vibrating structure and the fluid-saturated subsoil. This enables us to reduce 
significantly the number of discrete points of a numerical model of the problem solved, 
as compared to the case of application of such discrete methods as FEM or FDM. 
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