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Cylindrical wave solutions to the Korteweg-de Vries equation 

YUNKAI CHEN (FAYEITEVILLE) and SHIH-LIANG WEN (ATIIENS) 

CYLiNDRICAL wave solutions for the Korteweg-<le Vries equation are obtained within a reasonable 
approximation. They are shown to be representable as infinite sums of cylindrical solitons. 

1. Introduction 

The Korteweg-de Vries equation (referred to as KdV equation henceforth) is a nonlinear 
partial differential equation which arises in the study of many physical problems, such as 
water waves, plasma waves, lattice waves, waves in elastic rods, etc. For a survey we cite 
the article by MIURA ( 1]. 

Whitham demonstrated the representation of periodic waves as infinite sums of solitons 
for the one-dimensional KdV equation and modified KdV equation (2], CHEN and WEN 
showed the similar results for the two-dimensional KdV equation and modified KdV 
equation using entirely different methods (3]. In this paper we apply Chen and Wen's 
method to the cylindrical KdV equation. A cnoidal wave solution is obtained, and we 
prove that the cnoidal wave solution can be expressed as a sum of infinite number of 
solitons by using Fourier series expansions and Poisson's summation formula. We have 
also established a criterion for the existence of single soliton solution, it is C > 0, where 

~ C is a constant, or .X < -J;- (see Sec. 3). 
u~ 

2. KDV equation 

We start from the cylindrical KdV equation of the form (4, 5] 

u hfi 
(2.1) 2uT + ~ + 3uu€ + 3 u€€€ = 0, 

where u = u(~, r) is a function of~ and T. This equation was first derived from the study 
of acoustic wave propagating in a collisionless plasma by MAxON and VIECELLI (5], and 
it was also derived from the shallow water wave equations by the authors (4]. We shall 
establish the solitary wave and cnoidal wave solutions to the cylindrical KdV equation. 
Motivated by the one-dimensional results by MAxoN and VIECELLI (5], we introduce the 
following transformation. 

Let 

then 

I T 
T =­

ho' 
e = ~ and u(~, r) = u((, r'), 

3ho 

2uT = 2uT'(1Ih0 ), ulr = ul(r'ho), 

3uu€ = 2uue I ho and (h~l3)u€€€ = (BIB1)ueee I ho. 
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Therefore we can write Eq. (2.1) as 

u 4 
Ur' + - + UU€' + -ueee = 0. 

2r' 81 
For convenience, we drop the primes in the above equation and obtain 

u 4 
(2.2) UrT + 2 + UU~T + 

81 
UH~T = 0. 

We now define J-L = 2..fi and U ( ~, J-L) = ..fiu. Then 

J-L dr u u 
U = -U - +- = U T +- UUc = UUcT, 

1-£ 2 T dJ-L 2 T 2 ' <, <, 

1 
2_J-LUeee = vfrvrue~~ = ueeer. 

Substituting these quantities into Eq. (2.2) we obtain 

2 
(2.3) U~-' + UUe + 81 J-LUee~ = 0. 

8162 
We look for real-valued wave solutions of the form G(X) = -2-U(~,J-L) with X= 

~- (4/81)6-2CJ-L h c . b f: • • • ·
6
Vfi , w ere 1s a constant num er, v ~ 1 1s a small pos1tlve parameter 

introduced by CUMBERBATCH (6], and G is a C3 function of its argument. Since 

U = 2_. G'(X) . oX = 2_. G'(X) [ _ ~6 _1 __ 2_6_1C r,;] _1 
1-£ 81 62 8J-L 81 62 2.JP- 81 v J-L 62J-L 

= - .!_6-3G'(X)~J-L-3/2- (~)2 C6-sG'(X)J-L-t/2 
81 81 ' 

U = 2_6-3G'(X),,-t/2 and U = 2_6-5G"'(X)~~-312 e 81 ,.., ' eee 81 ,.., ' 

then substitution of the above results into Eq. · (2.3) yields 

- .!_6-3G' (X)~J-L-3/2 - (2_) 2 C 6-sc' (X)J-L-t/2 
81 81 

+ (;
1

) 
2 

6-si-'-'12[G(X)G'(X) + G"'(X)] = o, 

i.e., 

(2.4) _.!_62G'(X){ + (2_)\c"'(X) + G(X)G'(X)- CG'(X)] = 0. 
81 J-L 81 

The first term in Eq. (2.4) is of order 62 if G'(X) and (~I J-L) are bounded. One can 
argue that since in the original derivation~ = c112(r- t), r = c312t, and J-L = 2yr, where 
c is a small parameter, r the radial distance and t the time, it seems to be reasonable to 
assume I~ I J-LI to be bounded. This is the case in particular, when both r and t are large 
and of the same order, or in the domain where I~ I J-LI ~ 6-a with a < 2. Therefore, a 
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good approximation to Eq. (2.4) is: 

(2.5) G"'(X) + G(X)G'(X)- CG'(X) = 0. 

. . . 1 d[G'(X)JZ 
Integratmg both stdes of Eq. (2.5) and usmg the fact G" (X) = "2 dG(X) , we have 

(2.6) [G'(X)]2 = ~[ -G3(X) + 3CG2(X) + AG(X) + B] = ~F(G), 
3 3 

where A and Bare two integration constants and F is the cubic function -G3 + 3CG2 + 
AG+B. 

3. Solitary wave solution 

For a solitary wave solution we imp lose the boundary conditions G, G', G", G"' -+ 0 
when X---+ ±oo. Therefore, A = B = 0 in Eq. (2.6), and we obtain from Eq. (2:6) 

(3.1) [G'(X)f = ~G2(X)[3C- G(X)]. 
3 

If C < 0, i.e., X > ~, we shall have the solution u.;p, 

G(X) = 3C{1 + tan2[V-C(X- X0)]}, 

where X 0 is an integration constant. Clearly, G(X) is unbounded, and hence, it is not of 
much physical interest. 

If C ~ 0, i.e., X ::; ~'then solution to Eq. (3.1) becomes 

(3 .2) G(X) = 3C. sech2[VC(X- Xo)], 

where X0 is an integration constant. We note that C > 0, i.e., X < t5~' gives a 

condition under which a nontrivial solitary wave solution exists. In particular, if we choose 
C = 1 and X 0 = 0, then from Eq. (3.2) we have 

(3.3) 

4. Cnoidal wave solution 

G(X) = 3 sech2 [~- (
4/Sl)b-

2JL]. 
bvfP, 

The cubic function F( G) in the right-hand side of Eq. (2.6) plays an important rol~ 
Applying a similar argument as that given in Ref. [3], we can show that a cnoidal wave 
solution exists only if F(G) has three distinct real simple zeros Gt, Gz and G3 such that 
Gt > G2 > G3 and G2 ::; G(X) ::; G1 [3]. If this is the case, we have 

{1 Gt dG . Gt dG 
(4.1) V 3(X, -X) = l ,jF(G) = l y'(G, - G)(G- G2)(G- ?:'3), 
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where X 1 is a value such that G(X1) = Gt, and the period 2T in X is 

Gl dG 
2T = 2J3 J . 

01 
..j(G1 - G)(G - G2)(G- G3) 

(4.2) 

By Ref. (7], we can write Eq. (4.1) as 

2 -1 . 2 d-. k ( 4.3) (X1 - X) = sn (sm </>, k) = F( <..p, ), 
.../G1 - G3 .../G1 - G3 

where 

d-.-. _ 1 ~1-G 
"P-sm G G' 

1- 2 

and F( </>, k) = sn - 1 (sin</>, k) is the normal elliptic integral of the first kind with modulus 
k. If we define v = F(</>, k), then 

1 
v = r:; VG1- G3(X1- X), 

2v3 

and the cnoidal wave solution is obtained 

(4.4) G(X) = G1 - (G1 - G2)sn2(v, k) = G2 + (G1 - G2)cn2(v, k) 

= G3 + (Gt- G3)dn2(v,k) = G3 + (Gt- G3)dn2 C~-/G1- G3(X- Xt),k ) , 

where 

sn(v,k) = sin</>,cn(v,k) =cos¢ and dn(v,k) = )1- k2 sin2 ¢. 

It should be noted that here the C can be positive, zero or negative as long as C = 

!(G1 + G2 + G3). In particular, if X 1 = 0, then 
3 

2 ( 1 ~- (4/81)6-2C J-L ) 
G(X) = G2 + (G1 - G2)cn 

2
V3 VG1 - G3 b.,fii , k · 

Using the Fourier series expansion of dn2(v, k) [8] and the Poisson summation formula 
(9], we obtain (3] 

(4.5) 
E 

2 00 [ l 2 7r v 2 7r 
dn (v k) = - - -- + -- ""' sech -(v- 2mf() 

' J( 21( K' 41('2 L....J 2K' ' 
m=-oo , 

7r /2 . d(J 
where J( = J y' is the complete elliptic integral of the first kind with 

0 1 - k2 sin2 8 
7r /2 d(J 

modulus k; J(' = J is the complete elliptic integral of the first kind 
0 Vl - k12 sin2 8 

7r /2 
with modulus k' = v"f=kZ; E = J v' 1 - k2 sin2 (}d(J is the complete elliptic integral 

() 
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of the second kind with modulus k. Therefore, the cnoidal wave solution G(X) in Eq. (4.4) 
can be written as 

00 

(4.6) G(X) = P + Q L sech2 R(X - X 1 + 2mT), 
m=-oo 

where 

[ 
E 1r l 

P = G3 + (Gt - G3) J( - 21( J(' j, 
7r2 

Q = (Gt- G3) 4!('' 

2T = 4y'3 F(~, k) = 4y'3J( 
JGt - G3 2 JGt - G3' 

7r ]( 

R = 2l('T' 
where ](, J(' and E are defined following Eq. (4.5). In Eq. (4.6), G is clearly a periodic 
function of X with period 2T. Each term in the infinite series is a soliton. This gives 
a representation of a periodic function by an infinite number of solitons. It should be 
mentioned that the representation is valid within the order of 62• 
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