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Elasto-plasticity of slackened systems 

A. GAW~CK.I (POZNAN) 

THE PAPER concerns the so-called "slackened" systems, i.e. systems with gaps (clearances) at the joints 
between finite elements. Fundamental theoretical problems of mechanics of such systems made of 
the elastic-plastic material have been presented. Only quasi-static processes, within the framework 
of the geometrically linear theory, are considered, and all friction effects are neglected. Several 
theorems concerning the problems of analysis and synthesis have been derived. Particular attention 
has been paid to problems of uniqueness of solutions. A mathematical model proposed in the 
work can describe the behaviour of locking elastic-plastic systems. This model covers a considerably 
wide class of time-independent materials. The theory allows us to describe the frictionless cases 
of unilateral constraints in the frame of small deformations. Results obtained in the paper can be 
applied in structural and solid mechanics. 

1. Introduction 

THE PRESENCE of gaps (clearances) at structural connections leads to numerous unex
pected effects occurring in the behaviour of structures during the loading process. The 
general theory of such structures, called here "slackened" systems, will be derived and 
discussed. The problem is not quite new, nevertheless, very few works are known to deal 
with problems of slackened systems. It will be also shown that the· theory of slackene.d 
systems has an essential significance for the theory of elastic-plastic continua. 

In a "macro" scale the behaviour of rigid-slackened systems is identical with that of 
the ideal locking material ( cf. W. PRAGER [1 ]). However, the behaviour of rigid-slackened 
systems does not follow from the physical properties of the material; it is due to variable 
boundary conditions of the system elements. In both cases the corresponding mathemat
ical model of the problems appears to be the same. Thus, in fact, the slackened systems 
made of elastic-plastic material can be treated as locking-elastic-plastic ones. A pioneer
ing work in this domain was done by L. CORRADI and G. MAIER [2], where elastic-locking 
structures were considered. Note that the locking of material was not interpreted there 
as a clearance effect. Further research has been focused on a more general class of the 
so-called "conditional joints" in works of S. KALISZKY [3] and M. KURUTZ [ 4-6]. The 
problem of slackened systems belongs to mechanics of systems with unilateral constraints. 
In the last decade many papers in this domain have appeared. Of a particular signif
icance are the papers of G. DUVAUT and J.L. LIONS [7] and P.O. PANAGIOTOPOULOS 
[9-11 ], where unilateral constraint effects have been considered. All these papers are 
of mathematical character. The influence of mathematics has been expressed in a new, 
more general, terminology of the subject, by introducing the so-called "subdifferential 
connections" where, among others, plasticity and contact effects are taken into account. 

In the present paper the major theoretical results for the slackened systems obtained 
by the author in the last years are summarized and discussed. All the considerations are 
carried out according to the following fundamental assumptions: 

• the system is assembled of deformable (linear elastic-plastic) structural elements and 
of indestructible and undeformable connecting elements (joints) of very small dimensions 
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• • the relative motion (due to the presence of gaps at the connections) between the 
structural element and connecting element is permitted, 

• displacements and clearances are so small that the application of the geometrically 
linear theory is justified, 

• all friction effects are completely neglected, 
• only quasi-static processes are considered, 
• the "ideal" structure, i.e. the reference structure without gaps, is geometrically stable. 
The assumption on the frictionless motion requires some additional comments. It is 

obvious that a mechanical model, in which the friction forces are taken into considera
tion, more precisely describes the behaviour of real deformable systems. However, the 
formulation of such a model is much more complicated. The problems of the existence 
and uniqueness of solutions in this case appear to be very difficult, and only quite recently 
some essentially important results in this domain have been obtained by mathematicians, 
cf., for example, J.J. TELEGA [12]. The solutions of contact problems with friction are not 
unique in general, also in the case of Coulomb's friction. The uniqueness is assured if the 
coefficient of friction is sufficiently small. The non-uniqueness of solutions results from 
the fact that the friction law is not associated with the friction condition. In the present 
paper it will be shown that, even in the simplest case of frictionless deformations, the 
mechanics of slackened systems provides a sufficiently large number of new, non-trivial 
problems. 

The fundamental assumptions specified above, together with some additional simpli
fications consisting in a linear approximation of constraints imposed on the plastic and 
clearance strains, lead to problems of convex analysis which can be solved by means of 
linear and quadratic programming methods. The usefulness of these methods will be 
widely illustrated in the DTP~Pnt paper. 

2. Specific features of slackened systems 

2.1. Ideal configuration 

One should be aware of the fact that the presence of clearances at connections can 
induce a geometric instability of the system. Therefore, it is necessary to establish an 
"ideal configuration" chosen from all the kinematically admissible configurations of the 
unloaded slackened system. The displacements of connecting elements will be related 
to the ideal configuration. Otherwise, the kinematical quantities would be not uniquely 
determined. This problem will be also considered in Sec. 4.6. 

2.2. Mathematical description of slackened connections 

Consider in detail a model of connection \Yith clearances shown in Fig. lb as a part 
of a plane slackened system of Fig. la. Two bars are joined by five bolts attached to 
the connecting element (connecting plate). -Due to the presence of gaps between the 
bolts (treated here as points) and the corresponding holes drilled in the end (rigid) parts . 
of structural elements, a relative con~trained motion of the bar element and connecting 
plate can occur. The relative displacements play here a role of concentrated "generalized 
clearance strains" that appear within the "cle~rance region". This region is bounded by 
the so-called "clearance surface" corresponding to Prager's locking surface. 
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b 
Element "2" 

FIG. 1. Model of system with slackened connection; a) plane slackened system, b) slackened connection. 

Thus, as in the theory of plastic structures, an idea of a "generalized clearance hinge" 
can be introduced. Note that the clearance surface can be constructed for any connection 
with clearances which can occur in real structures. As an example, Fig. 2a illustrates the 
clearance surface for the clearance hinge of element "l" ( cf. Fig. lb and [23]). 

a b 

1-IG. 2. Clearance surface and normality law; a) clearance surface for hinge at element 1, 
b) geometric interpretation of normality law. 

Jn order to derive the fundamental relations for slackened connections, consider the 
equilibrium of a system composed of the connecting plate and element 1 (Fig. 3a). The 
system is loaded by generalized stress components at, a2 and a3, denoting the normal 
force, shear force and bending moment in the bar element 1, respectively. The generalized 
stresses are in equilibrium with contact forces S(j) both in element 1 and in the connecting 
plate (see Fig. 3b,c) . . The contact forces S(j) act at particular points of the hole boundary 
of element 1 (j denotes here the number of the corresponding bolt). Since no friction 
forces are assumed, the contact forces have to be perpendicular to the hole boundaries. 

Consider now a virtual motion of the connecting plate, assuming that no loss of existing 
contacts occurs (Fig. 3c). 

The virtual motion is described by the generalized clearance strain variations: bei, 
be~, be~ associated with variations of displacement of partic11lar bolts, bv(j). Note that 
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FtG. 3. Connecting plate-structural element system; a) equilibrium of "connecting plate-element" system, 
b) equilibrium of structural element, c) equilibrium and virtual motion of connecting plate. 

bvU> results from geometric compatibility equations for the rigid body (i.e. connecting 
plate) motion. Thus, be~ and bvU> represent the kinematically admissible system. Since 
S(j) and a i are statically admissible, one can use the virtual work equation for rigid body: 

a 

2:: s(j)bv(j) + 2:: aibe~ = 0. 
j i=l 

On the other hand s<i>bvU> = 0, because the non-vanishing contact forces sU> are always 
orthogonal to bv(j). Thus 

(2.2) 

where 

cr = [a~,a2,a3]T, be'= [be~,be~,be~]T 
and superscript T denotes the operator of matrix transposition. 

It is clearly seen that be~ can be interpreted as components of a vector tangent to 
the clearance surface. This situation is explained in Fig. 2b. Thus, we can conclude that 
the generalized stress vector u is orthogonal to the clearance surface and, therefore, the 
following relation is valid: 

(2.3) U = 7/J • (8gj8£L) · 

In Eq. (2.3) (8gj8£L) is the clearance surface gradient vector, e£ denotes the vector 
of clearance strain, whereas g(£L) = 0 is the equation of the clearance surface. The 
clearance region is described by 

(2.4) 

and 7j; is a non-negative (due to unilateral constraints) stress multiplier that satisfies the 
relations 

(2.5) 
7j; ?:. 0 if g = 0 

7j; = 0 if g < 0, 

and g = 0, 

and also if g = 0 and g < 0, 

where the dot denQtes the differentiation with respect to time. 
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Relations (2.5) are equivalent to the conditions 

(2.6) '1/J • g = 0, '1/J • !J = 0. 

If the virtual motion requires the loss of the existing contacts, sU)bv(j) 2: 0, and then, 
according to Eq. (2.1), aT be' ~ 0. This case corresponds to the corners of the clearance 
surface. 

Non-vanishing generalized stresses can occur only if the corresponding generalized 
clearance strain point lies on the clearance surface. The uniqueness of the clearance 
strain state is guaranteed if the clearance region is strictly convex. Only in this case 
a given stress vector uniquely determines the clearance strain vector. Convexity of the 
clearance region essentially depends on the shapes and dimensions of the element holes. 
The non-convexity of clearance region appears, for example, in the particular case of one 
bolt and one hole of a non-convex shape. 

The problem of uniqueness of the clearance strain, discussed here, is identical with 
that of stress uniqueness in the theory of plasticity. It is known that the stress state 
uniqueness for a given strain rate field occurs only if the yield condition is strictly convex. 
If the yield condition is weakly convex (described by linear inequalities) and the strain 
rate vector is orthogonal to a flat portion of the limit surface, the stress state can not be 
uniquely determined. In the case of non-convex clearance region the clearance strains 
can be non-uniquely determined, in general. Furthermore, the non-convexity of clearance 
region leads to a much more complicated problem of non-convex analysis. 

It should be pointed out that the model of the slackened connection considered above 
has been used only in order to explain the mechanical meaning of the slackening of the 
system. The FEM-oriented formulation presented in the work permits us to describe more 
complicated systems, e.g. plates, shells and continuum systems. It requires, however, 
a suitable discretization of the system and methods . for the construction of clearance 
regions. 

3. Mathematical model of elastic-plastic-slackened systems 

3.1. Fundamental relations and their physical interpretation 

According to the assumption specified in Sec. 1., a given system consists of deformable 
(elastic-plastic) structural elements and ideal rigid connecting elements of very small di
mensions . . In the interior of each connecting element a certain point called "node" js 
distinguished, and the external load can be applied only at the nodes. In order to ~n
struct the mathematical model of the slackened systems we recall the well-known matrix 
description used by G. Maier and his co-workers (cf. [13-15]), widely applied in contem
porary mechanics. The complete system of relations which describes the mathematical 
model of elastic-plastic-slackened systems can be presented as follows: 

(3.1) 

1) Cu- £ = 0 

2) cr cr - p = o 

GENERAL RELATIONS 

geometric compatibility, 

equilibrium. 

STRAIN DECOMPOSffiON 

3) £ = £L + £E + £p. 
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LINEAR ELASTICITY 

PLASTICITY 

5) f = NT <J- H~ - k :::; 0 elastic region, 

6) tp = N;\ 

7) ;\ 2: 0 

8) ;\Tr = o 

9) ;\T(=O 

normality law, 

nonnegativity requirement, 

orthogonality condition, 

orthogonality condition. 

SLACKENING 

10) g = MT t:L -I :::; 0 clearance region, 

11) <J = MtiJ normality law, 

12) tV 2: 0 nonnegativity requirement, 

13) tVT g = 0 orthogonality condition, 

14) tV T g = 0 orthogonality condition. 

In Eqs. (3.1) <J and t: are supervectors that collect all the generalized stresses and 
strains, respectively, of all the structural elements; p and u denote the respective supervec
tors of generalized loads and generalized displacements of all the connecting elements; 
C is the geometric compatibility matrix that depends only on geometry and boundary 
conditions of all the structural elements. 

Equations (3.1)1 and (3.1)z are valid for any structures or solids that deform according 
to the geometrically linear theory. In particular, they hold also true for ideally rigid 
systems. It is important to mention that the geometric compatibility matrix C refers to 
the ideal structure without clearances, and the assumption of geometric stability of the 
ideal structure corresponds to the requirement 

(3.2) 

Since the problem is considered within the framework of small deformations, the total 
generalized strain E can be assumed as the sum of elastic E E, clearance t: L and plastic 
t:p components (see (3.1)3). The clearance and plastic components represent here the 
concentrated strains at the generalized clearance and plastic hinges. 

Matrix equation (3.1)4 expresses the essence of generalized Hooke's law, where Eisa 
strictly positive definite square and symmetric matrix of elasticity. So, the common elastic 
structures or solids are completely described by matrix equations (3.1)1 - (3.1)4 assuming 
t: = t:E and t:L = t:p = 0. 

The next five matrix formulae (3.1)5 - (3.1)9 represent additional relations necessary to 
account for the effects of plastic deformations. The yield condition is assumed to be piece
wise-linear in the form of a set of linear inequalities (3.1)5, where N is a rectangular matrix 
that collects all the external normals of the yield hyperpolyhedron of all the structural 
elements, H is a square matrix of linear plastic hardening, ;\ represents a vector of plastic 
strain multiplier rates and components of k denote the distances from the respective sides 
to the origin. The normality rule for the generalized plastic strain rates is described 
by (3.1)6. Algebraic equations (3.l)H and (3.1)9 represent the so-called orthogonality 
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conditions. 
Relations (3.1)1 - (3.1)9 for EL = 0 correspond to the well-knQwn formulation of linear 

elastic-plastic solids or structures, (G. MAIER, (14]) . 
The mathematical model of elastic-plastic-slackened systems is supplemented by five 

matrix relations: (3.1)10 - (3 .1)14. It is assumed that the clearance surface can be approxi
mated by a convex hyperpolyhedron, and the clearance region is described by Eq. (3.1) 11, 

where M is a rectangular matrix that collects all the external normals of the clearance 
hyperpolyhedron of all the elements, and I contains the distances from the individual sides 
of the clearance hyperpolyhedron to the origin. The normality rule for the generalized 
stresses is given by (3.1)11 , where$ is a supervector of the generalized stress multipliers. 
Orthogonality conditions (3.1)13 and (3.1)14 correspond to those previously derived for 
the individual structural element, (2.6). 

Mathematical model (3.1) describes a relatively wide class of materials and structures 
behaviour. In particular, relations (3.1)1 - (3.1)z and (3.1)10 - (3.1)14 for£.= c£, describe 
the problem of ideal locking systems. All the elastic systems with unilateral displacement 
boundary conditions are described by (3.1)1 - (3.1)4 and (3.1)10 - (3.1)14 assuming that 
£.p = 0. The formulation of rigid-plastic body consists of relations (3.1)1, (3.2)z and 
(3.1)5 - (3.1)9 together with cE = EL = 0. Rigid-plastic-slackened systems are expressed 
by (3.1)1 - (3.1)3 and (3.1)w- (3.1)t4, where EE = 0. 

Important relations for the whole structure can be obtained directly from the orthog
onality conditions. Condition (3.1)8 connected with the presence of plastic deformations 
gives 

(3.3) or 
-ATf = -AT(NT <J- H~- k] = <JT Ep- _,\TH~- -ATk = 0, 

<JT Ep = -ATH~ + -ATk. 

W. PRAGER [16] introduced the kinematic hardening concept that corresponds to the 
following definition of matrix H: 

(3.4) 

where h is a positive scalar multiplier of plastic hardfning. Assuming that ~(0) = 0, the 
plastic strain vector can be expressed as · 

t t 

Ep = f_ tp(t') dt' = N f 'A(t') dt' = N~, ~ = ~(t). 
() . () 

Using definition (3.4) and Eq. (3.1)6 we obtain 

(3.5) D T· -\Tk h·T p = (J £.p = 1\ + £.p£.p. 

The plastic dissipation is usually non-negatively defined, excluding incidentally large plastic 
deformations when ht~£.p < -.XTk < 0. In the case of ideal plasticity (H = 0) Eq. (3.5) 
becomes 

(3.6) 

The inequality sign results from the fact that k is always positive definite since the state 
of a .= 0 does not violate the yield condition. 

The second orthogonality condition applied to plastic deformations, Eq. (3.1)9, ex-
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presses the assumption of stable behaviour of the structure material, namely 

;\T( = ;\TNT iJ- ;\TH;\ = 0 
' (3.7) hence 

aT tp = ;\TH;\. 

If H 'is positive definite, the material behaves as a stable one. Note that W. Prager's plastic 
hardening rule leads to the stable behaviour of the material 

(3.8) iiT tp = ht~tp > 0, if Ep :f 0. 

In the ,case of slackened systems Eq. (3.1)13 is equivalent to the following 

(3.9) tVT g = crT £L - $TI = 0, 

hence 

(3.10) 

where W L represents the non-negative definite "clearance work", if I 2: 0. 
After differentiation of Eq. (3.9) with respect to time, and using Eq. (3.1)14, we obtain 

tj,T g = $T g = 0. Hence . 

(3.11) D£ = (JT EL = 0, 

and 

(3.12) 

In view of Eq. (3.11) we can conclude that the "clearance dissipation" always is equal to 
zero. . 

Finally, it should be mentioned that fundamental relations (3.1) enable us to describe 
arbitrary boundary conditions for particular structural elements. Any change of the type 
of structure affecting the degree of statical indeterminacy can be realized in the natural 
way by means of a proper choice of the components of the clearance modulae vector I. In 
particular, the case of I = 0 corresponds to the ideal structure with bilateral constraints 
at all connections. 

3.2. General properties of the model 

In order to recognize the general properties of the mathematical model we can use 
the linear equations which describe the elastic structure with imposed strains (distortions). 
The problem can be formulated by four matrix equations (3.1)1 - (3.1)4 • Starting from 
Eq. (3.1)z and using Eqs. (3.1)4 and (3.1)b we have 

(3.13) p = Ku- CTE£n, £n = £L + £p, K = CTEC, 

where £ D denotes the given distortion vector and K is the common stiffness matrix for 
linear elastic body without distortions. K is a strictly positive definite, square, symmetric 
matrix which includes the boundary conditions. From Eqs. (3.13) one immediately obtains 

(3.14) U = K- 1p + K- 1Pd = Ue + Ud· 

In Eq. (3.14) Ue denotes the vector of generalized displacements for the purely elastic 
body subjected to the external load p, and ud includes the influence of the presence of 
distortions. The additional term Pd represents a fictitious "distortion" load given by 

(3.15) Pd = CTE£n. 
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Making use of Eqs. (3.13), (3.1)3 and (3.1)4 we arrive at 

(3.16) 

In Eq. (3.16) cr e and cr d are stress vectors in purely elastic system and a corrective stress 
vector due to the presence of distortions, respectively. Z denotes a singular, symmetric, 
square and semi-negative definite matrix of distortion influence given by (cf. G . MAIER 

(14] and A. BORKOWSKI (17]) 

(3.17) Z = ECK-1CTE- E, 

with 

(3.18) ZC =: 0 and CTz =: 0. 

Relation (3.18)1 expresses the fact that any compatible distortions (i.e. En = Cud) do not 
induce additional stresses (i.e. cr d = ·o). On the other hand, from Eq. (3.18)z it follows 
that non-vanishing cr d is in equilibrium with a zero-value external load, namely 

(3 .19) cT cr d = o. 
Further properties of the mathematical model connected with effects of plasticity and 
slackening will be considered in next sections. 

4. Problems of analysis 

4.1. Problem of the original structure 

The most important requirement in the incremental analysis is to know the initial 
(unloaded) state of the system. Suppose that a given system is geometrically unstable due 
to a slackening. Now, a fundamental non-trivial problem arises: "find a non-zero stiffness 
structure that can carry prescribed external loads p0". The solution of this problem 
corresponds to the conversion of the mechanism into the so-called "original structure", 
depending on the given load vector p1, cf. A. GAW~CKI [18]. The original structure is 
completely determined by the generalized displacement vector u0 that describes positions 
of all the connecting elements. Usually, the original structure is statically determinate and 
does not depend on physical properties of the material. 

The complete system of relations describing the original structure problem consists of 
Eqs. (3.1)t, (3.1)2, (3.1)10 -(3.1)13 and can be presented in the form 

(4.1) 

1) Coo= ELo , 

2) CT <To = Po , 

3) <To = MtiJo, 

4) ~~ = M T £ LO - I ::; 0, 

5) Wo ~ 0, 
T 

6) Wo g = 0. 

Treating these relations as Kuhn- Tucker's conditions we can formulate the suitable dual 
extremum principles in the framework of linear programming, 

[F' = u~ Po] => max IMTCuo- I ::; 0, 

[F" = tiJ~I] => min ICTMtiJ0 - Po = 0, Wo ~ 0. 
(4.2) 

One has to be aware of the following possibilities which can be met when a linear pro
gramming method is applied: 

a) the solution is unique and corresponds to the finite value of the objective function, 
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b) the solution is non-unique but the corresponding magnitude of the objective function 
is unique and finite, 

c) the form of constraints does not allow to reach any finite value of the objective 
function, 

d) the solution does not exist due to the constraint contradiction. 
Cases c) and d) cannot occur, but appearance of the case b) is quite possible. The 

non-uniqueness of the solution may appear if a certain contour-line of the objective func
tion coincides with the constraint. It corresponds to the displacement non-uniqueness in 
the primary problem. In this case F' remains constant, whereas the difference between 
solutions Au0 is orthogonal to p0• Such a situation is observed when the clearance strain 
vector corresponds to flat parts of the clearance surface. Another possibility arises if, at 
particular nodes, Poi are equal to zero. Then, for any kinematically admissible Uoi, the 
product PoiUoi vanishes and does not affect the value of the objective function F'. The 
non-uniqueness of the stress multiplier vector Wo can be noted in the dual problem. There 
are two possibilities. The first one takes place if contact appears simultaneously at least 
in two different elements, and then the original structure is statically indeterminate. The 
second possibility can occur if the point of the clearance strain state lies at the vertex of 
the clearance hyperpolyhedron where the number of the sides is larger than the dimension 
of the stress space. Then the stress state is unique but it can be expressed by different 
vector Wo· 

After solving the original structure problem one can divide g., Wo and M into the 
active and passive parts: 

(4.3) 
. g.) = [ga, gp]T : 

Wo = [Wa, Wp]T, 

ga = 0, gp < 0, 

M = [Ma,Mp]· 

This observation will be utilized in further considerations. 
ExAMPLE I 
In order to illustrate the original structure problem and the stress state non-uniqueness, 

consider a slackened truss with longitudinal gaps at the end parts of the elements (Fig. 4a). 
The limit values of clearance strains are: 

L = [l}, It, li, ... , 16, It]T = [1, 2, 1, 0, 1, 0.5, 2, 1, 2, 2, 3.4, 2]T [mm]. 

The reference load vector is given by 

Po = [pt, P2, P3, P4]T = [1, 3, 1, -1 ]T [kN]. 

The solution of the primary problem is unique: 

Do = [~t, u2, u3, u4]T = [ -1, 1.5, 2, -2.8]T [mm]. 

The solution of the dual problem is not unique: 

a;, = ( -1.25, -3.75, 0, -1.25, -1.75, O]T (kN], 

" T a 0 = [ -1.25, -3.75, 0, 0, -0.25, 1.25] [kN], 

where 

ao = [8t, 82, 83, 84, 8s, 86]T, 
and the corresponding original structures are shown in Fig. 4a and Fig. 4b, respectively. 
The dashed lines indicate the elements of zero-value norm~ forces. 
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a 

b 

FIG. 4. Original structure problem for a slackened truss; a) geometry and load of the truss with 

1 • d' 1 b) • I II ong1tu ma gaps, non-umque stress states: u 0 , u0 • 

4.2. Elastic-slackened systems 

The mathematical model for elastic-slackened systems consists of relations (3.1)1-

(3.1)4 and (3.1)10-(3.1)14, where tp = 0. 
THEOREM 1. If the clearance region is convex, then the stress cr and the strain t are 

unique for a given displacement vector lL 

Proof 
If the displacement vector u is known, the total strains t can be determined directly 

from geometric equations (3.1)2, and on the basis of Hooke's law, one obtains 

(4.4) cr = E(t- ££). 

Assume now that there are two different stress states cr1 and cr2, associated with clearance 
strains ££1 and ££2 , respectively. Then the difference between cr1 and cr2 can be expressed 
as 

(4.5) 

The convexity of the clearance region yields 

( 4. 6) ( C1 1 - C1 2) T ( £ L 1 - £ L 2) ~ 0 · 

After substituting Eq. ( 4.5) into Eq. ( 4.6) we obtain 

(4.7) (t£1 - £L2)TE(tL1 - ££2)::; 0. 

Since E is_ strictly positive definite, the clearance strains are the same, i.e. t £ 1 = t £ 2 • 
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Thus, the elastic strain state as well as the stress state are also unique, i.e. £E1 = £E2 and 
<Jt = az. 

THEOREM 2. For a given external load vector p, the stress state a is uniquely determined 
if the clearance region is convex. The uniqueness of displacements u and clearance strains 
£ L is guaranteed if the clearance region is strictly convex. 

Proof 
Assume that p is in equilibrium with two different stress states <Tt and cr2• The 

convexity of clearance region yields ( cf. Eq. ( 4.6)): 

(<Tt- <Tz)T(£Lt- £L2) ~ 0. 

On the other hand 

(4.8) (<Tt- <1z)T(£L1 - £L2) = (£L1 - £L2)TZ(£L1 - £L2):::; 0, 

because Z is semi-negative definite. Thus 

(4.9) (crt- <Tz)T(£L1 - £L2 ) = 0. 

Using Eqs. (3.1)h (3.1)3 and (3.18), Eq. (4.9) may be rewritten in the form 

(4.10) (at- az)T(£L1 - £L2 ) = (<Tt- <Tz)T(Cut- £E1 - Cuz + £E2 ) 

-(<Tt- <1z)T(£E1 - £E2 ) = -(£Et- £EJTE(£Et- £E2) = 0, 

hence £ E
1 

= £ E
2 

and the stress state a appears to be unique. 
If the clearance region is strictly convex, then the uniqueness of a stress state implies 

the uniqueness of clearance strains and displacements. This statement is valid for the 
nodes with non-zero external loads. Otherwise, kinematically admissible clearance strains 
and displacements can occur. 

If the clearance region is weakly convex - as we have assumed in the model proposeq 
he.rein - the non-uniqueness of clearance strains can occur. In this case a difference 
between two clearanCe strain states corresponds to a certain displacement vector ~u that 
is kinematically admissible, 

(4.11) 

Such a situation is illustrated in Fig. 5. 

tL · ! u· 
j J 

--~--~~----~----
eLi 0 i 

FIG. 5. Geometric interpretation of non-uniqueness of clearance strain. 
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As was mentioned, the uniqueness of the stress state does not lead to the uniqueness 
of stress multipliers tfJ. For two different values of the clearance strains the following 
relations hold 

(4.12) 

The inequality signs result from the fact that tfJi ~ 0 and gi :::; 0 (i = 1, 2). 
Eqs. (3.1)10 and (3.1) 11 we obtain 

(4.13) 

Hence 

(4.14) 

and 

(4.15) 

t~Jf (gl - gz) = CJT ( £Lt - ££2) ~ 0, 
tfJJ (gl - gz) = CJT (£Lt - £L2) :::; 0. 

pT(u1- uz) = 0. 

Equation (4.14) can be rewritten in the form 

( 4.16) t~Jf (gl + 1) = tJJJ (gz + 1). 
Since t~Jf g1 = tJJJ g2 = 0, we obtain an equality 

(4.17) t~Jfl = tfJJI, 

Using 

expressing the fact that the stress multiplier vector tfJ has a non-unique representation at 
vertices of the clearance region boundary. . 

In view of Eqs. ( 4.14 ), ( 4.15) and ( 4.17) we can conclude that the difference between 
two admissible clearance strains does not affect the work done by external loads. In other 
words, the uniqueness of the clearance work is noted, independently of the non-unique 
representation of the stress multipliers. 

The mathematical model of elastic-slackened systems can be reduced to the form 

CTM\fJ - p = 0, 
(4.18) 

g = MT Cu - G$ - I :s; 0, 

together with the requirements 

(4.19) 

where 

(4.20) 

is a semi-positive definite square matrix of clearance compliance. Problem (4.18), (4.19) 
corresponds to the well-known mini-max formulation, ( cf. BORKOWSKI [1 ?D: 
(4.21) 

where u* and$* are the saddle-point coordinates, and 

(4.22) F(u, $) = !wTG$ + uTcTM$- UT p- WT' 
2 
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Using Legendre's transformation we arrive at the following extremum principles that 
correspond to dual quadratic programming problems: 

(4 23) F t ( ) 1 T T · · u, £E z£EE£E- u p:::} mm, 

subjected to the constrai{lts: MT (Cu- £E)- I ~ 0 and 

(4.24) F"($) = -~$TG$- $Tl:::;. max, 

subjected to the constraints: CTM$ - p = 0, $ 2: 0. 
The ·saddle point is a true solution. In this case the values of the objective functions 

are the same, i.e. F = F' = F". This fact can be used to derive the following relation: 

(4.25) pTu = WL +WE+ Ws 2:0, 

where 

(4.26) 

Thus, a "conventional" work of the external loads, pT u, is equal to the sum of the clear
ance work and two elastic energies: WE and W s. 

EXAMPLE II 
The meaning ~nd graphical interpretation of Eq. ( 4.25) are explained in an example of 

the three-bar slackened truss with a longitudinal gap in the bar number 3 (see Fig. 6a). The 
horizontal force P, (0 ~ P ~ 150 kN) applied at the truss node produces a displacement 
with horizontal component ~. Figure 6b illustrates the bi-linear elastic P - ~ relation as 
well as the conventional work decomposition into three parts W s, W L and WE . Note that 
the essentially nonlinear behaviour of the truss occurs in the range of small displacements, 
and therefore the application of geometrically linear theory is really justified. 

a 

~ 3m L 3m L 

¢95/3.5 : A=10cm2, J=105.5cm4 

£=205 GPa, 6y=300MPa 

b P{KN} 

50 

5.1 8.6 !J.[mm] 

FIG. 6. Conventional work decomposition for a three-bar truss; a) truss layout, gap in bar 3, 
b) P - Ll diagram. 

It should be pointed out that elastic-slackened systems behave always holonomically 
if the clearance surface is convex, and therefore the incremental analysis is not required. 
Moreover, it is impossible to describe the dual extremum principles using only increments 
of the state variables. The current non-negative components of the stress multiplier vector 
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be modified to the following form: 

1) Cilu = il£L + il£E + Lltp, 6) ga = Mr(£L + LltL) -t::; o, 
2) CT Lla = Llp, 7) (Wa + LltiJ~)T(ga + ~ga) = 0, 

(4.32) 3) Lla = Eil£E, 8) il£p = NailAa, 

4) MailWa = EiltE, 9) ilAa ~ 0, 

5) (tiJ + LltiJ)a ~ 0, 11) ~A~ (fa + Llfa) = 0. 

10) fa + Llfa = Nr (a+ ~cr) - Ha(Aa + ~Aa)- k :S 0, 
In Eqs. ( 4.32) the symbol a indicates the active parts of the particular matrices. 
The corresponding saddle function can be expressed as 

(4.33) F(LlAa, Llu, Wa + ~Wa) 

where 

(4.34) 

1 T 1 T TT . = ZilAa HailAa - Z(Wa + LltiJa) G(tiJa + LltiJa)- ilAa Na Ma(Wa + LltiJa) . 

+LluTCTMa(Wa + LltiJa) + ~A~f*- LluT p* + (Wa + LltiJa)T g*, 

f* = NrMatiJa = Nr a, 

p* = p + Llp, 

g* = GaWa = Mr £E. 

Note that f is concave with respect to (tiJ a + ~W a) and convex with respect to ilAa and 
Llu. Using Legendre's transformation, we arrive at 

F' = ~LlA~HailAa + ~(£E + ~£E)TE(£E + il£E) + ~A~f*- ~UT p* =}min, 

subjected to the constraints 

Mr(Cilu- NailAa - (£E +~£E)]+ g* :S 0, ilAa ~ 0, 

(4.35) and 

" 1 T 1 T F (LlAa, Wa + LltiJa) = -ZilAa Ha~Aa- Z(Wa + ~Wa) G(tiJa + LltfJa)+ 

(tiJ a + LltiJaa)T g* => max 

subjected to the constraints 

HailAa- NrMa(Wa + ~Wa) + f* ~ 0, CTMa(Wa + LltiJa)- p* = 0, 

(tiJ a + LltiJ a) ~ 0. 
(4.36) 

THEOREM 3. For a given external load increment Llp the co"esponding stress increment 
Lla is unique if the clearance region is convex. 

Proof 
Assume that Llp is in equilibrium with two different stress increments Lla1 and ilO"z. 

Then 

(4.37) 

or 

(4.38) 
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where 

~EDt = ~ELt + ~EPp ~ED2 = flEL2 + flEp2. 

Since Z is semi-negative definite, it follows from Eq. ( 4.38) 

(4.39) (flO't- flC1z)T(~ED1 - flED2) = (~ED1 - ~ED2)TZ(flEDt- flED2) ~ 0. 

Using Eq. (4.37), we obtain 

(4.40) (flO't - flO'z)T (~ED1 - flED2) = (~Ep1 - ~Ep2 )T (flO't - flO'z)+ 

((EL + ~EL1 - EL- flEL2)]T((C1 + flO't)- (0' + flO'z)] ~ 0. 

The former right-hand term is non-negative due to convexity of the yield condition, the 
latter term is also non-negative due to convexity of the clearance region. Thus we can 
conclude that 

or 

(4.41) (flO't - flcrz)T (~EDt - flED2) = (flO't - flcrz)T (Cfluz- flEEt - Cfluz + flEE2) 

= -(~O't- flO'z)T (flEE1 - flEE2) = -(flEE1 - flEE2)TE(flEE1 - flEE2) = 0. 

Since E is strictly positive definite, flEE1 = ~EE2 and ~0' 1 = flcr2• Thus, the stress in
crements are unique. Nevertheless, the increments of kinematical quantities can be non
uniquely determined. From Eq. (3.18), (4.39) and (4.41) we obtain 

(4.42) 

Equation ( 4.42) is satisfied if 

( 4.43) 

In general Cflu :f 0, namely: in the case of ideal plastic material (H = 0) ~E p can be non~ 
unique, and in the case of slackened systems flE L1 - ~E L2 -::f 0 due to the weak convexity 
of clearance region. Thus, we can conclude that the increments of kinematical quantities 
are unique only in the case when the material exhibits positive plastic hardening and the 
clearance region is strictly convex. 

4.4. Holonomic behaviour of elastic-plastic-slackened systems 

The holonomic behaviour of the system takes place when final states of the stress and 
strain do not depend on the deformation history. It means that the plastic unloading 
does not occur and, in the case of slackened system, convexity of the clearance region is 
additionally required. The holonomic behaviour is usually observed for the proportional 
simple loading. Mathematical model (3.1) can also describe the case of holonomic be
haviour if the rate-quantities are replaced by their final values. For the holonomic case 
the following dual extremum principles can be derived, A. GAW~CKI (19]: 

{
I 1T 1T T T} · F = ZA HA + "ZEEEEE +A k- u p :::} mm, 

( 4.44) subjected to the constraints 

M T ( Cu - NA - E E) - I ~ 0, A ~ 0, 
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and 

{ 
11 1 T 1 T T } F = - 2~ H~ - 2¢ G¢ - tV I =? max, 

( 4.45) subjected to the constraints 

H~ - NTM¢ + k ~ 0, CTM¢ - p = 0, tV ~ 0. 

The problem of uniqueness of the solution is similar to that considered in the incremental 
analysis: uniqueness of the stress and strain states is assured if the material exhibits 
positive plastic hardening and the clearance region is strictly convex. Otherwise, non
uniqueness of kinematical quantities can occur. 

4.5. Limit load problem 

It is known that the presence of clearance strongly influences the elastic strength 
of structures, A. GAW~CKI [20]. Therefore a fundamental question arises: "does the 
connection slackening affect the ultimate limit load?" 

The common limit load problem for the prescribed reference load vector p0 consists 
in the determination of a scalar load multiplier J.l and plastic displacement rate vector 
iJ describing the corresponding plastic flow mechanism. The limit load problem can be 
formulated by means of dual linear programming method as (BORKOWSKI [17]): 

(4.46) (F' = ~Tk] =? min I~~ 0, uT p0 = 1, 

(4.47) 

where Eqs. ( 4.46) and ( 4.47) correspond to the kinematical and statical theorem, respect
ively. 

In the case of slackened systems, made of the perfectly plastic material, the described 
above formulation should be somewhat modified. The mathematical model may then be 
written in the following form: 

1) cu = t, 7) ga = MrtL ~ o, 
2) CT C1 = J.lPo, 8) tV~ ga = 0, 

(4.48) 
3) t = EL + Ep, 9) tp = N;\, 

4) ·T 1 10) ;i. ~ 0, u Po= , 

5) C1 = MatVa, 11) f = NT <J- k ~ 0, 

6) tVa ~ 0, 12) ;\ T f = 0, 

where subscript a indicates the active submatrices determined on the basis of the original 
structure solution problem. It can be shown ( cf. GAW~CKI [21]) that the solution of system 
( 4.48) is equivalent to solutions of the following dual linear programming problems: 

(4.49) F' = ;\T k =? miniMr(Cu- N~) ~ 0, uT Po= 1, ~ ~ 0, 

( 4.50) 

Solutions of both problems allow us to determine the kinematical quantities (EL, tp, u) 
and statical ones ( CJ, J.l ). In general, these solutions are different from those obtained for 
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the respective structure without clearances, namely: the load multiplier appears to be less 
than that for the ideal structure and a different plastic flow mechanism develops. This 
situation corresponds to the so-called "sublimit" plastic flow mechanism. 

Assume now that the kinematical quantities are uniquely determined (it does not 
always occur!) and the uniform motion of the system is noted. Then, after integrating 
with respect to time, we obtain 

(4.51) 

u = uo + tu, 
£L = £L0 + i£.£, 

£p = £pn + U.p, 

where u0 and £ Lo are related to the ideal structure configuration and t denotes the "time" 
measured from the moment when the plastic flow has begun. A further problem consists 
in the determination of t = t*, when the flow mechanism stops due to the appearance of 
a new contact at a slackened connection. To do it, we utilize equations of contact at the 
passive sides of the clearance hyperpolyhedron 

(4.52) M'{;(£L0 +ttL)- lp = 0 

together with 

( 4.53) t ~ 0. 

Problem ( 4.52), ( 4.53) is extremely simple and consists in the determination of a small
est non-negative root of the linear equation system ( 4.52) with one unknown, t. For a 
given value of t = t* one can obtain a configuration of a new original structure which is 
described by 

(4 54) ' t* . ' t* . . U0 = Uo + U, £ Lo = £ Lo + £ L · 

The next step is to do a new matrix partition into the active and passive parts. Then the 
above procedure should be repeated again. 

Now the most important question arises: "when will the final limit load be reached?". 
Since the clearance region represents the bounded set, the clearance strain rate t L must 
eventually vanish. It means that the ultimate plastic flow mechanism is reached. After 
substituting EL = 0 into relations (4.48) we arrive at principles (4.46) and (4.47) that are 
valid for the ideal structure. Thus, we can formulate the following theorem: 

THEOREM 4. In the case of convex and bounded clearance region, the ultimate limit 
load and the corresponding plastic flow mechanism are identical with those obtained for the 
respective ideal structure (without clearances). 

It is worth to notice, however, that this theorem has been derived on the basis of 
geometrically linear theory. A more realistic approach should be based on the nonlinear 
theory of post-yield behaviour where geometry changes as well as dynamic effects are taken 
into account. This remark relates first of all to optimal plastic structures, where sometimes 
the geometry effects lead to the statement that the true initial plastic flow mechanism is 
quite different from that predicted by the geometrically linear theory (Z. MR6Z and 
A. GAW~CKI (22]). 

EXAMPLE III 
Consider the limit load problem for a frame with constrained rotations at hinges. The 

ideal frame (i.e. the frame without rotation clearances) corresponds to that considered 
by Borkowski (1985]. The slackened frame layout, loads and limit clearance modulae are 
presented in Fig. 7a. 
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FIG. 7. Limit load problem for a slackened frame; a) frame layout, loads, rotation constraints, 
b) "load multiplier-weighted displacement" diagram. 

The behaviour of the frame is very complicated and it will be discussed elsewhere. We 
will present only the diagram of load multiplier variations as a function of a "weighted" 
displacement fJ = E Pi ui (Fig. 7b ). Note that the frame deformations at the final yield 
point load are different from zero - as it is observed in common structures - but the 
maximum value of load multiplier as well as the plastic flow mechanism are identical with 
the known solution for the structure without clearances given by A. BORKOWSKI [17]. 

4.6. Ideal configuration and uniqueness or solution 

As was mentioned in Sec. 2.1, the ideal configuration can be arbitrarily chosen from all 
the kinematically admissible configurations which do not violate the clearance constraints. 
Thus, the following problem should be considered: "are the solutions invariant with 
respect to the choice of an ideal configuration?" 

To avoid the non-uniqueness due to a linear approximation of clearance constraints, 
we assume that the clearance region is strictly convex. Then the stress state uniquely 
determines the coordinates of the clearance vector. All the considerations- without any 
loss of generality - will be restricted to the elastic-slackened systems (i.e. £ = £ L + £E). 

It allows us to neglect other sources of non-uniqueness due to the presence of plastic 
deformations. 

Let us assume that calculations are carried out for the same elastic-slackened structure 
loaded by the same external load p but for two different ideal configurations. Since the 
theory is geometrically linear, the matrices C, E, K, Z in both the problems are the 
same. The difference between the ideal configurations is described by the kinematically 
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admissible displacement vector ~u0 such that 

( 4.55) C~uo = ~ELo· 

The stress vectors can be expressed as 

( 4.56) 
O't = ECK-1p + ZEL1 , 

0'2 = ECK-1p + ZEL2, 

383 

where 1 and 2 indicate the number of the solution. A geometric interpretation of stress 
and clearance strain states is presented in Fig_ 8a_ 

a b 
H
1

11 

1"2" 
H111 • "2" 

FtG. 8. Non-uniqueness of solution; a) non-unique solutiorL<s for clearance strains and stresses, 
b) uniqueness of solution with respect to stress state. 

From Eqs. (4.56) we obtain cr1 - 0'2 = Z(EL1 - EL2 ) and 

(4.57) (EL 1 - ELJT(O't- 0'2) = (EL1 - EL2)TZ(£L1 - EL2 ) :S 0. 

The inequality sign follows from the fact that Z is semi-negative definite. On the other 
hand, the convexity of clearance region gives 

( 4.58) ( £ L1 - £ L2 )T ( O't - 0'2) 2: 0. 

The comparison of Eqs. ( 4.57) and ( 4.58) leads to 

(4.59) (£L1 - £L2 )T(O't- 0'2) = 0. 

Since ELi = Cui - £E1 and O'i = EeEi (i = 1, 2), Eq. (4.59) is equivalent to 

(4.60) (£E
1 

- £E
2
)TE(£E1 - £E2 ) = 0. 

Thus, EE1 = £E2 = £E and the stress state is unique (i.e. 0' = EeE) because E is strictly 
positive definite. The uniqueness of the stress state means that the active points on 
the strictly convex clearance surface for both solutions are the same. This situation is 
explained in Fig. 8b. 

Using the geometric compatibility relation we obtain 

(4.61) C(ut - u2) = £L1 - £L2 = ~£L0 • 

So, the clearance strains are not uniquely determined, but the difference between these 
strains is kinematically admissible. Moreover, as we can see in Figs. 8a,b, this difference 
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corresponds to the mutual shifting of both ideal configurations. As det[CTC] -:f 0, from 
Eq. (4.61) it follows 

(4.62) 

Thus, we can state that the stress state is independent of the ideal configuration choice 
whereas the difference of final displacements is equal to the initial relative shifting of the 
ideal configurations. 

5. Selected problems of synthesis 

5.1. Elastic strength 

The concept of an elastic region in the external load space plays a significant role in 
the design philosophy of mechanical systems. Most important becomes the answer to the 
question whether the elastic region is convex or not. The convexity of this region occurs 
for the common linear elastic-plastic bodies. However, in the case of other constitutive 
laws and non-standard systems, there are no general theorems on this problem known to 
the author. 

Let us consider a body loaded by an external load p. According to Eq. (3.15) at a 
given load level, the stress vector can be decomposed into two parts, O"e and ad, where 
a e denotes the stress vector which would appear in the linear elastic reference system if it 
were subjected to the same load as the actual one. The remaining part ad is a corrective 
self-equilibrated stress vector due to a deviation from the linear elastic behaviour. 

The elastic region S can be described by the following matrix inequality 

(5.1) NTcr-k~O. 

In the case of the linear elastic system with imposed distortions tv, inequality (5.1) can 
be rewritten in the form 

(5.2) 

Let us assume that p' and p" are elements of the set S, i.e. 

(5.3) 
NT (ECK- 1p' + ZE.~)- k ~ 0, 

NT (ECK- 1p" + Zt'}y) - k ~ 0, 

where £0 and t'b denote distortions connected with p' and p", respectively. If p = 
f3p' + (1- f3)p", f3 E (0, 1), belongs to S, then Sis convex. From (5.3) one immediately 
obtains 

(5.4) 

Assume now that E. D is a steady plastic strain vector independent of p' and p". Then 
£0 = t'b = E.p and (5.4) takes the form 

(5.5) NT (ECK- 1p + Z£p) - k ~ 0. 

Thus, the elastic region is convex in this case. It corresponds, for example, to a linear 
elastic-plastic structure that shakes down over any load path p within the convex region 
s. 
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In the case of a linear elastic-plastic-slackened system with a steady plastic strain vector 
£p and clearance strain vectors £j,, £1, depending on loads p' and p", one obtains 

(5.6) NT {ECK- 1p + Z[£p + /3££ + (1- /3)£1]}- k ~ 0. 

In general, £L :f (3£i, + (1 - {3)£1, and therefore elastic region (5.6) can be non-convex, 
unless £L, £i, and £1 are kinematically admissible (i.e. Z£L = Z£i, = Z£1 = 0). Usually, 
the elastic-plastic-slackened system may behave elastically for load paths contained within 
the non-convex domain. 

The conclusion obtained here is also valid for any nonlinear elastic-plastic systems. 
In such cases the distortion strain vector does not satisfy the superposition principle, 
£v :f /3£'v + (1- (3)£'}y. Thus, we can formulate the following theorem [23]: 

THEOREM 5. The elastic region S for a linear elastic-plastic-slackened system and for a 
system made of a nonlinear elastic-plastic material can be non-convex. 

EXAMPLE IV 
In order to illustrate the problem let us consider an elastic-perfectly plastic portal 

frame with rotation constraints at the midspan hinge. Fig. 9a presents the geometry of 
the frame, loads and rotation constraints. The ultimate yield surface and the elastic surface 
are constructed assuming the constant, ideal !-cross section for all the frame elements and 
treating the normal and shear forces as reactions. It is clearly seen in Fig. 9b that the 
elastic surface is non-convex. Note that the shape and dimensions of the elastic region 
strongly depend on the values of limit rotations. 

The behaviour of the frame is far from that observed for the common elastic-plastic 
structures without clearances. This statement is illustrated diagrammatically by J.1, - 8 
relations plotted for two different load paths (Jt-load multiplier, 8-weighted displacement, 
cf. Example III). On load path I ( cf. Fig. 9b,c ), segments 0 A and AB correspond to 
nonlinear elastic behaviour of the frame and segment BC corresponds to elastic-plastic 
behaviour. At point C a limit load associated with the combined flow mechanism is 
achieved. Along load path II structural behaviour is quite different. On segment 0 D, 
linear elastic response is noted. At point D, a yield sub limit load for the three-hinged 
frame is reached, and a combined flow mechanism develops up to a displacement for 
which the mutual rotation at point 2 is equal to the limit rotation li. Then, the elastic
plastic behaviour and an increase in load multiplier fl is noted. At point F, the ultimate 
load is reached and plastic flow develops according to the sway mechanism. 

5.2. Geometric interpretation of load-displacement diagrams 

Consider the case of elastic-perfectly plastic-slackened systems which behave holonom
ically. In this case the dual extremum principles take the form: 

{F' = ~£kE£E + .\Tk- uT p} ::;. min, 
2 

(5.7) subjected to the constraints 

M T ( Cu - N.\ - £E) - I ~ 0, A 2:: 0, 

and 
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Ftc. 9. The three-hinged frame with rotation constraints at the midspan hinge; a) frame, load and 
rotation constraints, b) load paths, elastic and yield surfaces, c) J.L- 6 diagram for load path I, 

d) J.L - 6 diagram for load path II. 

(5.8), subjected to the constraints 

NTM$ + k ~ 0, CTM$ - p = 0, $ ~ 0. 

Assume that the load-displacement relation is presented in the form of diagram /1( b), 
where 11 denotes the load factor for a given reference load vector p0, i.e. p = J1Po, and 
b is the weighted displacement expressed by b = Pl u. Thus, the conventional work of 
external loads can be presented as follows 

(5.9) pT u = /1Pr u = 11b = We+ Wa. 

In Eq. (5.9) We and Wa are the total strain and stress works, respectively. To determine 
these works let us integrate the respective increments throughout the deformation process: 

u t t 

(5.10) We= jpTdu= jpTudt= JaT(tL+tE+tp)dt, 
() () () 

where t denotes the "time" measured from the initial natural state up to the final state. 
Since 

T· -0 
C1 f..L = ' 

T· "\.Tk T· TE· 1( TE ). 
C1 f..p =" , CJ f..E = f..E f..E = l f..E f..E ' 
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together with the initial conditions: A(O) = 0, EE(O) = 0, one obtains 

1 T T 
(5.11) W e- = 2EEEEE +A k =WE+ Wp. 

Here W E and W p represent the elastic and plastic strain works, respectively. 
Similarly, the complementary energy can be written as follows 

p t t 

(5.12) H' c- = JuTdp= JuTpdt= JaT(EE+EL+Ep)dt. 
() () () 

Equation (3.14) and the symmetry of E give 

iJT EL = tjJTI, (JT EE = ~(aTE-laf. 
2 

The last term of the integral expression requires some supplementary considerations. For 
holonomic behaviour, AT f = 0. Differentiation with respect to time leads to the result 

(5.14) j._Tr + ATf = 0. 

Since ;\Tr = 0 is always true (also for the holonomic behaviour) we conclude that 

(5 .'15) ATf = iJT Ep = 0. 

Finally, if I 2:: 0, a(O) = 0, tJ>(O) = 0, we obtain 

(5.16) 

where W s and W L are the elastic and clearance stress works, respectively. 
On the other hand the extremum principles at the saddle point (F' = F") provide 

the following relation: 

- T 1 T 1 T -1 T T 
(5.17) pu=

2
EEEEE +

2
aE a+Ak+tJ>k=Wc- +Wcr , 

which additionally confirms the results obtained herein. Note that the elastic stress and 
strain works are equal to each another, i.e. W E = W S · A geometrical interpretation of 
the total work decomposition is shown in Fig. lOa, where J1 * corresponds to the limit 
load multiplier JlY . In a particular case of common elastic-plastic structure (without 
clearances), W L = 0. Then the area below the J1 - o diagram consists of three parts: 
plastic work W p, "recovered" elastic strain work W E r and "hidden" (stored) elastic strain 
work W E h that remains in the body due to the presence of kinematically non-admissible 
plastic strains Ep. This case is illustrated in Fig. lOb. The interpretation presented here 
seems to be rather new. It could be derived by means of the concept of system slackening. 

5.3. Elastic strength maximization 

Let us consider in detail two identical elastic-plastic-slackened systems of different 
clearance moduli 11 and 12, which behave holonomically, subjected to the same load 
(Pt = P2 = p ). Assume also that, at a final state, the displacement vectors of both systems 
are the same, i.e. u1 = u2 = u. Then from Eq. (3.18) it follows 

(5.18) 
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a b 

J1 

FtG. 10. Conventional work decomposition; a) ela<>tic-pla<;tic slackened system, b) elastic-pla<;tic system. 

In view of Eq. (5.18) it is seen that <T1 = a 2 and e1 = ez if EL1 + Ep1 = EL2 + Ep2 + C~u. 
This result can be used to maximize the elastic strength of the slackened structure. 

According to Theorem 4 the ultimate limit load py does not depend on the presence of 
clearances and their distribution, so that the state where p1 = p2 = py and u1 = u2 = u 
can always be attained. Assume that the structure 1 is the common elastic-plastic one 
(h = 0) and its plastic strains at the yield point load are described by e p 1 • The condition 
for the structure to remain in a purely elastic state requires that the plastic strains should 
be equal to zero (ep

2 
= 0). Then, according to Eq. (5.18), eL2 = ep1 + C~u and the 

yield load may be attained elastically. 
Identical considerations can be carried out for any load vector p ~ py. Thus, the 

following theorem holds: 
THEOREM 6. Any holonomic elastic-perfectly plastic stntcture can be associated with an 

elastic-slackened structure, which for the same load exhibits the same stress, displacement and 
total strain states. 

It is proper to add that, in general, such an attractive solution is difficult to achieve 
in practice, especially in the case when a clearance interaction occurs. Nevertheless, 
some results have been already obtained in the optimization of trusses, beams and frames 
for non-interacting clearance strains ( cf. GAW~CKI [23]). In those cases the non-zero 
clearance moduli have been assumed to be identical with plastic strains of the reference 
structure without clearances. 

EXAMPLE V 
The optimization procedure which maximizes the elastic strength of the system will be 

illustrated for a truss shown in Fig. 11a. 
The cross-sections and the material (elastic-perfectly plastic with yield stress <Ty) for 

all the truss members are the same. To determine the unknown dimensions of longitudinal 
gaps in particular members ( cf. Example I) one has to solve the problem of the ideal truss 
without clearances. In this case the J-l- b diagram for ptfp2 = 0.65 is shown in Fig. 11b 
(dashed line). At the yield point load the plastic strains are: Ey4 = 9.74ay IE [m], 
Ey

5 
= -7.20ay IE [m], where E denotes Young's modulus. Thus, the clearances modu

lae have to be assumed as 

1 = [lt, l}, z;, t:;, ... ,l-;]T = [0000009.74007.2000]T(ayiE). 
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a 

~, 3m 

EAi =const 
p1/p2 =0.65 
t;=9 74 uy/£ 
1"5=7206y/E 

A' 3m A' 

b 

Optimal-elastic
plastic-slackened 

FtG. 11. Elastic strength maximization for a slackened truss; a) truss and loads, 
b) "load multiplier-weighted displacement" diagrams. 
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The optimal distribution of longitudinal gaps leads to pure elastic behaviour of the truss up 
to ultimate limit load and the J-L - 8 relation corresponds to a piece-wise linear curve (solid 
line in Fig. 11 b). Thus, the elastic strength of the slackened truss reaches its maximum. 
Note that J-L - 8 diagram consists of the same segments as in the case of the elastic
plastic truss without clearances, but they are located in the strictly inverted sequence. It is 
interesting that the response of optimal slackened structure exhibits a qualitative similarity 
to that of biomaterials which behave as locking-elastic systems. The behaviour of optimal 
systems consists in a consecutive incorporation of particular structural elements as the 
external load increases when it is really necessary. So, we can suppose that the nature 
prefers the "maximum reserve" or "minimum effort" principle. 

6. Final remarks 

Fundamental theoretical problems of quasi-static frictionless behaviour of slackened 
systems within the framework of geometrically linear theory have been presented in the 
paper. From both the theoretical and practical points of view the problems of slack
ened systems appear to be very rich and wide. It seems that only the idea of slackening 
enables us to construct a consistent theory of time-independent materials and systems. 
A convincing interpretation and better understanding of the energy division for de
formable systems can be made by applying this idea to elastic-plastic structures with
out clearances. Several important theorems on various problems and the corresponding 
extremum principles have been derived. Particular attention has been paid to problems 
of uniqueness of solution which are of practical significance for the numerical methods. 
It should be pointed out that the theorems and conclusions presented herein are also 
valid for many unilateral problems that can be met in structural and solid mechanics. The 
considerations correspond to problems of analysis and synthesis, including the opti
mization of clearance moduli with respect to the elastic strength maximization. It is 
interesting to note that the behaviour of optimally slackened structures appears to be 
very similar to that observed in biomechanical materials. The results obtained in the pa
per may already be applied in structural mechanics, fatigue strength and robotics. Some 
applications of the presented theory to problems in soil and damage mechanics can be 
anticipated. 
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However, many questions remain open in the fundamental theory of slackened systems. 
Such topics as shakedown, the evolution of clearance regions, and thermal, rheological 
and friction effects are particularly noteworthy. Furthermore, the stability, dynamics and 
all the geometrically nonlinear problems should be formulated and solved. 
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