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Second Stokes problem in the presence of a magnetic field 
in porous media: Brinkman model 

D. S. CHAUHAN and P. VYAS (JAIPUR) 

THE vtscous incomfressible flow, due to an infinite impermeable oscillating plate at the bottom of 
a porous medium o finite thickness is considered, in the presence of a uniform transverse magnetic 
field fixed relative to the fluid. In porous matrix Brinkman's equation has been used and, at the 
porous medium-fluid boundary. a modified set of boundary conditions are being applied. The effects 
of the permeability and the magnetic field on the distribution of fluid velocity are examined. 

l. Introduction 

THE EFFECTS of transverse magnetic field on the flow of an electrically conducting viscous 
fluid have been studied extensively in view of numerous applications to astrophysical, 
geophysical and engineering problems (CRAMER and PAr (1]). 

The second Stokes problem-the familiar oscillating plate problem in classical hydro­
dynamics was discussed by SCHLICIITING [2]. RUDRAIAH [3] discussed this problem in 
magnetohydrodynamics and compared his results with those of hydrodynamic results of 
PANTON [4], who gave the transient solution for the second Stokes problem and discussed 
its importance in many practical applications. TOKIS [5] further studied this oscillating 
plate problem subjected to uniform suction or injection in the presence of a uniform mag­
netic field relative to the fluid or to the plate, and compared the results to that of ONG 

and NICHOLLS [ 6] in the absence of suction or injection. MURTHY [7] studied the Stokes 
First and Second problems in porous medium. 

The object of the present paper is to study the flow in the porous medium due to 
an oscillating plate, in the presence of a magnetic field. In specifying our problem, we 
consider an incompressible electrically conducting viscous fluid contained in an infinite 
permeable bed of finite thickness h, and outside it in the semi-infinite region. The flow 
is due to an impermeable plate oscillating in its own plane at the bottom of the per­
meable bed, and a uniform transverse magnetic field fixed relative to the fluid is applied. 
We studied the coupled flow by dividing the whole flow field into two regions, (I) free 
fluid region, (0 ~ y < oo ), and (II) porous region (-h ~ y ~ 0). In a porous matrix 
Brinkman equation [8] is used, which allows for matching of the velocities and tractions 
at the boundary between the fluid and porous medium. Modelling the porous medium by 
the Brinkman equation enables us to avoid the difficulties by retaining the second-order 
viscous stress terms. However, then the effective viscosity of the Brinkman medium differs 
from that of the pure solvent. A modified set of boundary conditions is applied at the 
fluid-porous medium interface discussed by KIM and RUSSEL [9] in this light. We have 
examined the efl:'ect of the permeability and the magnetic field on the distributions of the 
fluid velocity. 
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2. Formulation and solutions 

The viscous incompressible electrically conducting flow is considered, generated in a 
semi-infinite mass of fluid, due to an infinite impermeable flat plate oscillating in its own 
plane, with a constant amplitude U0 and frequency w, at the bottom of an infinite porous 
medium of finite thickness h. The x-axis is taken along the fluid-porous medium interface, 
and· the y-axis is normal to it. Pressure is constant throughout the flow field. A uniform 
transverse magnetic field fixed relative to the fluid is applied. In practice the fluid motion 
is set up from rest and, for some time after the initiation of the motion, the fluid velocity 
gradually becomes a harmonic function of t, with the same frequency as the velocity of 
the impermeable bottom. This steady periodic state is considered here. 

The flow in the free fluid region (0 ~ y < oo) is governed by the equation of motion: 

(2.1) 
au a2u a 2 
£:) = v ::\ 2 - -B0 u, 
uf uy p 

and the flow in the porous region (-h ~ y ~ 0) is governed by the Brinkman equation: 

au TJ fJ2U a B2 

(2.2) - = --U +v-- - 11 U at k ay2 P ' 

where u and U are the velocities in the free fluid and porous region, respectively, vis the 
kinematic viscosity; TJ is the effective kinematic viscosity in the porous medium; k is the 
permeability of the porous medium; p is the fluid density, a is the electrical conductivity 
of the fluid, and B0 is the magnetic field. Here the permeability in the Darcy's resistance 
term is redifined appropriately. 

The boundary conditions are 

at y = -h, U = U0 coswt, 

(2.3) at y = 0, 
au au 

u = u, v 8y = TJ ay' 
as y ---+ oo, u ---. 0. 

The equations of motion and boundary conditions, after introducing the following 
non-dimensional quantities 

(2.4) 

u u=­
Uo ' 

- u 
U=­

Uo ' 
and dropping the bars, are 

(2.5) 

- y 
y = h' 

_ vt 
t = h2' 

h2 
w= -w, 

v 
- k 
k = h2' </>=~ and JvJ2 = a B,1h2 

v pv 

au a2u 2 
-=--lvlu at ay2 ' 
au = .!..( _ u + a2u) _ l\J2u 
at q; k ay2 , (2.6) 

(2.7) b.cs. at y = -1, U = coswt, 
~au __ au 

at y = 0, u = U, ~¥ 
ay {)y' 

as y ---. oo, u ---. 0. 

' 

http://rcin.org.pl



SECOND STOKES PROBLEM IN THE PRESENCE OF A MAGNETIC FIELD 351 

Let 

(2.8) u(y, t) = Re[f(y)eiwt] 

and 

(2.9) U(y, t) = Re[F(y)eiwt]. 

Substituting (2.8) in Eqs. (2.5)-(2.7) and solving under the corresponding boundary 
conditions, we get the solutions as 

(2.10) 

and 

u = e-a1y[dt cos(wt- f3tY)- d2 sin(wt- f3tY)] 

(2.11) U = e-a2y[d3cos(wt- f32Y)- d4sin(wt- ,82y)] 

where 

+ea2y[ d5 cos( wt + f32Y) - d6 sin( wt + f32Y)], 

al = G) 1/2 (M2 + .,j M• + w2)1f2, 

{31 = G) 1/\-J M• + w2- M2)1/2, 
a2= Gf2[(~M2+D +J,.--(~-M2_+_D_2 +-4J--w2r/2, 

!32 = Gf2[ (~M2 + rr + ~2w2_ (~M2 + D r2, 
Ct = (az + </>at), 

Cz = (f3z + </>{3t), 
c3 = (az- </>at), 

c4 = ({32 - </>f3t ), 
(2.12) cs = [ea2(ct cosf32- c2sinf32) + e-a2(c3cosf32 + c4sin{32)], 

c6 = [ea2(czcosf32 + Ct sin/32) + e-a2(c4cosf3z- c3sinf32)], 

dt = (d3 + ds), 

d2 = (d4 + d6), 
1 . 

d3 = d
1 

( Ct cs + c2c6), 

1 
d4 = d

1 
(c2c5 - c1c6), 

1 
ds = d

7 
( c3c5 + c4c6), 

1 
d6 = d

7 
( c4c5 - c3c6), 

d1 = (c; + c~). 
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PARTICUlAR CASES 

It is worthwhile to point out that the above solutions include the results of the previous 
investigations. 

(i) When Af ~ 0 and k ~ oo, 

u = U = e-<w 2) (y+l) cos wt-I 1/2 ( ( 'W)l/2 ) 
2 (y + 1) ' 

which is the solution of Stokes for the familiar oscillating plate problem, when the imper­
meable plate is oscillating at y = -1, in the free fluid. 

(ii) When m ~ 0, k ~ 0, u = U = 0. Since in the absence of permeability porous 
medium acts as impermeable layer, no oscillation will be transmitted to the fluid. 

(iii) When k ~ oo, 

u = U = e-a2(y+l)[cos(wt- f32(Y + 1)], 

where 

which is the solution of ONG and NICHOLLS [6] for the magnetic field fiXed to the fluid; 
the plate is oscillating at y = -1. 

3. Discussion 

The present note involves the unsteady interior flow in a porous medium and over 
its surface. The fluid motion is due to an impermeable plate oscillating harmonically at 
the bottom of porous medium, and a uniform transverse magnetic field fixed relative to 
the fluid is applied. The oscillating plate performs the corresponding oscillations in the 
fluid, in which the velocity decays as the distance from the plate increases. This velocity 
distribution is shown in Fig. 1, for different magnetic and permeability parameters and 
for wt = 0 and wt = 1r /2. The symmetrical curves for wt = 1r and wt = 37r /2 are not 
included. 

It is observed that, by the introduction of magnetic field, the disturbances are decaying 
more rapidly in comparison to the classical Stokes profiles. By increasing the strength of 
the applied magnetic field, the profiles decay more rapidly for the same values of the 
permeability parameter. However, the depth of penetration of the viscous wave increases 
as a result of the introduction of permeable material, since then flowability becomes low 
due to the effective Brinkman viscosity in the medium and large mass of fluid is dragged 
along with the oscillating impermeable plate. On the other hand, in absence of the 
permeable medium, the fluid moves easily, ignoring the plate except in a thin boundary 
layer. 

The results may find applications in the ground water hydrology, petroleum engineer­
ing, and in the study of variation of temperature in the surface layers of the ground, 
etc. 

http://rcin.org.pl



SECOND STOKES PROBLEM IN THE PRESENCE OF A MAGNETIC FIELD 

References 

t 
't 

1.0 

4· 
~' : f. '. u ·, 

. li i : .. 
I~ l : 
I~ i ·. 

: ~~ ~ .... 
I • : \ ·. 

:! :: '. ·· .. 
:! ·. \\ . 
:1 ..... \\ . \ \. 

········ K=O·S,M::O 
- K = 0.5 1 M:5.0 

·--·K = 0.5, M:0.5 

----Without permeable 
medium and Magnetic 
field 

I' ·. \\ '· · .. ,. u ~ 
\\ 0 · .. ' ·. --, -- -.. ~~ 1- - -- - -- - - - - - - - -- -

,~, :. u -P 

\': 
; .. ~ 

" \ ·.\ '-' .. ,, 

-1.0 

,, \•\ 
' ' .. \ \ . ', \: ·, ., ',~ \ '· 

·~; \ · .. 
... "':, . ·. 

:' ; :,.:-.., · ·. 
: . : .......... :.: · .. 
. I ....... . .::_.;.;',;,; .~ .. 

.... 

FIG. l. Velocity profiles for 4> = 0.4 and ~V = 8.0. 
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