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Dynamic stress intensity factors around a rectangular crack 
in an elastic layer sandwiched between two elastic half-spaces · 

S. ITOU (YOKOHAMA) 

TRANSIENT dynamic stresses around a rectangular crack in an infinite elastic layer sandwiched between 
two elastic half-spaces are determined. The rectangular crack is situated at the central plane of the 
layer, and an internal pressure is applied suddenly to its surfaces. Aprlication of the Laplace and 
Fourier transforms reduces the problem to the solution of a pair of dua integral equations. To solve 
these equations, the Laplace transformed crack surface displacement is expanded m a double series 
of functions which are zero outside the crack. The unknown coefficients occurring in that series are 
solved with the aid of the Schmidt method. Numerical calculations are carried out for the dynamic 
stress intensity factors. 

1. Introduction 

COMPOSITE MATERIALS, such as glass fiber reinforced plastics and stainless steel fiber 
reinforced aluminum, have been widely used in designing the various members of machines 
or structures because of their many superior qualities. If we find a crack in the fiber or in 
the matrix, we must judge carefully whether the stress intensity factors happen to exceed 
the fracture toughness value of the material or not. For this purpose, it is one of the 
significant matters to reveal the stress intensity factors for a crack in layered media. 

Many problems with regard to a crack in the composite materials are solved by Sih 
and his coauthors. They investigated not only the static problems but also the dynamic 
ones, and these works are presented in a book by SIH and CHEN [1]. In the same book, 
the past and present studies concerned with the cracked composite materials have been 
also reviewed. 

As pointed by KASSIR [2], analytical solutions have been developed to treat basic 
geometries like those of the circular, elliptical and half-plane cracks. To overcome this 
point, Kassir studied the three-dimensional elastostatic problems of a rectangular crack 
embedded in an infinite elastic medium [2, 3]. He employed two-dimensional Fourier 
transforms and reduced the mixed boundary value conditions on the crack to the solution 
of a Fredholm integral equation of the second kind. By a somewhat different approach, 
the present author studied the dynamic problems of the rectangular crack(s) [4, 5, 6]. 

If an embedded crack is considered in the composite materials, we usually try to 
replace it by the penny-shaped crack and we determine the approximate values of the 
stress intensity factors. If the shape of the crack is rectangular rather than circular, the 
penny-shaped crack approach fails to be reasonable. In this case, the solutions of the 
stress intensity factors for a rectangular crack are needed. 

In the present paper, the transient dynamic stress filed around a rectangular crack in 
an infinite elastic layer sandwiched between two elastic half-spaces is considered. The 
corresponding two-dimensional problem has been solved by SIH and CHEN (7]. The crack 
is placed in the mid-plane of the layer and is subjected to impact load. Following the Sih 
and Chen's manner, we apply the Laplace and Fourier transforms to solve the problem. 

http://rcin.org.pl



232 S. ITOU 

Using this technique, we can reduce the boundary conditions to dual integral equations in 
the Laplace transform domain. Then, the Laplace transformed crack surface displacement 
is expanded into double infinite series as a product of trigonometric functions. By doing 
so, the dual integral equations can be converted into the single integral equation in the 
rectangular region. The unknown coefficients accompanied in that series are solved by 
the Schmidt method [8]. The stress intensity factors are defined in the Laplace transform 
domain and these are inverted numerically in the physical plane by the method developed 
by MILLER and GUY [9]. 

2. Fundamental equations 

The infinite layer is sandwiched between two half-spaces as shown in Fig. 1. 

h (!) 

h 

FIG. 1. Geometry and coordinate system. 

The rectangular crack is located on x2 = 0 along the x 1-axis from -a to a, and along 
the x3-axis from -b to b with reference to the rectangular coordinate system (xt, x 2 , x3). 

The layer and the two half-spaces are bounded at x2 = ±h. The equation of motion is 

(2.1) (A(!)+ J-l(J))Uj(J),ji + Jl{J)Ui(J),jj = P(J)fJ2ui(J)/8t
2

, 

where Ui(J) are the displacement components, A(!) and J-l(J) are the Lame's elastic con­
stants, P<D is the mass density, t is time, repeated indices indicate a summation, the 
indices following a comma indicate the partial differentiation with respect to the variable, 
e.g. Ui(J),j = 8ui(J)/ 8x j, and (!) = CD and (!) = @ are referring to the layer and the 
half-spaces, respectively. The stresses are expressed by the form 

(2.2) Tij(J) = A(J)Uk(J),k6ij + J-l(J)(Ui(J),j + Uj(J),i)' 

where 6ij is the Kronecker delta. 
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The incident stress wave which propagates through the upper half-space can be ex­
pressed in the form 

(2.3) 

where pis a constant, Ct(D is the dilatational wave velocity, and H (t) is the Heaviside unit 
step function. If the incident wave impinges, it is reflected and refracted at the interface 
x 2 = + h, at the crack surfaces and at the interface x2 = -h. However, it is very likely 
that a stress wave which is similar to Eq.(2.3) passes across the crack. Therefore, the 
boundary conditions for the problem to be studied are assumed as follows: 

(2.4) 

rf2Q) = -pH (t) 

U () -0 2(!) -

at x2 = 0, lxtl <a, lx31 < b, 

at x2 = 0, (lxtl <a ,b < lx31), (a< lxtl, lx31 < oo), 

T o - -r-
0 - 0 at 12(!) - I 23(!) -

(2.5) 

T22Q) = T22@, T12Q) = Tt2@, T23(D = T23@, Uz(D = Uz@, Ut(D = Ut@, 

U3(D = u3~ at x2 = ±h, lxtl < oo, lx31 < oo, 

where superscript " 0
" denotes the values at x2 = 0. Because of the symmetry conditions, 

it is possible to consider the problem for x2 ~ 0, only. 

3. Analysis 

A Laplace transform pair is defined by the equations 

00 

(3.1) f*(s) = J f(t) exp( -st)dt, 
() 

(3.2) f(t) = 1/(2rri) J f*(s) exp(st)ds, 
Br 

where the second integral is over the Bromwich path. The two-dimensional Fourier 
transform pair is defined by the equations 

00 00 

(3.3) J(~,x2,() = J J /(x~,x2,x3)exp{i(~x1 + (x3)}dx1dx3, 
-oo -oo 

00 00 

(3.4) f(x~, x2, X3) = 1/(2rr)2 J J J (~, x2, () exp { -i(~Xt + (x3)} d~d(. 
-oo -oo 

The Laplace transformed expressions of the boundary conditions (2.4) and (2.5) are 

(3.5) 
1) o. - I T22Q) - -p S at x2 = 0 , lxtl <a, lx31 < b, 

2) 0• - 0 u2<D- at x2 = 0, (lxtl < a, b < lx31), (a< lxtl, lx31 < oo), 

3) O• _ 0• _ 0 
T12Q) - T23Q) - at x2 = 0, lxtl < oo, lx31 < oo; 
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* * * * * * T22(D = T22® ' T12<D = T12® ' T23(D = T23@ ' 

(3.6) at x2 = ±h, lx1l < oo, lx31 < oo, 

* * * * * * u2<D = u2®' u1<D = u1®' u3<D = u3®' 

at x2 = ±h, lx 11 < oo, lx3! < oo, 
Applying Eqs.(3.1) and (3.3) to Eq.(2.1) yields 

(3.7) 

with 
1 

(3.8) ntCD = { ~2 + (2 + s2 I (day~~~)}~ ' n2(!) = (~2 + (2 + s2 I d(J))! 

and 

(3.9) 

where c2(J) is the shear wave velocity and V(J) is the Poisson's ratio. The solution of 
Eq.(3.7) appropriate to x2 ~ 0 will take the following forms for the layer Q), 

n;<D = -i~A~ ln1(j) cosh(nt<DY) + .BfY cosh(n2Q)Y) 

- i~C~ ln1<D sinh(n1<DY) + D~ sinh(n2<DY), 

fii<D = A~ sinh(nt<DY) + i(~BfY + (BCfJ)In2<D sinh(n2Q)Y) 

+ C~ cosh(nt<DY) + i(~Dcp + (DCfJ)In2<D cosh(n2<DY), 

(3.10) 

n;<D = -i(A~ lnt<D cosh(nt<DY) + BCfJ cosh(n2Q)Y) 

- i(C~ lnt<D sinh(nt<DY) + D~ sinh(n2(j)Y), 

and for the upper half-space@. 

n;® = i~ln1®A~ exp( -nt®Y) + B?> exp( -n2@Y), 

(3.11) fiia> = A~ exp( -nt@Y)- iln2@(~B~ + (B~) exp( -n2Q)Y), 

n;® = i(ln1Q)A~ exp(-nt@Y) + B~ exp(-nz@Y), 

A<D <D BCD cCD n<D nCD A® B® B® . where 2 , B 1 , 3 , 2 , 1 , 3 , 2 , 1 , 3 are the unknown coeffic1ents to 
be determined from the boundary conditions. 

Using Eqs.(3.10) and (3.11), we obtain the Laplace and Fourier transformed stress 

com_ponents. With the use of Eqs.(3.5)3 and (3.6) iB~, iBCfJ, C~, iD~, iD~, A~, 
iB~ and iB~ can be expressed by the single unknown A~ as 

·B<D - j A<D ·BCD - f ACD c<D - f A<D ·nCD - ' ACD z I - I 2 ' Z 3 - 2 2 ' 2 - 3 2 ' Z 1 - J4 2 ' 

·n<D - f A<D A® - ' A<D ·B® - f A<D ·B® - ' ACD z 3 - 5 2 ' 2 - J6 2 ' z I - 7 2 ' z 3 - J8 2 ' 
(3.12) 

where / 1, / 2, ... , f 8 are shown in the Appendix. 
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Thus, the Laplace and Fourier transformed expressions for the stress and displace­
ment components which satisfy Eqs.(3.5)3 and (3.6) are shown with the single unknown 

coefficient A~. For example, 'r~i<D and n~(D have the forms 

:rg;<D =A~ [PCD[{s2/c~<D · (1- 2/a'fD) + 2niCD}/ntCD + 2-{ft + 2(/zl] , 
(3.13) 

n~(D = A~ {h + (~/4 + (fs)/nzQ)} . 

Then the remaining boundary conditions (3.5.1) and (3.5.2) reduce to the dual integral 
equations 

1) 

(3.14) 

2) 

with 

00 00 

'r~i<D = 1/(27r)2 J J ng(DJ((~, () exp { -i(~xt + (x3)} d~d( = -p/ s 
-oo -oo 

for lxd < a, lx31 < b, 
00 00 

ft~(D = 1/(2tr)2 J J ft~(D exp { -i(~Xt + (x3)} d~d( = 0 
-oo -oo 

(3.15) J((~,() = JLQ) [Hs2/c~<D • (1- 2/a'f:p) + 2ni<D}/nt<D + 2-{ft + 2(/z]/{/3 

+ (~!4 + (/s)/nz~}] . 

If the Laplace transformed crack surface displacement u~(D is expanded into the following 
series 

(3.16) 

00 00 

1r 2u~(D = L L Cmn(s) • cos{(2m- 1) sin-1(xtfa)} 

..,.2u0* - 0 
II 2Q)-

x cos{(2n -1)sin-1(x3/b)} for lxtl <a, lx31 < b, 

for (lxtl <a , b < lx31), (a< lxtl, lx31 < oo) 

the boundary condition (3.14)2 is satisfied automatically, where Cmn(s) are unknown 
coefficients to be determined. The Fourier transformation of Eq. (3.16) is 

00 00 

(3.17) ng(D = L L Cmn(s)(2m- 1)/~. Jzm-t(~a). (2n- 1)/(. Jzn-t((b)' 
m=l n==l 

where Jn(x) is the Bessel function. Substituting Eq.(3.17) into Eq.(3.14)11 we obtain the 
following equation which gives the unknown coefficients Cmn(s) 

00 00 00 00 

(3.18) L L Cmn(s)[(2m- 1)(2n- 1) J J !((~, ()/(~2(2)Jzm-t(~a)Jzn-t((b) 
m=l n=l () () 

x sin(~xt) sin((x3)d~d(] = -px1x3j s 

for 0 ~ x 1 < a, 0 ~ x3 < b. 

The semi-infinite integral in Eq.(3.18) is replaced in the same manner as in the author's 
previous paper [4] to achieve rapid decay when~ and ( become large 
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00 00 00 

(3.19) J J d~d( = J {gm(Xt,()- 9m(Xt,(z)(/(z}/(2 • J2n-t((b)sin((x3)d( 
() () () 

with 
00 

(3.20) 9m(Xt, () = J {!((~, ()/~- J((~l, ()/~z} • J2m-t(~a) sin(~xt)d~ 
() 

+K(~z,()/{~z(2m -1)} · sin{(2m- 1)sin-1(xtfa)}, 

where ~~ and (z are large values of~ and (, respectively, and ~ ~ ( is assumed for the 
large value of~· The integrands in Eq.(3.19) and that in Eq.(3.20) behave as (-2·5 and 
~-2 ·5 for large ( and~, respectively. Therefore, those semi-infinite integrals can be easily 
evaluated numerically by the Pilon's method [10]. Then, Eq.(3.18) can be solved for the 
coefficients Cmn(s) by the Schmidt method [8]. 

4. Stress intensity factors 

The coefficients Cmn(s) are obtainable, so that the entire stress field is given. However, 
in fracture mechanics, it is of importance to determine stresses just ahead of the crack 
end. The stress singularities around the crack tip come from the behavior of the integrand 
as the integration variable has an infinite value. Therefore, we can easily define the stress 
intensity factors J(j* along x3 = band 1([* along x1 = a as, respectively, 

00 00 

Kj* = j21r(x3- b)rf2*<Dix
3
-+b+ = L L Cmn(s)(2n- 1)(-l)nF;iK(~,(z)/(z 

m=l n=l 
(4.1) x cos{(2m- l)sin-1(xtfa)}, 

00 00 

l(j* = V27r(Xt- a)rf;<Dix
1
-+a+ = L L Cmn(s)(2n- 1)(-1)m~J((~z,()/~l 

m""l n=l 
x cos{(2n- 1) sin-1(x3/b)}. 

The inverse Laplace transformations in Eq.(4.1) are carried out by the numerical method 
given by MillER and GUY [9]. When the Laplace transform f*(s) can be evaluated at 
discrete points given by 

(4.2) s = ({3 + 1 + k)' k = 0, 1, 2, ... ' 

we determine coefficients C m from the following set of equations 
k 

(4.3) 61 /*{({3 + 1 + k)61
} = L Cmk!/{(k + {3 + 1)(k + {3 + 2) 

.. . (k + {3 + 1 + m)(k- m)!}, 

where 6' > 0 and {3 > -1. If coefficients are calculated up to C N _ h an approximate 
value of f(t) can be found as 

N-1 

(4.4) f(t) = L CmP~,/3){2exp(6't)- 1}, 
m•O 
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where P~·13>(z) is the Jacobi polynomial. The parameters h' and (3 are selected such that 
/(t) can be best described within a particular range of timet. 

We have the relation between /*(s) and /(t), 

(4.5) lim s • /*(s) = lim f(t) . .,_o t-oo 

Therefore, the static solutions of the stress intensity factors in the physical space can be 
obtained with the use of Eqs.(4.1) and (4.5). 

S. Numerical examples and results 

The transient dynamic stress intensity factors are calculated numerically for V(D = 
V(Z) = 0.2. It is assumed that the density of the layer is equal to those of the half-spaces. 
The semi-infinite integrals which occur in Eqs.(3.19) and (3.20) can be easily evaluated 
numerically by Filon's method. In Thble 1, the values of K(eb, (b)l(eb) are shown versus 
eb for sbl C2(D = 2.2, J.L(J)I J.L<D = 0.5, alb = 1.0 and hlb = 1.0. In Thble 2, the values of 
9m(x1lb,(b)l((b)arealsoshownversus(bforsblc2<D = 2.2,J.L(J)IJ.L<D = 0.5,alb = 1.0, 
hlb = 1.0, m = 2 and x1lb = 0.5. The values of K(eb, (b)l(eb) and 9m(xtlb, (b)l((b) 
converge at constant values and then we can see that the numerical integrations can be 
carried out satisfactorily. 

Table 1. V~lues of K(eb, (b)/(eb) for sbjc2(j) = 2.2, IJ(i)/ IJ(j) = 0.5, afb = 1.0, h/b = 1.0. 

K<eb,Cb>f<eb> 

eb (b = 3.21 6.81 10.41 14.01 

78.21 -1.2516 -1.2567 -1.2638 -1.2719 
78.41 -1.2514 -1.2565 -1.2633 -1.2708 
78.61 -1.2513 -1.2564 -1.2628 -1.2700 
78.81 -1.2513 -1.2563 -1.2625 -1.2693 
79.01 -1.2512 -1.2561 -1.2621 -1.2686 

97.21 -1.2510 -1.2550 -1.2612 -1.2629 
97.41 -1.2510 -1.2549 -1.2609 -1.2625 
97.61 -1.2510 -1.2549 -1.2606 -1.2621 
97.81 -1.2510 -1.2548 -1.2605 -1.2617 
98.01 -1.2510 -1.2547 -1.2603 -1.2613 

By breaking-off the infinite series in Eq.(3.18) at term of m = n = 4 the Schmidt 
method is applied. Thble 3 shows the values at the right-hand and the left-hand side of 
Eq.(3.18) in the case of sb I Cz<D = 2.2, J.L(J) I J.L<D = 0.5, a I b = 1.0 and hI b = 1.0. The 

4 4 0000 

upper side values are ll(pb3 lc2(j)) • L: L: Cmn(s)[(2m-1)(2n-1) J J K(e, ()/(e2( 2) 
m•l n•l 0 0 

J2m-t(ea)Jzn-t((b) sin( ext) sin((x3)ded( and the lower side values with parenthesis are 
-(XtX3)/(sb3 I C2(j)). Both values of these coincide mutually well, thus it is considered 
that precision of the Schmidt method is superior. 
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Table2. Valuesofgm(Xt/b, (b)/((b)forsb/c2@ = 2.2,11.@/l'(j) = 0.5,afb = l.O,h/b = l.O,xtfb = 0.5, 
m =2. 

" 
~ 
c. 
-..; 

" .£)-

~ 

(b 9m(Xt/b, (b)/((b) 

6.01 -0.16575 
6.21 -0.16400 
6.41 -0.16239 
6.61 -0.16091 
6.81 -0.15954 
7.01 -0.15712 

13.01 -0.14238 
13.21 -0.14217 
13.41 -0.14197 
13.61 -0.14178 
13.81 -0.14160 
14.01 -0.14143 

1.0 

0. 5 

C2(Dt/b 

FIG. 2. Stress intensity factor Kt at Xt/a = 0.0 for afb = 1.0 and hfb = 1.0. 

In Fig. 2, the values of J(j at x 1/a = 0.0 are plotted versus c2cvt/b for ~ta>/ I-LCD = 0.5, 
1.0, 2.0 in the case of h/b = 1.0, afb = 1.0. The corresponding static values which are 
calculated by means of Eq.(4.5) are also drawn by the straight broken lines in the figure. 
From the figure, we can see that the peak value J(j for ll(J) /I-LCD = 0.5 is about 1.1 times 
larger than that for P(J)/ ll(J) = 1.0 while the peak value for ~ta>/ I-LCD = 2.0 shows a de­
crease of 5% in comparison with the value for ~ta>/ I-LCD = 1.0. It can be also seen that 
the peak values of the dynamic stress intensity factors are about 1.25 or 1.30 larger than 
the corresponding static values. 
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Table3. Values or 1/(pb3/c2(j)) • L: L: cmn(s)[(2m- 1)(2n- 1) xI I K(e, ()/(e2( 2)12m-t(ea)J2n-t((b) x sin(ext)sin((xJ)ded( 
m•ln•l 0 0 

and -(XtXJ)/(sb3/c2(j)) for sb/c2(j) = 2.2, 1-'(j)/1-'(J) = 0.5, afb = 1.0, h/b = 1.0. 

Xt/b = 0.0 0.25 0.5 0.75 1.0 

X3jb = 0.0 0.0 0.0 0.0 0.0 0.0 
(0.0) (0.0) (0.0) (0.0) (0.0) 

~ 0.25 0.0 -0.02842 -0.05683 -0.08525 -0.11368 
(0.0) (-0.02841) (-0.05682) (-0.08523) (-0.11364) 

0.50 0.0 -0.05681 -0.11361 -0.12783 -0.22719 
(0.0) (-0.05682) (-0.11364) (-0.12784) (-0.22727) 

0.75 0.0 -0.08525 -0.17048 -0.25575 -0.34102 
(0.0) (-0.08523) (-0.17045) (-0.25568) (-0.34091) 

1.0 0.0 -0.11363 -0.22729 -0.34091 -0.45457 
(0.0) (-0.11364) (-0.22727) (-0.34091) (-0.45454) 

------
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Appendix 

au at i-t bt ati+t a18 
a21 a2i-t b2 a2i+t a28 

(A.1) fi = ID, 
an a1i-t b1 a1i+t a1s 
ag1 a8i-t bs a8i+t a88 

(A.2) D = laiil 

and 

an = 0, a12 = 0, a13 = ~' a14 = (n~<D + ~2)ln2(f), a1s = ~(ln2<D, 

a16 = 0, a11 = 0, a1s = 0, bt = 0, 

a21 = 0, a22 = 0, a23 = 2(, a24 = ~(ln2<D, a25 = ( n~(f) + ( 2) I n2<D , 

a26 = 0, a21 = 0, a28 = 0, b2 = 0, 

a31 = ~J.L<D cosh( n2<D h) , a32 = 2( J.L<D cosh( n2<D h) , 

a33 = {s2lc~<D • (1- 2la.'fv) + 2n~<.D}Int<D • J.L<D sinh(ntQ)h), 

a34 = ~J.L<D sinh(n2Q)h), a3s = 2(J.L(f) sinh(n2Q)h), 

a36 = {s2lc~(i) • (1- 2la.~) + 2nt(i)}lnt(i) ·P,(i) exp(-nt(i)h), 

a37 = -~P,(i) exp( -n2@h), a3s = -2(P,(J) exp( -n2(J)h), 

b3 = - { s2 I c~(f) • (1 - 21 a.'fv) + 2nf<D} I n1(f) • J-L<D cosh( nt(f)h), 

a41 = ( n~<D + ~2) I n2<D • IL<D sinh( n2<D h) , a42 = ~ (I n2<D • IL<D sinh( n2<D h) , 

a43 = ~IL(f) cosh(ntQ)h), a44 = (n~(f) + ~2)ln2<D ·J-L<D cosh(n2Q)h), 

a45 = ~ (I n2Q) • J-L<D cosh( n2<D h) , . a46 = - ~ J-L<i) exp(- n1@ h) , 

a41 = ( n~@ + ~2) I n2(J;) • J-L(J) exp(- n2<J;; h) , a48 = ~ (I n2@ • IL@ exp(- n2@ h) , 

(A.3) b4 = -~J-L<D sinh(n1Q)h), 

ast = ~(ln2<D •J-L<D sinh(n2Q)h), as2 = (n~<D + ( 2
)ln2<D • J-L<D sinh(n2Q)h), 

as3 = 2( J-L<D cosh( n2<D h) , as4 = ~ (I n2<D • J-L<D cosh( n2<D h) , 

ass = (n~<D + ( 2)ln2<D •J-L<D cosh(n2<Dh), as6 = -2(J-L(J) exp( -nt@h), 

as1 = ~ (I n2@ • IL@ exp(- n2@ h) , asg = ( n~@ + (2) I n2@ • IL@ exp(-n2(J) h) , 

bs = -2(P,Q) sinh(nt<Dh), 

a61 = ~I n2Q) sinh( n2<D h) , 

aM = ~I n2<D cosh( n2<D h) , 

a66 = - exp( -nt<J;;h), 

a62 = (ln2<D sinh(n2(Dh), a63 = cosh(ntQ)h), 

a6s = (I n2<D cosh( n2<D h) , 
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a67 = ~/n2(j;) exp( -n2(J)h), 

b6 = - sinh(nt(Dh), 

an = cosh(n2(Dh), an = 0, a73 = ~/ntCD • sinh(nt(Dh), 

a14 = sinh(n2Q)h), a15 = 0, a16 = ~/nt(J) • exp( -nt(J)h), 

an = - exp( -n2(J)h), a1s = 0, b1 = -~/ntCD • cosh(nt(Dh), 

as1 = 0, as2 = cosh( n2(Dh) , as3 = ( / ntCD sinh( nt(Dh), as4 = 0, 

ass = sinh(n2Q)h), as6 = (/nt(j;) exp( -nt@h), as1 = 0, 

ass = - exp( -n2(J)h), bs = -(/nt<D cosh(nt(Dh). 
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