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Variational bounds on the effective moduli 
of viscoelastic periodic composites 

S. BY1NER and B. GAMBIN (WARSZAWA) 

VARIATIONAL THEOREMS are established and applied to the derivation of the bounds for the effective 
viscoelastic dynamical moduli of micro-heterogeneous, periodic composites. For the case of two­
phase isotropic materials the bounds are calculated and graphical illustration is presented. 

1. Introduction 

THE FIELD of composite materials includes the methods of derivation of the effective 
(overall macroscopic) properties of inhomogeneous media. 

The effective properties are the properties of the equivalent homogeneous body, the 
behaviour of which is the same as the macroscopi<: behaviour of the microperiodic com­
posite. 

The most purely mathematical method is the homogenization method (1, 2]. There 
are many papers concerned with the problem of theoretical determination of the effective 
properties of different inhomogeneous media [3, 4, 5, 9]. To obtain the formulae for the 
effective properties by the homogenization method we must have full information about 
the structure of periodic composite. If, for example, all the available information on the 
structure of composite is limited to the properties of the constituents and their volume 
fractions only, one is not able to calculate explicitly the effective properties but rather to 
find their bounds. 

The techniques of derivation of the bounds for macroscopic properties have an ex­
tensive history dating back to XIX century (Mossotti 1836, Voigt 1887). Some of the 
recent advances in bounding the effective properties are due to the developments of new 
variational principles [6, 7]. 

The aim of this paper is to find the bounds on the effective dynamical modulus of 
viscoelastic material with microperiodic structure. It is assumed that viscoelastic body 
undergoes the steady-state harmonic vibrations. Due to this fact, complex fields are 
introduced and the properties of the body are described by linear equations with complex 
coefficients. Complex effective tensor governs the response of the composite to oscillating 
field in the quasi-static limit. In this case the wave length and attenuation length are 
sufficiently large compared with the characteristic length of microstructure. 

For the above problem the saddle-point variational principle of GIBIANSKY and 
CHERKAEV [7] is formulated. This principle is converted via the Legendre transforms 
into a Dirichlet-type variational principle from which the bounds on effective constants 
are obtained. As an example of application, the mixture of two-phase isotropic con­
stituents is considered and the bounds are calculated (figures are shown). 
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2. Formulation of the problem of viscoelasticity 

We consider the steady-state vibrations of a linear viscoelastic, heterogeneous body [8]. 
Using complex functions we define: 

complex displacement of the body 

(2.1) iieiwt = (u1 + iu2)(coswt + i sinwt) 

(only the real part of (2.1) describes the behaviour of harmonically vibrating viscoelastic 
body with frequency w); 

complex strain 

(2.2) 

complex stress 

(2.3) (j = Le; 
and equilibrium equations 

(2.4) div (j = 0, 

where L is the complex tensor of 4-th order called the dynamical modulus, which depends 
onw. 

Tensor L has the form 

(2.5) L = Lt + iLz, 

where L 1 ( x ), Lz ( x) are positive definite and periodic functions of position ( Q - cell of 
periodicity). 

L has the properties of symmetry 
- - -
Lijkl = Lklii = Ljikl· 

Separating real and imaginary parts in (2.2) - (2.4) we obtain equivalent relations for 
real functions 

(2.6) 
a1 = Ltet - Lzez, az = L1e2 + Lzeb 

div a1 = 0, div az = 0. 

Let us split the local fields, depending on position, e1(x), e2(x), a 1(x), a 2(x) into their 
average and fluctuating components: 

(2.7) ei(x) = ei + Ei(x), 

ai(x) = a; + r:(x), i = 1, 2, 

where et, at - constant tensors, Ei, r; - rotation and divergence-free fields, respec­
tively, which means that 

ei, ai E U, Ei E £, r; E :J, i = 1, 2 

and 

1i=U(J)£(J):J 
is a Hilbert space of tensorial fields over L2( Q ), U - the space of uniform tensor fields, 
£ - the subspace of curl-free fields, :1 - the subspace of div-free fields. 
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The fluctuating parts of (2.7) satisfy 

J u* · Ei(x)dx = 0, 
Q 

J u* • !.i(x)dx = 0, 'v'u* E U 
Q 

(2.8) 
J Ei(x) · !.i(x) = 0, i = 1, 2, 
Q 
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which means that u*, Ei(x), !.i(x) are mutually orthogonal. Using the above definitions 
we can write the local constitutive law in the following block form: 

(2.9) [ ~~: ~n = [ =t -L~ l [ -~i++~j)l. 
Similarly, the effective tensor L * is defined by 

(2.10) [ aj] _ [ -Li - Li] [ -ej] 
ai - - Li Li ei · 

3. Variational principle for viscoelasticity 

Following GIBIANSKY and CHERKAEV [7], we formulate the saddle-point variational 
principle 

(3.1) W*(e;,e;) =max min J dxW(e; + E1(x),e2 + ~(x)) 
EtEE~EE Q 

associated with the problem (2.9), where 

(3.2) W*(Pt, P2) = i [pt Pi] L* [ ~~] , 

(3.3) W(Pt,P2) = HP[P[] L [~~]. 
This principle can be converted via the Legendre transforms into a Dirichlet type varia­
tional principle which is more useful to bound L *. 

First we introduce the Legendre transforms of W* and W, 

(3.4) 

(3.5) 

W*(Qt, P2) = max [W*(Pt, P2) - (Qt, Pt)], 
PtET 

W(Qt, P2) = max [W(Pt, P2) - (Qt, Pt)]. 
PtET 

Substitution of (3.1) and (3.2) into these expressions gives the explicit formulae 

(3.6) W*(Q, P2) = i [Qf P!j L• [ ~;], 

(3.7) W(Q, P2) = ~ [Qf P[j L [ ~;] 
for these transforms, where 

(3.8) - [ 14-l 14-1Li ] 
L* = Lif4-t Li + Lif4-1Li ' 
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(3.9) 

Since W*(PIJ..!2) and_!:.V(P1, P2) are concave functions of P1 at fixed P2, they can be 
recovered from W* and W using the inverse Legendre transforms 

(3.10) 

(3.11) 

W*(Pt, P2) = min [W*(Qt, P2) + (Qt, Pt)], 
QtET 

W(Pt, P2) = min [W(Qt, P2) + (Qb Pt)]. 
QtET 

By substituting (3.11) into (3.1) and the result into (3.4), we obtain the variational in­
equality 

(3.12) W*(a;,e;> = max[W*(et,e~)- (a;,e1)] 
etEU 

= min max J dx[W(e1 + E1(x), e~ + ~(x))- (a;, e1)] 
E2EE e1 +Et EU6E Q 

= min max min J dx[W(a1(x), e~ + ~(x)) + (a1(x), 
E2EE et+EtEU6E atE'H Q 

e1 + Et ( x)) - (a;, et)] 

~ min max min J dx[W(a; + I:t(x), 
E2EE e1 +Et EU6E I:t E:T Q 

e~ + ~(x)) +(a; + I:t(x), e1 + Et(x))- (a;, et)] 

= min min J dx[W(a; + I:1(x), e~ + ~(x))], 
I:tE:T E2EE 

Q 

where inequality arises bacause we have restricted the minimum over a 1 E 1i to a smaller 
class of fields, namely to those of the form 

(3.13) a 1(x) = a;+ I:t(x), where I:1(x) E ..J. 

Now the solutions a;, e; E U, 1:; ( x) E ..J and E; . E [ to the direct problem (2.9) satisfy 

(3.14) W*(a;, e~) = J dx[W(a; + I:1(x), e~ + ~(x))]. 
Q 

Thus the variational inequality (3.12) is strong; it implies the Dirichlet-type variational 
principle, 

(3.15) 

of Gibiansky and Cherkaev. 
As an example of application of (3.15) we take the trial fields !:1 = ~ = 0 and set 

(3.16) a; = -Loe~, 
where L 0 is any given real selfadjoint operator. Then (3.15) and the expressions (3.6) and 
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(3.7) for w· and w imply that the operator inequality 

(3.17) LoL;-1 Lo- LoL;-1 Li- LiL;-1 Lo + L; + LiL;-1 Li 

~ J dx[LoL}1 Lo- LoL}1 L2 - L2L}1 Lo + L1 + L2L!1 L2] 
Q 

is satisfied for all L0 • This has the equivalent form 

(3.18) (Lo- Li)L;- 1(Lo- Li) + L; ~ j dx[(Lo- L2)L}1(Lo- L2) + L1]. 
Q 

If we introduce the complex operators 

(3.19) (l•- iLo)-1 = [(Lo- Li)L;-1(Lo- Li) 

+L;J-1 + i[L;(Lo- Li)-1L; + (Lo- L2)]-t, 

(3.20) (l - iLo)-1 = [(Lo - L2)L}1(Lo- L2) 

+ L1]-1 + i[L1(Lo- L2)-1 L1 + (Lo- L2)]-1, 

where L • = Li + iLi. and L = L1 + iL2 , then (3.18) can be rewritten as 

(3.21) [Re(L *- iLo)-1
]-

1 ~ J dx[Re(L(x)- iL0)-1]-1• 

Q 

Now the complex direct problem 

(3.22) . -· - -a + I = L(e* + E*) 

is isomorphic with the rotated complex direct problem 

(3.23) a'* + f'* = i/re'* + i'*> 
obtained by a rotation by (} in the complex plane, where (} E (0, 21r] is any fixed angle 

(3.24) 

and 

(3.25) _,. i8-• E u-a = e a , 

f'* = ei8f E J, 
Hence (3.21) implies the more general bounds 

e' = e e u, 
E'* = E E E. 

(3.26) [Re(ei8L*- iL0)-1]-1 ~ J dx[Re(ei8L(x)- iL0)-1]-1, 

Q 

which hold for any rear selfadjoint operator L0 and any angle (} E (0, 21r] such that 

(3.27) Re(ei8L(x)) ~ 0 for all x E Q. 

4. Example 

We consider a viscoelastic periodic composite (macroscopically isotropic) built from 
two isotropic constituents. We don't know the geometry of the cell of periodicity, but we 
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know the properties of constituents and their volume fractions. 

(4.1) Lt(x) = [3Kk, 2~Lklxt(x) + [3K~, 2p~]X2(x), 
L2(x) = [3K}, 2~L}]X1(x) + [3KJ, 2~LJ]X2(x), 

where [ K, 11] denotes Hill's convention for isotropic elastic moduli, xi - characteristic 
functions of i-th constituent (i = 1, 2), 

J Xi(x)dx = Vi, X2(x) = 1- Xt(x). 
Q 

We assume that Vi = 1/2 fori = 1, 2. Under above assumptions the inequality (3.26) for 
effective complex "shear" modulus takes the form 

1 J dx 
Re(eiBji•- i~Lo)- 1 ::; Re(eiBil(x)- i~Lo)- 1 ' 

Q 

(4.2) 

where 

Ji* = 11'R + i11j, 11o E co, oo ), 
After calculations we get 

0 E [0, 27r]. 

(4.3) 
(/l R - /lo sin 0)2 + (ll j - /lo cos 0)2 

H (/l k)2 + (/l} )2 + 11~] - 2/lo(/l k sin 0 + 11} cos 0) 
< =-----------~------~---------------Ilk cos 0 - 11} sin 0 

H (/l~)2 + (/LJ )2 
- 2/ln(/l~ sin 0 + Ill cos 0) 

+ 2 2 • 
/l R COS 0 - /l I sin 0 

This inequality confines ji* to lie within a circle in the complex plane. As 0 and /ln 
are varied, ji* must lie within the region of the complex plane formed by the intersection 
of these circles. 

f.l; 
100 

50 

0 50 100 150 200 

FIG. 1. 

The graphical illustration (Fig. 1) of the regions for 3 different frequencies w = 1, 10, 
100 is done under the following data: 
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w = 1 

JLk = 0.05, 

JLh = 19.2, 

JL} = 0.5, 

JLJ = 96, 
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