
Arch. Mech., 44, 5--6, pp. 491-498, Warszawa 1992 

An extension of the static shakedown theorem 
to a certain class of inelastic materials with damage 

A. HACHEMI (DOUAI) and D. WEICHERT (VILLENEUVE D'ASCQ) 

IN THIS PAPER, an extension of the static shakedown theorem (Melan's Theorem) to elastic-plastic 
damaging material behaviour is presented. Damage is taken into account by using the Ju-model, and 
the generalized standard material model with plac;tic hardening. 

1. Introduction 

IF STRUCTURES are subjected to variable loads, the determination of the field quantities 
describing the state of structure during the process of deformation is very often less 
important than the answer to the question, whether the failure with respect to certain 
functional requirements occurs or not. 

A particular kind of failure is the unlimited accumulation of plastic strains during the 
deformation process, characterized by the fact that there exists no instant beyond which 
no additional plastic deformations occur. If, on the other hand, plastic strains developing 
in the initial phase of the process generate such distributions of residual stresses that, 
starting from a certain time instant, the considerd body reacts purely elastically to the 
applied loads, we say that the body "shakes down". 

The foundations of the theoretical achievements in this field of research were given 
by MELAN [10] and KOlTER [5] who proved, under the assumptions of geometrical lin­
earity, elastic-perfectly plastic or linear and unlimited hardening material bahaviour, and 
the validity of an associated flow law, the classical statical and kinematical theorems of 
shakedown, respectively. 

Extensions of these theorems to broader classes of problems including the change 
of temperature, hardening, influence of geometrical changes and damage have attracted 
much interest in the last years. Material hardening effects have been investigated, among 
others, by MAIER [9] who presented a discrete structural model which accounts for lin­
earized ("second order") geometrical effects. KONIG [ 6] and KONIG and SIEMASZKO [7] 
developed a method of stability analysis of shakedown process taking into account non­
linear strain-hardening rule, ZARKA et al. [21] presented an approach to inelastic analysis 
of structures used in conjunction with the classical tools of engineers such as any elas­
tic finite elements method based code, and MANDEL [11] extended Melan's theorem to 
hardening material behaviour using the "Generalized Standard Material Model" which 
has been developed by HALPHEN and NGUYEN Quae SoN [2]. They all consider the case 
of linear and unlimited hardening. Weichert and GROSS-WEEGE [19] studied the case of 
linear and limited kinematical hardening using a simplified two-surface yield condition. 
For similar problems, STEIN, ZHANG and KONIG [16] propose a micromechanical overlay 
model with limited nonlinear hardening. The geometrically nonlinear problem including 
hardening has been studied by WEICHERT [18, 20), GROSS-WEEGE [1) and SACZUK and 
STUMPF [13] who used the "Generalized Standard Mate~ial Model". 
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More recently, SIEMASZKO [14] presented a step-by-step method of non-shakedown 
analysis for elastic-plastic discrete structures. This method accounts for nonlinear geomet­
rical effects, nonlinear hardening and progressive damage of the material. The damage is 
taken into account by a porosity parameter which is interpreted as a void volume fraction. 
The evolution of this parameter describes the changes of internal imperfections caused 
by nucleation, growth and diffusion, using the material softening function developed by 
PERZYNA [ 12] combined with isotropic hardening. 

In the presend paper, an extension of shakedown theory to damaging material be­
haviour is proposed using the energy-based isotropic elasto-plastic damage models given 
by J.W. Ju [3]. Here, damage is taken into account by an internal sc~lar-valued parameter 
D, describing the effects caused by growth and coalescence of microcracks or microvoids, 
leading to the degradation of the material properties. 

2. Basic assumptions and constitutive relations 

In this paper, different physical phenomena on the level of local material behaviour 
are considered, namely: Linear elastic behaviour, plastic behaviour characterized by the 
existence of a convex yield surface in the space of generalized stresses, the validity of 
normality rule, linear limited hardening (see e.g. [2, 19]), and material damage following 
the theory of Ju [3] and CHABOCHE-LEMAITRE [8]. For simplicity, all considerations are 
limited to the geometrically linear theory; extensions in the sense of e.g. MAIER [9] or 
others [1, 18~20] are possible. 

2.1. Adopted model of material damage 

Continuous damage mechanics has been introduced and employed extensively to de­
scribe the progressive degradation experienced by the mechanical properties of materials 
prior to the intiation of macrocracks. KACHANOV [4] was the first to introduce the concept 
of damage in the framework of continuum mechanics. For the case of isotropic damage 
and using the concept of effective stress, the scalar damage variable D is defined 

s-s 
D=--

S ' 
(2.1) 

where S is the effective (net) resisting area corresponding to the damaged area S. 
Using the hypothesis of strain equivalence [8], the effective stress a can be obtained 

from Eq. (2.1) by equating the force acting on the damage area S with the force acting 
on the hypothetical undamaged area S (see Fig. 1) 

(2.2) uS= uS, 
where u is the Cauchy stress acting on the damaged area S. From Eqs. (2.1) and (2.2), 
one obtains 

(2.3) - (J u=--. 
1- D 

The value D = 0 corresponds to the undamaged (virgin) state, D = D c defines the 
complete local rupture ( D c E [0, 1 ]), and D E (0, D c) corresponds to a partly damaged 
state. It should be noted that the effective stress a can be considered as a fictitious stress 
acting on an undamaged equivalent (fictitious) area S (net resisting area). 
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FIG. 1. Hypothesis of strain equivalence. 
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Linear kinematical hardening is taken into account by using internal parameters ac­
co rding to the concept of "generalized standard material" developed by HALPHEN and 
NGUYEN [2]. For this, generalized elastic strains ee, generalized plastic strains eP and 
effective generalized stresses s are introduced, defined by the sets 

(2.4) s = [u, 7iJ. 
Here, t:e and t:P are, respectively, the observed "elastic-damage" and "plastic-damage" 
parts of the total strain equivalence tensor t:, defined by their components referred to a 
Cartesian system of coordinates [0, Xt, X 2, X 3] 

1 
Eij = 2(ui,j + U j ,i ) , 

(2.5) 
E · · - Ee + Ep 

tJ - ij ij ' 

with 'l.Li being components of the displacements vector u of a characteristic particle of the 
body. Latin indices run from 1 to 3 if not stated otherwise, summation convention over 
repeated indices is adopted, a comma denotes the partial derivative of the considered 
quantity with respect the coordinate following the comma. The effective stresses are 
represented by the effective stress tensor u, and the quatities w , K and 7i are the r­
dimensional vectors of internal elastic and plastic parameters and "effective back-stresses", 
respectively. The dimension r depends upon the particular choice of the hardening model. 

2.2. Thermodynamic basis 

Following [3], the existence of a locally averaged free energy function is assumed; i.e. 

(2.6) lV (t:e, D , K) = (1- D)W0(t:e, K) = W ed(Ee, D)+ Wpd(K, D), 

where lVed and lVpd are the uncoupled elastic and plastic potential energy functions of 
the damaged material, respectively. 

In the isothermal case, W ed and Wpd are given by 

1 -1 
Wpd = 2(1- D)ZmnKmKn, 

n, m = 1, 2, ... , r. 

Land Z are constant, positive definite and time-independent tensors of elastic moduli and 
internal elastic moduli, respectively, with the symmetries Lijkl = Lkli j = Ljikl = Lijlk 
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and Zmn = Znm defined by 

L
-1 82WO -1 82WO 
ijkl = 8 e 8 e ' zmn = 8 8 ' 

Eij Ekl "'m "'n 
where in Eq. (2.7)1 We denotes the initial elastic stored energy function of the undamaged 
(virgin) material. As a consequence of the 2nd thermodynamical law, the Clausius-Duhem 
(reduced dissipation) inequality takes the form 

(2.8) -W+u:£2::0 

for any admissible process. 
Assuming that the unloading processes are purely elastic, we obtain 

8Wed 1 (2.9) U = -
8
- = (1 - D)L- : Ee , 
Ee 

or, using (2.3), 

(2.10) 

where the symbol (:) indicates tensorial product contracted in two indices. 
The associated damage variable is the scalar - Y, defined by 

(2.11) 
8W 0 -Y =- 8D = W. 

Hence, the undamaged energy function W 0 ( Ee' K) is the thermodynamic force (-Y) 
conjugate to the damage variable D (see also [3]). This is at variance with LEMAITRE 

and CHABOCHE [8] and SIMO and Ju [15], who considered only the elastic part of the 
damage energy W e( t: e). Assumption of the elastic damage energy alone is the non-optimal 
choice, thus in a sense contradicting the experimental evidence that plastic variables also 
contribute to the initiation and growth of microcracks. 

Taking time derivative of Eq. (2.6) and substituting into Eq. (2.8), we obtain the 
dissipative inequality 

p • • 
(2.12) O"ijEij- YD -1rn"'n 2::0, n = 1,2, ... ,r. 

If one assumes that the phenomenon of plastic flow can occur without damage, in the 
same way the phenomenon of damage may be assumed to occur without appreciable 
macroscopic plastic flow [3, 8, 15, 17]; then we must have separately 

(2.13) 

2.3. Elastic part of the material law 

It is assumed that for the elastic part of the material damage law the linear relationship 

(2.14) 

is valid. In the indicial notation we get 

(2.15) n = 1, 2, ... , r. 
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2.4. Plastic part of the material law 

For the plastic part of the material damage behaviour we assume the existence of a 
convex and fixed yield surface F in the space of effective generalized stresses s with 

(2.16) F(S, k) ~ 0, 

for all physically admissible states of effective stress, where k denotes a time-independent 
scalar. Convexity and normality rule can then be expressed by the condition 

(2.17) ( s - s) : eP ~ o . 
In indicial notation we get 

(2.18) (aij- aij)tfj + (7rn -1?n)Kn ~ 0, 

where a dot denotes the rate of the considered quantity, and a superposed symbol ("') 
characterizes arbitrary admissible field fulfilling inequality (2.16). In the case of kine­
matical hardening following Prager's hardening rule, the evolution of the internal plastic 
parameters "" is linked to the plastic strain rates by [2, 19] 

for i = j, 1 . .) 
n = Z(z + J , fori -:f j, 

The evolution of internal elastic parameters w is in general given by 

(2.20) Wn=-Kn, n=1,2, ... ,r 
so that for initially virgin material we have 

(2.21) Wn = -K,n, n = 1, 2, . .. , T 

for all times (19]. 

3. The extended shakedown theorems 

n=i+j+l. 

Using the material description given in Sec. 2, Melan's theorem can be extended for 
damaging kinematically hardening material. We consider a body B of volume V with a 
sufficiently smooth surface S consisting of the disjoint parts SF and S u' where statical and 
kinematical boundary conditions are prescribed, respectively. Volume forces are denoted 
by f*, surface tractions by p*, and the given displacements on Su by u* varying locally 
within fixed bounds. 

In the sequel, the notion of a "purely elastic reference problem" is introduced, differing 
from the original problem only by the fact that the material reacts in this case purely 
elastically with the same elastic moduli as for the elastic part of the material law in the 
original problem [ 5]. All quantities related to this reference problem are indicated by 
superscript c. We assume that the solution of this reference problem is given, i.e. that the 
following system of equations is fulfilled: 

afj,j = - fi* 
c * niaij =Pi 

(3.1) uf = ui 
c 1 c c c · · = -(u · · + u · ·) 
t) 2 t,J J,t 

c L -c 
cij = ijklO"kl 

where n is the outward normal vector to SF· 

in v' 
on Sp, 

on Su, 

in V, 

in V, 
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The body B shakes down with respect to the given loading history, if there exists a 
0 0 0 

time-independent field of effective generalized Stresses sP(x) = [p(x), n(x)) such that for 
all times t > 0 the following conditions hold: 

(3.2) 

Pi j ,j = o 
0 

njPij = 0 
0 

in V, 

on SF, 

F(sc(x, t) + sP(x) , k) < 0 in v. 
For the proof of the theorem the quadratic form W is introduced by the formula 

1 J [ o L ijk l o o Zmn o ] (3.3) W = 2 (P ii- Pij)
1

_ D(Pkt- Pkt) + (7rm -7rm)
1

_ D(7rn- 7rn) dV. 
(V) 

In the following, it is assumed that damage is limited throughout the entire process so 
that (1 - D) is, at any time, a positive-valued scalar. Then W is non-negative due to 
the fact that the tensors L and Z are positive definite. In Eq. (3.3), p denotes the time­
dependent difference between the unknown, true state of stress in the body B and the 
given, time-dependent state of stress in the purely elastic comparative body Be, so that 

(3.4) + 0 7rm=7rm , 

and 

(3.4)z Pii = (1 - D)Pii , P . . . = (1- D)_p . .. - Dp- · · 
t) t ) 1) • 

Here, s = [ u, 7t] is the actual state of stress and s+ = [ u+, 7t+] is a "safe" state of stress 
defined by the fact that inequality (2.16) is satisfied in the strict sense. 

The time-derivative of Eq. (3.3) then yields, with Eqs. (3.4 ), 

(3.5) W = f [(aij - alj)L i jklPkl + (7rm - 7r~)Zmn1F n]dV 
(V) 

1 f + + + Z + ] jJ dV -Z [(D"i j- O"i j)Lijkt(D"kl- O"kl) + (7rm- 7rm) mn(7rn- 1rn) (1 - D)2 ' 
(V) 

where p, 1t and b are time-derivative of the effective residual stress, effective back-stresses 
and of the damage variable, respectively. 

With 

(3.6)1 

(3.6)z 

and 

Cij = t:ij + c:fj , "'-m + Wm = 0 , 

C:ij = t: i j + c:fj + f:::.C:ij, f:::.C: i j = L ij klPkh Wm = Zmnifn 

(3.6)3 - 6 Y = ![(aij - alj)L i jkt(D"kl - a;l) + (7r m - 7r~)Zmn(7r n - 7r~)), 
2 

we get from Eqs. (3.6) 

(3.7) W = j [(aii- alj)(tii- t ii- tfi)- (7rm- 7r~)~m] dV 
{V\ 
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(3.7) 
[cont.) 

+ j flY b D 
2 

dV . 
(V) (1- ) 

From the Gauss theorem it follows that 

(3.8) J (aii - at)(tii - tii) dV = J (aii - a?j)(ui,j - ui,) dV 
(V) (V) 

= - J (aii,i- alj,j)(ui - ui) dV + J nj(aii- alj)(ui - ui) dS = 0. 
(V) (S) 

Finally 

(3.9) W = - j [(aii- a?j)tfi + (7rm- 7r~)Km] dV + j 6Y · b 
2
dV 

(V) (V) (1 - D) 

= - f (s - s+)eP dV + f 6Y · b dV. 
(1- D)2 

(V) (V) 

From (2.13) and (2.17) it follows that W ~ 0. For the strong inequality (3.2)3, W is equal 
to zero only for eP = 0 and b = 0, and otherwise it is negative. So Melan's argument 
holds: As W is non-negative by definition, plastic dissipation and damage dissipation are 
limited and so plastic flow and damage evolution cease beyond a certain time instant if a 

0 

field s P exists, fulfilling the relations (3.2). We say that B shakes down in this case. 
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