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Profiles of stationary shock waves for hexagonal discrete 
velocity model with all triple collisions 

T. PLATKOWSKI (WARSZAWA) 

STATIONARY SHOCK WAVE profiles are investigated for the hexagonal discrete velocity model with binary 
and all triple collisions. The singular points ~orresponding to equilibrium limit states are studied 
analytically in the phase space of the relevant dynamical systems. The influence of triple collisions 
on various macroscopic quantities which characterize the shock profiles is investigated. The infinite 
Mach number case is treated as well as the shock profiles with general equilibrium distributions, for 
various directions of the shock propagation on the plane. Local density and entropy profiles in the 
shock transition wne are studied. The influence of a class of higher order, quadruple collisions is 
also discussed. 

1. Introduction 

RECENT APPLICATIONS of the lattice gases theory Frisch et al. [6, 7) to various fluid dy­
namic problems raised the question of including higher than binary collisions into the 
kinetic description of the flows and studying their influence on the macroscopic charac­
teristics of the flows, see e.g. BELLOMO, LONGO (1], CHAUVATet a/. (3], CORNILLE (4, 5] , 
GATIGNOL (8, 9], HARRIS (10), PLATKOWSKI (13]. 

The basic lattice model, which gives the correct Navier-Stokes equations in the hydro­
dynamic limit, is the hexagonal lattice gas model FRISCH et al. [6] . The discrete velocity 
counterpart is the plane six-velocity model (HARRIS [ 10]), which will be further called 
the hexagonal discrete model. In this model one can effectively study the influence of 
multiple collisions on the flows. 

One of the most studied applications is the determination of the shock wave profile. 
The problems of the existence of shock wave solutions to the true Boltzmann equation 
for arbitrary Mach number and of the determination of exact shock profiles belong to the 
most challenging open problems in the mathematical kinetic theory of gases. In general 
only approximate solutions are known, except for weak shock waves. 

On the other hand, in discrete kinetic theory, there are several particular models for 
which the exact shock wave solutions have been constructed, beginning with the Broadwell 
model (BROADWELL (2]). 

Shock wave profiles for the discrete model with triple collisions have been discussed 
in GATIGNOL [8], BELLOMO, LONGO [1 ], either by taking into account only a class of 
the triple collisions or, numerically, by studying shock formation from the Riemann type 
initial data. Exact solutions having the form of solitons were studied in CORNILLE [4] . 

. .In this paper we find explicitly the profiles of the stationary shock waves taking into 
account the binary and all classes of triple collisions in the hexagonal model for various 
directions of the shock propagation on the plane. We also discuss the influence of a class 
of quadruple collisions on the macroscopic characteristics of the flow. 

We consider two cases: the infinite Mach number shocks, and shocks joining general 
Maxwell equilibrium states. In the former case we find explicit exact solutions, by solving 

http://rcin.org.pl



314 T. PLATKOWSKl 

a boundary value problem for one ODE, whereas in the latter case we solve a system of 
two ODE with singular points corresponding to the equilibria ahead of and behind the 
shock. To find the solutions, we study the character of the singular points in the relevant 
two-dimensional phase space of the problem. 

We analyse the influence of triple collisions on the profiles of various macroscopic 
quantities in the shock transition zone, in particular on the density and entropy profiles, 
and on the existence of the stationary shock solutions for shocks propagating in different 
directions on the plane. 

Finally we discuss the influence of a class of quadruple collisions (those in which the 
total precollisional microscopic momentum of the system of colliding particles is nonzero) 
on the macroscopic profiles. 

In the following sections we define the model and formulate the shock problem, then 
we find shock solutions and discuss analytical and numerical results for various considered 
cases. 

2. Formulation of the problem 

We consider the hexagonal discrete model, i.e. the plane regular 6-velocity model gas 
of particles, which move on a plane xOy with the admissible velocity vectors 

(2.1) u; = c cos [(i- 1)i] ex+ csin [(i- l)i] ey, i = 1, ... , 6, 
where ex = (1 , 0), ey = (0, 1) are the unit vectors of the Cartesian coordinate system. 
We use the nondimensional variables, and normalize c = I Ui I = 1. Denote by 

(2.2) Ni = Ni(t,r), t E R+, T E R 2
, i = 1, ... ,6 

the distribution functions of the particles, joined to the velocity vector Ui. The Boltzmann 
evolution equation for the distribution Ni can be written as 

8Ni 8Ni 
(2.3) Tt + Ui 01' = Qi(N) , 

where Qi denotes the collision term for the particles i, i = 1, ... , 6. 
The model has been applied by several authors for various fluid dynamical and statis­

tical physics problems, see e.g. HARRIS (10, 11 ), GATIGNOL (8), LONGO, MONACO (12), 
BELLOMO, LONGO (1], CORNILLE (4). 

In this paper we consider the general collision operator Q i in which we take into 
account binary, all triple collisions and a class of nontrivial quadruple collisions. In the 
considered model there are three types of triple collisions. In the first one ("pseudotriple 
collisions"), one of the three colliding particles remains after the collision in its precolli­
sional state (i.e. it does not change the velocity). Collisions of this type thus increase the 
rate of the binary collisions. In the second type ("true triple collisions"), all colliding par­
ticles have different precollisional velocities and change their velocities after the collision. 
In the third type of collisions (for simplicity we call them "halftriple collisions"), two of 
the three colliding particles have the same precollisional velocities and all the particles 
change their velocities after the collision. 

As to the higher order collisions, we illustrate their influence by considering a nontrivial 
class of quadruple collisions, in which the total precollisional microscopic momentum of 
colliding particles is nonzero, and all particles change their velocities after the collision. 
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FIG. 1. Examples of binary and multiple collisions: a) binary, b) pseudotriple, 
c) true triple, d) halftriple, e) quadruple. 

315 

Examples of all types of collisions are visualized in Fig. 1, cf. also Appendix A for their 
contribution to the collision operators. 

Denote by a B, a p, ar, a H the cross-sections for the binary, pseudotriple, triple and 
halftriple collisions, respectively. The equation for N 1 reads 

8Nt 8Nt 
(2.4) 8t + Ut Br = <7B(N2N5 + N3N6- 2NtN4) 

+ap(Nt + N2 + N3 + N4 + Ns + N6)(N2Ns + N:.N6- 2NtN4) 

+ar(N2N4N6- NtN3Ns) + 2aH(N}N6- Nf N3) + 2aH(NtN2- NfNs) 

+aH(N1N4- NfNt) + aH(NtN4- NffNt) + Q~1 , 

where 'lti are the velocity vectors of the particles with the distribution functions Ni, r = 
( x, y) is the position vector in the a:Oy plane. The collision operator Q ~-~ takes into 
account collisions of higher orders, cf. Appendix A. Analogous equations for N2 , ••• , N6 

are also written in Appendix A. 

3. Shock wave solutions 

Our first objective is to investigate the existence of exact plane shock wave solutions. 
Then we study the corresponding density profiles and the dependence of the results on 
the direction of the shock wave propagation in the xOy plane. We shall consider shock 
waves in two directions 

(3.1) direction 1 : Ut, direction 2: u 1 + u6 • 

3.1. Shock wave solutions in "u t·direction" 

In this section we consider solutions of (2.3) in the form of a stationary plane shock 
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wave, which propagates in the direction of the u 1-vector, i.e. we look for the wave solutions 
in the form 

(3.2) Ni(t, r) = Ni(z), z = x + (3t, i = 1, ... , 6 

with the limiting values at z -+ ±oo corresponding to equilibrium states, see (3.7)-(3.9) 
below. With the symmetry relations 

(3.3) Ns(z) = N3(z), N6(z) = N2(z), Vz E R, 

the initial system of six equations (cf. (2.4), and Appendix A) can be reduced to four 
ODE 

(3.4) 

where 

(3.5) 

({3 + 1)N: = Q'B + QT + Qk + Qhf, 

({3 + O.S)N~ = -~Q'B- QT + Qk + Q~t' 
2 

({3- O.S)N; = -~Q8 + QT + Q~ + Q~/t, 
({3 - 1 )N ~ = Q B - Q T + Q~ + Q1I, 

Q8 = Q B + Q p = (1 + 2upN)(N2N3- N 1N4), 

QT = UT(N} N4 .- N} Nt), 
N = Nt + 2N2 + 2N3 + N4, 

and Qk, Qk, i = 1, ... , 4 are defined in Appendix A. N is the (local) density of the 
gas, comma denotes the space derivative d/dz, and we have normalized 2un to unity. 
The system (3.4) has two first integrals, corresponding to the mass conservation equation 
and the momentum conservation equation in the x-direction 

(3.6) 
({3 + l)Nt + (2{3 + 1)N2 + (2{3 - 1)N3 + ({3- 1)N4 = C., 

({3 + 1)N1 + ({3 + 0.5)N2 - ({3- O.S)N3- ({3- 1)N4 = C2 , Vz E R, 

where Ct, C2 are arbitraty constants. 
The shock wave problem consists in solving (3.4) for all z E R with the limit conditions 

at ±oo corresponding to equilibrium states (Maxwellians). 
We define the MaxwelliaQs as the 4-coordinate vectors m 1, ••• , n~4 such that for N 1 = 

n~., the rhs in (3.4) vanish. It i~ easy to see that this occurs if · 

(3.7) m2m3 = m1m4, m~n~4 = m. 1 m~, 
cf. the definitions of the multiple collision operators in Appendix A, with the symmetries 
(3.3). 

Let us denote 

(3.8) lim Ni(z)_ = m;, lim Ni(z) = m7, i = 1, ... , 4. 
z--oo z-+oo 

In the following we assume for simplicity that 

(3.9)1 lim Ni(z) = m, i = 1, ... , 4, 
z-+oo 

where m is a given parameter (uniform distribution at +oo). 
The conservation equations (3.6) written at ±oo give the Rankine-Hugoniot condi­

tions, which relate the limit equilibrium states at ±oo and the propagation speed (3. In 
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our case 

(/3 + 1)1n} + (2/3 + l)m2 + (2/3- l)m3 + (/3- 1)m4 = 6j3m, 

(/3 + 1 )m} + (/3 + 0.5)nt2 - (/3 - 0.5)1n3 - (/3 - 1 )m4 = 3/3, V z E R. 
(3.9)2 

Further analysis depends substantially on the choice of the limit equilibrium states. We 
distinguish two cases. 

3.1.1. Shock solutions for "cold" Maxwellian (Mach= +oo). In this section we consider the case 
in which in one of the limit equilibrium states, all particles travel in the ex direction. This 
case corresponds to the so-called infinite Mach number shock wave (BROADWELL (2]). 
We shall construct a unique (up to a translation in z, and normalization of m}) shock 
wave solution of (3.4) for the infinite Mach number ("cold" Maxwellian at minus infinity), 
with the limit Maxwellians at ± oo given by 

(3.10) 1n} = 1, 1ni = 0, i = 2,3,4, mt = m, i = 1,2,3,4. 

For simplicity we consider the case Q~.f = 0, i = 1, 2, 3, 4, i.e. solutions without quadruple 
collisions, but with all triple collisions taken into account. The quadruple collisions will 
be included in the next section, where we treat the general limit Maxwellian states. 

Construction of the solution 
From (3.9) and (3.10) we obtain m = 0.5, f3 = 0.5. It follows that (3.4)3 becomes an 

algebraic relation 

(3.11) 0 = -~Q8 + Qr + Qk, 

(cf. Appendix A), from which we calculate N3. For aH = 0 

(3.12) N 3 = 2~ (-B + Jnz- 4AC), 

where 

(3.13) 

(3.14) 

(3.15) 

A = 2(arN1 + 2apJV2), 

B = N 2 + 2apN2(N1 + 2N2 + N4)- 4apNtN4, 

C = -2arNfJV4- N 1N4- 2apNtN4(Nt + 2Nz + N4), 

(we choose the positive sign in (3.12) to meet the positivity requirements for the distribu­
tion functions). 

For aH f. 0, N3 is given by the roots of a polynomial of the third order, cf. Sec. 4 for 
a discussion of the uniqueness and positivity of the solution in that case. Then from the 
conservation equations (3.6) we calculate Nh N2, insert (3.12)-(3.15) into (3.4)4 and solve 
the autonomous ODE for N4• Once the solution is found, we obtain all the interesting 
macroscopic quantities of the flow, e.g. density, bulk velocity, entropy etc. Results will be 
discussed in Sec. 4. 

REMARK 
If we eliminate in (3.4) all the non-binary collisions except the pseudotriple ones, by 

setting ar = a H = aM = 0, then there are no shock solutions with the limit values 
(3.10). To see this, note that the system (3.4) has now three conservation equations (first 
integrals). Writing them at ±oo with the relevant limit conditions, one can verify that the 
resulting system of three algebraic equations has no solutions. We omit details. 
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3.1.2. Shock solutions for "warm" Maxwellians. In the case of the infinite Mach number shock 
considered above, the problem has been reduced to one ODE, due to the particular value 
of the shock propagation. In this section we consider the general equilibrium state in front 
of the shock ("warm Maxwellians"). Due to (3.7), the general equilibrium distribution 
function depends on two arbitrary parameters. For convenience we choose the following 
general equilibrium distribution function in front of the shock 

(3.16) 

where a and y are arbitrary parameters (note that the conditions (3.7) for equilibria are 
satisfied identically). We prove 

LEMMA 
There exists a unique solution of the Rankine-Hugoniot equations (3.9)., (3.9)2 for 

any given shock speed from the intervals 

(3.17) 

and the uniform Maxwellian state at plus infinity mt = 1n, i = 1, ... , 4. The parameters 
a and y are given by 

(3.18) 

(3.19) 

and are positive. 

Proof 

(1 - /3)(2/3 + 1) 
y=------

(1 + /3)(2/3- 1)' 

6/3my2 

a = ---------------------------------
(/3 + 1)y4 + (2/3 + 1)y3 + (2/3 - 1)y + f3- 1' 

From (3.9)., (3.9)z, (3.16) we obtain 

(3.20) (2{3- 1)({3 + 1)y4 + (/3- 1)(2{3 + 1)y3- (/3 + 1)(2/3 -1)y + (2/3 + 1)(1- /3) = 0. 

Due to the particular structure of the coefficients we find the 3-rd order root y = 1, 
leading to the same Maxwellians at =t=oo (i.e. no shock solution). The fourth root is given 
by (3.18). Expression for a is then obtained from (3.9)2. Positivity of y and a holds in 
range of the shock speed values defined by (3.17), as can be easily seen by inspection. 
Note the singularities at /3 = =t=O.S in (3.18), (3.16), which correspond to the "cold" 
Maxwellian case considered previously. 

Constnlction of the solution 
From the conservation equations (3.6) 1,2 we calculate 

(3.21 ) N _ bt + b2 N _ b1 + 2b2 
3 

- {3 - o.s' 4 
- 1 - /3 

with 

(3.22) 
b1 = C 1 - (/3 + 1)Nt - (2/3 + 1)N2, 

b2 = C2 - ({3 + 1)Nt - (/3 + O.S)N2, 

where Ci are uniquely determined from the Maxwellian at +oo; then we insert (3.21) 
into (3.4 )t ,2· 
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Now the shock problem can be formulated as follows. We look for the positive solu­
tions of the system of two ODE 

N' _ Q'B + QT + Q}J + Q~f 
.- )3+1 ' 

N' _ !Q'B + QT- Q1!- Qit 
2 - - j3 + 0.5 ' 

(3.23) 

with the limit conditions 

lim± Ni = Mi=f, i = 1,2, 
z- oo 

(3.24) 

where mt = m is a given positive number (scaling parameter), j3 is a given free par­
ameter, and m;, i = 1, 2 are defined by (3.16), (3.18), (3.19). Thus the problem has been 
reduced to the solution of the dynamical system (3.23) with the limit conditions (3.24). 

Note that on the phase plane (N., N2) the points (m1, m:Z) and (mt, m!) are sin­
gular points of the system (3.23). We look for an integral curve of (3.23) joining these 
points. 

An additional information on the solutions can be provided by analysis of the character 
of the singularities. Let N!', i = 1, ... , 4, be an arbitrary Maxwellian. Linearizing (3.23)1,2 

around N!': Ni = N!1 + ni, i = 1, ... , 4, we obtain the linear system 

(3.25) 

dn 1 
dz = bllnt + b12n2, 

dn2 
-l- = b21 n1 + b22n2, c,z 

where the coefficients bij depend on the actual Maxwellian N!1, i = 1, ... , 4, and on (fp, 

(fT, (1 H, (1M, )3, m. Their explicit values are given in Appendix B. 
The eigenvalues A1,2 of the matrix [bij] determine the character of singularities of the 

equilibria. Their values are essential for the shock curve existence problem as well as for 
numerical calculations. In the numerical calculations we start in the direction determined 
by the relevant eigenvalue of the saddle, cf. Sec. 4 for more details. 

Once N 1, N 2 are known, we calculate all the interesting macroscopic quantities. Re­
sults are discussed in Sec. 4. 

3.2. Shock wave solutions in u 1 + U()·direction 

In this section we consider solutions of (2.3) in the form of a stationary plane shock 
wave, which propagates in the direction of the u 1 + u6-vector, cf. (2.1). For simplicity of 
notation we turn the coordinate system so that this direction coincides with the x-axis, 
thus the particles u 1 now move in the direction 

(3.26) cos G) ex + sin ( 7;) ey. 

We look for solutions of (2.3) in the form 

(3.27) Ni(t, r) = Ni(z), z = x + j3t, i = 1, ... , 6 

with the symmetry relations 

(3.28) N6(z) = Nt(z), Ns(z) = N2(z), N4(z) = N3(z), \lz E R, 
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which reduce (2.3) to a system of three equations 

(3.29) (/3 + q)N: = Q, f3N; = -2Q, (/3- q)N; = Q, 

where 

Q = (0.5 + apN + aH(Nt + N3))(N]- N3Nt), N = 2(Nt + Nz + N3) 

is the local density of the gas,' = djdz, q = .f3/2 and we use the same normalization 
of the binary collision cross-section as in the previously considered case. 

Note that, due to (3.28), the problem actually has been reduced to that with the binary 
collisions, with the collision rate depending on the local state of the gas. The system (3.29) 
has two first integrals 

(3.30) 
2(/3 + q)Nt(z) + f3Nz(z) = C~, 

(/3 + q)Nt(z)- (/3- q)N3(z) = Cz, 'rlz E R. 

As in Section 3.1 we discuss two cases. 

1. Infinite Mach number shock 

The limit "cold" Maxwellian at minus infinity is defined by m} = 1 (normalization), 
m-; = 0, i = 2, 3, whereas at plus infinity we choose the uniform Maxwellian 1nt = m, 
i = 1, 2, 3. From the first integrals written at ±oo we obtain {3 = .;3j3, m, = 5/6. With 
(3.30), the system (3.29) is reduced to one equation 

' 1 2 (3.31) N 1 = -a-(0.5 + apN + aH(Nt + N3))(N2 - N3Nt), 
f.J+q 

with the limit conditions 

(3.32) lim N1(z) = 1n} = 1, lim N1(z) = mt = m, 
z--oo z-+oo 

where N2 , N3 are calculated from (3.30) with C 1 = 2(/3 + q), Cz = f3 + q. Solution of 
(3.31) gives the exact density profile N and other macroscopic quantities, see Sec. 4. 

2. General ("warm") Maxwellian at -oo, unifonn distribution at +oo 

The limit conditions for (3.31) are now 
(3.33) 

lim Ni(z) = nli, (m2f = m}m2, lim Ni(z) = n1-, i = 1, ... , 3. 
z--oo z-+oo 

The first integrals (3.30) written at =foo give two relations between the unknown constants. 
Thus, with the normalization m = 1 we obtain 

2{3(Ct - C2) =f VLl L1 = /32(Ct + C3)2- 4CtC3(4- 3/32), m2 = 8- 6f32 

_ Ct- f3m.z Ct- /3m2- 2Cz 
mt = 2(/3 + q) ' mJ" = 2(/3 - q) 

(3.34) 

where C1 = 3/3 + 4q, C2 = 4q, q = .;3j2, and the shock speed f3 is a free parameter. 
We solve again (3.31) with the proper limit conditions for N1• Results will be discussed 
in the next Section. 
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4. Results 
In the case of the infinite Mach number shock, we solve one ODE, (3.4)4 with Nt, N2 

defined by (3.15), and N3 defined by (3.12)-(3.16) for aH = 0, and by the roots of the 
relevant polynomial of the third order for a H -=f 0. In the calculations we checked that 
in all the cases considered .there is exactly one positive root of (3.12) for a H = 0, and of 
the relevant polynomial of the third order for a H -=f 0. 

In the case of "warm" Maxwellians, we solve (3.23)1•2 with the initial data Ni(O) = 
m; + €i or Ni(O) = m{ + €i, i = 1, 2, depending on the character of the singular points. 
The differential equations are solved numerically using the standard Runge-Kutta's IV -th 
order procedure. The initial direction of the integral curve is calculated from the analysis 
of the relevant sad~le singular point. The dista.nce between the initial starting point and 
the saddle was of order c = 10-8 and the results were quantitatively the same as if c was 
changed by several orders of magnitude.- The step of integration was of order 10-2• 

The shock curve is defined as the integral curve which joins the two singular points 
corresponding to the equilibria ahead and behind the shock. Once the shock curve has 
been found, we calculate all the interesting macroscopic characteristics of the flow. In 
particular we defin~ local bulk velocity, and local entropy, respectively, by 

1 6 6 

(4.1) U= N~Niui, E=-L:NilnNi, 
~=1 i=l 

where N = L~=t Ni is the local density of the gas. 
Below we discuss the results for various considered cases. The relevant macroscopic 

quantities are normalized so that their equilibrium values in front and behind the shock 
are respectively 0 and 1. In Subsecs. 1, 2, 3 we discuss the profiles with binary and triple 
collisions, in Subsec. 4 we discuss the influence of higher order collisions. 

4.1. Infinite Mach number shock, Ui direction (Sec. 3.1.1.) 

As expected from the considerations of the previous Section, the shock density profiles 
depend heavily on the numerical values of the triple collision cross-sections and become 
infinitely thick for at + a1.I ---+ 0 (i.e. there is no infinite Mach number shock in this 
direction, cf. Remark in Sec. 2. For increasing values of the triple collision cross-sections, 
the shock thickness decreases; the triple collisions speed up the process of equilibration. 
We note, however, that the influence of the various types of triple collisions on the density 
shock structure is different, cf. Fig. 2. 

In Fig. 2 we plotted infinite Mach number shock profiles for different values of the 
cross-section for triple collisions. The steepest profile corresponds to the largest consid­
ered values, i.e. lo-t, cf. the curve A, the opposite case corresponds to all the cross­
sections equal to 10-2, cf. curve B, the long relaxation tail due to the slower energy 
exchange through triple collisions. 

In order to compare the influence of the various types of triple collisions, we also 
plotted the density profiles in the cases in which one of the cross-sections is by two orders 
of magnitude smaller than the two others, cf. the curve C, D, E. Taking A as a reference 
profile, we note that the absence of halftriple collisions changes this profile more than 
the absence of pseudotriple ones, as can be seen by comparison of the curves C, E. The 
absence of true triple collisions does not cause any pronounced changes in the profiles, 
cf. the curves A, D. 
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! 1/1· 
~ :i' 

0.5 fl 
:,1 

li 
)'I 

a 10.0 

A up= 0.1, fJr"'0.1, 6~==0.1 

B ............... - upca01, u7 =a01, 6~==0.01 

C -------- 6p=0.1, ur=-0.1, 6~=0.001 

D ·-·-·- up""0.1, 6r=0.001, 6~=0.1 

E ---- up==aoo1, ur==0.1, u~=0.1 

20.0 
Position 

30.0 40.0 

FtG. 2. Shock density profiles, , cold" Maxwellian, ex-direction. 

We also note an asymmetry of the considered density profiles with respect to the 
"classical" hyperbolic tangent profiles. The asymmetry becomes more pronounced for 
decreasing values of the cross-sections. 

1.5 

0 8.0 16.0 

A op=at, 6r=0.1 

8 ................ 6p=0.1, 6r= 0.01 

C ------- up=0.01; 6r=0.1 

D ·-·-- Op= 0.01, o7 =0.001 

E ---- 6p=0.001, 6r=0.1 

24.0 32.0 
Position 

FtG. 3. Shock density profiles, ,cold" Maxwellian, u H = 0, ex-direction. 

40.0 
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In Fig. 3 we discuss for comparison the case without halftriple collisions (a H = 0). 
Note the larger relaxation tails as compared to the previous case with the halftriple colli­
sions present. In particular, for ap = 0.1, ay = 0.01 (case B) we obtain a long relaxation 
tail on the density profile, resulting from the smaller collision rate for true triple collisions; 
more collisions are needed to reach equilibrium than in the "reference case" a p = 0.1, 
ay = 0.1. 

For comparison we also plotted in Fig. 3 the shock profiles for ap = 0.01, ay = 0.1, 
and a p = 0.001, ay = 0.1, cf. the curves C, E. The absence of true triple collisions 
results in longer relaxation tails than the absence of pseudotriple ones. 

1.5 

0.5 

0 10.0 

A op=0.1, 6r=0.1, 614 =0.1 

8 ·················· 6p =0.01, 6r=0.01, 614=0.01 

C ------ 6p=0.01, 6r=D.01, o14=0 

D ·-·-· 6p=0.001, 6r=0.001, 614=0.001 

[ ---- 6p=0.005, 6r=0.005, 614=0.005 

20.0 
Position 

·---·--· 
--·------· __... 

30.0 

Ftc. 4. Entropy profiles in the shock, ,.cold .. Maxwellian, ex -direction. 

Another interesting quantity is the local entropy, cf. (4.1). Its changes in the shock 
zone are shown in Fig. 4 for specific values of the collision cross-sections. We note several 
interesting features of the profiles: entropy overshoot for "large" (10- 1) values of the 
cross-sections, cf. the curve A, and an undershoot accompanied by a long equilibration 
tail for all the cross-sections equal to (10-3), cf. the curve D. Other intermediate values 
of the cross-sections also lead to "nonstandard" profiles, the curves B , E, cf. also (14]. 

4.2. Shocks for "warm" Maxwellians, U.t-direction (Sec. 3.1.2) 

In this case numerical results depend not only on the cross-sections for the triple 
collisions, but also on the shock speed (3, as will be discussed below. 

In Fig. 5 we plot shock profiles for (3 = 0.55 for various cross-sections. We note similar 
phenomena as in the case of the infinite Mach number. Taking the case without the triple 
collisions as the reference one, cf. the curve A, we note that the profiles become steeper 
for increasing values of the cross-sections. A small "amount" of the triple collisions results 
in appearance of the relaxation tail, cf. curve B . Comparison of the curves C and D shows 

http://rcin.org.pl



324 

1.5 
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{3=0.55 

A op=O, or=O, oH=O 

8 ···············-· 6p=0.0001, or=00001, uH=0.0001 

C ------- 6p=001, 6r=0.01, uH=O.OODDD1 

D ·-·-·- 6p=001, 6r=0.01, 6H==001 

E ----

20.0 
Position 

30.0 40.0 

FIG. 5. Shock density profiles, ,warm" Maxwellian, (3 = 0.55, ex-direction. 

the influence of halftriple collisions on the equilibration speed; their presence diminishes 
the relaxation tails. The steepest considered profiles correspond to all cross-sections equal 
to 10- 1. 

As expected, the shock thickness depends heavily on the shock speed, and for {3 = 
VZ/2 (sound speed) it becomes infinite. 

In Fig. 6 we compare the density profiles for the case in which only one type of the 
triple collisions is present. For simplicity we assume that the relevant cross-sections have 
the same value 0.1. The shock speed is f3 = 0.68. Figure 6 shows that the presence of 
the pseudotriple collisions influence the reference binary collision profile, cf. the curve 
A, more than the halftriple ones, the halftriple-more than the true triple ones. 

In Fig. 7 we show the influence of different types of collisions for {3 = 0.52. Similar 
phenomena were found for other values of the cross-sections and the propagation speeds . . 

4.3. Shock solutions for tt 1 + -u,-direction (Sec. 3.2) 

In general the results are similar to those for the case with only binary collisions. The 
main difference is that the total collision cross-section depends now on the local state of 
gas. 

In this case the density profiles depend on the cross-sections a p, a H. Increasing 
these parameters, we obtain steeper shock profiles due to faster energy exchange inside 
the shock, as in the previously considered cases. The shock thickness is smaller than that 
for the u 1-direction. 

The profiles being steeper for larger values of the cross-sections, the dependence on 
the cross-sections js not so big as for the previously considered u 1-dicretiol), and the 
relaxation tails are less pronounced. 
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FIG. 6. Shock density profiles, ,warm" Maxwellian, (3 = 0.68, ex-direction. 
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FIG. 7. Shock density profiles, ,warm" Maxwellian, (3 = 0.52, ex-direction. 

325 

As in the pure binary collisions case, we also found non-monotonic behaviour of the 
local entropy profiles, cf. CORNILLE [4], PLATKOWSKI [14]. All these phenomena were 
found in the case of the "warm" Maxwellians as well as for the infinite Mach number. 
We omit the details. 
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4.4. Influence of quadruple collisions on the shock solutions; example 

As an example of the changes which occur if Wtf take into account higher order col­
lisions we considered the influence of a class of quadruple collisions in which the total 
precollisional microscopic momentum of the system of the colliding particles is nonzero, 
and all particles change their postcollisional velocities, cf. Fig. 1. The corresponding col­
lision operators are defined in Appendix A. Calculations indicate that the influence of 
these collisions on the shock profiles with binary and triple collisions is in general less 
pronounced than the influence of the triple collisions on the profiles in which only the 
binary collisions were taken into account. One can similarly include other classes of 
quadruple and higher order collisions. 

5. Conclusions 

In this paper we solved the shock wave problem for the hexagonal six-velocity model 
with binary and all triple collisions. We also investigated the influence of a class of 
quadruple collisions on the shock profiles for different values of the relevant cross-sections. 
In the considered model, there are several interesting features of the shock solutions, 
which we summarize here. 

1. Nonsymmetrical density profiles. 
2. Long equilibration tails for "small amount" of the triple collisions. 
3. Different impacts of various classes of multiple collisions on the structure of the 

shock wave profiles. 
4. Dependence of the results (e.g. of the shock thickness) on the direction of the 

shock propagation on the plane. 
We note that the relaxation tails which appear if the triple collisions are taken into 

account, are similar to those which appear in other physically interesting cases of the 
shock profiles for the polyatomic gases, and for the mixtures of gases with very different 
molecular masses (disparate gas mixtures). In the former case the tails result from the 
difficult transfer of energy between translational and internal degrees of freedom, . while 
in the latter case they result from the slow energy transfer in the collisions between the 
particles of different gases. 

In the present model the possible explanation comes from the number of the collision 
invariants for the collision operator with binary collisions only (three linearly independent 
collision invariants), and that with the triple collisions taken into account (two collision 
invariants, corresponding to the conservation of mass and energy). The additional (spu­
rious) collision invariant nullifies the binary collision operator, but not the sum of the 
binary and triple collision operators, see e.g. GATIGNOL [8, 9]. The terms which remain 
on the rhs can be interpreted as the source terms for the individual density distribution 
functions, similarly as the terms coming from the cross-collisions in the equations for the 
macroscopic variables describing the individual gas in the mixture of different gases. 

Moreover, the Maxwellian distribution functions for the binary collision operator are 
different from those which take into account the binary and higher order collisions, cf. 
the expression (3.7) in the text. For small triple collision cross-sections the steep part of 
the profile corresponds to the binary collisions only, with the relevant Rankine-Hugoniot 
conditions, whereas the ultimate equilibrium state on the other side of the shock imposes 
the further relaxation, with the rate depending on the triple and higher order collision 
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cross-sections. If their values are comparable to the binary collision cross-section, both 
types of collisions equally influence the profile in the whole transition zone. The pro­
files become steeper due to the faster energy exchange, and the relaxation tails are not 
present. 

The confirmation of such a point of view has been recently found by studying the family 
of models in which the number of the collision invariants corresponds to the number of 
the physical conservation laws of mass, momentum and energy, and the multiple collisions 
do not change the Maxwellian states CORNILLE, PLATKOWSKI (5], PLATKOWSKI (15]. It 
turns out that for such models the relaxation tails do not exist. 

The results obtained in this paper also indicate that quantitative results for the flows 
described by models with higher order collisions may be rather sensitive to the actual 
values of the relevant collision cross-sections in the highly nonequilibrium regimes, and 
one must be careful in modelling the relevant collision terms. 

One can also consider shock waves which propagate in any direction in the xOy plane. 
In the general case, there exist three nontrivial conservation equations, and the initial sys­
tem of six differential equations can be reduced to three autonomous equations ODE. The 
problem is then reduced to finding an integral curve of this system in a three-dimensional 
phase space, which joins two singular points, corresponding to equilibrium states in front 
and behind the shock. Our choice of the directions of the shock propagation, ~ogether 
with appropriate symmetry conditions, reduced the dimension of the problem by at least 
one, and provided a way to a more systematic analysis of the problem in the relevant 
phase space. 

Appendix A 

Below we give the evolution equations (2.4) for the remaining distribution functions 
of the hexagonal model with the binary and the higher order collisions. 

oNz 8Nz 
(A.l) oT + ttza:;:- = (JB(NtN4 + N3N6- 2NzNs) 

+(JpN(NtN4 + N3N6- 2N2Ns) + (JT(-N2N4N6 + NtN3Ns) 

· +2(JH(-NiN6 + NfN3) + (JH(-NtNz + NfNs) 

+2(JH(-NiN4 + N}Nt) + (JH(N}Ns- NfNz) + Qit, 
oN3 oN3 

(A.2) at+ u3 or = (JB(NzNs + NtN4- 2N3N6) 

+(JpN(fVzNs + NtN4- 2N3N6) + (JT(NzN4N6- NtN3Ns) 

+(JH(NiN6""""" NfN3) + 2(JH(NfNz- N}Ns) 

+2(JH(Ni_N4- N}Nt) + (JH(NfN6- NfN3) + Qit, 
oN4 8N4 

(A.3) ot + u4 or = (JB(NzNs + N3N6- 2N1N4) 

+(JpN(NzNs + N3N6- 2NtN4) + (JT(-N2N4N6 + NtN3Ns) 
.., 2 2 2 +2(JH(N)Ns- N4Nz) + 2(JH(N5 N3- N4N6) 

+(JH(-Ni_N4 + N}Nt) + (JH(-NtN4 + NfNt) + Q~, 
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where N = N1 + N2 + N3 + N4 + N5 + N6, Q~1 take into account the collisions of 
the higher order. Analogous equations for N 5, Nli are omitted due to the considered 
symmetries. We give the analytical structure of Q ~-~ for the class of quadruple collisions, 
for which the total precollisional microscopic momentum of the system · of the colliding 
particles is nonzero, and all particles change their postcollisional velocities, see Fig. 1. 

( A.4) Q k = 2A - 3B - D + 2F, Qit = - 3A + 2B + 2C - E, 

(A.S) Q~=2A-3C+2D-F, Q11 =-B+2C-3D+2E, 

(A.6) Qit =-A+ 2D- 3E + 2F, Qlr = 2B- C + 2E - -3F, 

where 

(A.7) 

(A.B) 

(A.9) 

A= UM(NiNs- NtNf), 

c = UM(NjN6- NfNf), 

E = UM(NfN2- NfNl) = c, 

B = UM(Nf N4- NfNl), 

D = UM(N]Nt- NfNff), 

F = UM(NlN3- NfNff) =A. 

With symmetries (3.3), the halftriple collision operators in (3.4), (3.11) in the main text 
are defined by 

(A.10) 

(A.l1) 

where 

Qk = 2H -4G, 

Qk = 2H -G-I, 

Q}J = -2H + 3G +I, 

Qif = -2H +4I, . 

(A.12) G = UH(NfN3- Ni), H = UH(NfN4- NfNt), I= UH(Nj- NfN2)· 

Similar simplifications occur for Q~, i = 1, ... , 4. 

Appendix B 

Coefficients of the matrix of the linearized system (3.25) are 

bu = fn + !Bell + !t4eu, 
b12 = ft2 + /13e12 + !14e22, 
b21 = ht + h3e11 + h4e2h 

(B.1) 

b22 = h2 + h3e12 + h4e22, 

where 

2 /3-1 
en = D (/32 - 1), e12 = ----n-(3/3 + 1.5), 

(B.2) 
-/3 + 1 2 

e21 = D (3/3 - 1.5), 

1 
e22 = - D [ (2/32 

- 1 )(/3 + 0.5) + (2/3 + 1 )(/3 - 0.5)], 

D = (/3 ·- 1)(0.5 - /3), 

(B.3) 
!{-

! - J 
tj - /3 + 1' 

Jr 
hi = /3 + ~.5' j = 1' ... ' 4, 
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and 

/{1 = -N4oS- CJrN3oN3o + CJH( -8NwN3o- 2Nlt,), 

/{2 = N3oS + 2CJTlV2oN4(, + CJH(12N~, + 4N2oN4o), 

/{3 = N2oS- 2CJTNwN3o + CJH( -4NwN3o), 

./{4 = -NwS + 2CJTN2oN2o + 2CJHN~,, 
, N4oS 2 

(B.4) / 21 = CJTN3oN3o + -
2

- + C1H(6NwN3o + 2N30), 

f ' N3oS 2 2 
22 = -2CJTN2oN4(,- -

2
- + CJH(-9N20 - 4N2oN4(,- N20), 

f ' N2oS 2 2 
23 = 2CJTNwN3o- -

2
- + C1H(3N10 + 4NtoN3o + 3N30), 

f ' NwS 2 24 = -(JTN2oN2o + -
2

- + CJH(2N20 - N2oN4(,), 

(B.S) S = 1 + 2CJpN°, N° = Nw + ... N61, 
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where N° is the total density of the equilibrium state, and for simplicity the formulas are 
reported for the case without the quadruple collisions. 
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