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A large deformation formulation and solution 
with space-time finite elements 

c. BOHATIER (MONTPELLIER) 

THE BALANCE FORMULATiON is assumed by the integration on each step of time of the evolution 
interval. Therefore the equilibrium is enforced on the whole step of time. The description of the 
deformation is an instantaneous updated Lagrangian description which is particularly suitable for 
large deformations. The numerical solution is made with space-time finite elements that leads to an 
interpolation of the unknown variables with interpolation function of time and space. The Newton­
Raphson method is used and takes into account the geometry evolution. The special choice of the 
space-time elements allows for a frontal solution and without increa-;ing the number of unknown 
variables. 

1. Introduction 

THE AIM OF THIS PAPER is to show that interpolation of the unknown variables by the 
interpolation functions of space and time leads to securing the equilibrium during the 
deformation process at any step of time. Therefore, it is possible to increase the increment 
of time (see [6]) in comparison with the classical explicit or implicit methods that split 
space integration and time integration (see (1, 2]). 

The originality of the formulation presented here consists in using the approach that 
is developed in [3] and [6], but similarly to [1] and [2], it takes into account the geometry 
evolution at any step of the numerical solution. The unilateral contact can be tackled by 
numerous methods (see [4, 7, 9]). The method considered in this paper is an augmented 
Lagrangian method with numerical solution using Usawa's algorithm. 

2. Formulation 

2.1. Relative equilibrium formulation 

The virtual power principle is written in the classical form 

(2.1) J a : D* dfl - J p (r - :; ) . v* dfl - J F • v* da = 0 , 
n n an 

where fl- domain of the solid, dfl- volume element, 8fl- boundary of the domain, 
da- surface element, 8- Cauchy stress tensor, D*- virtual deformation rate tensor, 

f - external body forces, v - real velocity, v* - virtual velocity, - p :: - inertial forces, 

F - external surface forces. 
We can notice that this formulation depends on the velocity field v, on the external 

forces F and f, on the domain fl and its boundary {)fl({)fl U fl = fl). If the velocity 
field is taken as the main unknown variable, and the unknown external forces F x and the 
domain configuration fl as auxiliary unknown variables, the equilibrium equation of the 
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32 C. BOHATlER 

problem can be written in the form 

(2.2) cj>(v, F x ' il) = 0. 

In various problems the unknown forces F x are mainly the result of the geometrical con­
straints. If the mechanical linkages are considered as main, then the work of the normal 
component vanishes when the geometrical constraints are time-independent. However, it 
is possible to say that these forces Fx depend on the velocity field and its gradient history. 

It it is required that the relation (2.2) should be satisfied for any time t during the 
time interval [t0 , tt] within the time of simulation T 5 (Ts :) [t0 , tt]), then Eq. (2.2) results 
in the formulation 

t 1 

(2.3) J </Y(v, Fx, il) dt = 0. 
to 

Therefore, the formulation (2.3) leads to a spatial and a time integration that is divided 
into the three following terms: 

(2.4) 

with 

I= It+ lz + h, 

t 1 t 1 

It = I ( I (j: o· dJl) dt = I I (j: o• dJl dt, 
to n to n 

!2 = -1 (I p(r- ::) ·v*dJl)dt = -1 I p(r- ::) ·v*dJldt, 
to n to n 

tl t 1 

h = - I ( I F • v* da) dt = - I I F · v* da dt . 
t 0 an to an 

The integrals I 1 , fz and h are calculated with the integration elements dfl dt and da dt. 

2.2. Contact conditions (Fig. l) 

8flc -contact area between tool and work-piece, 8f2cc -possible contact surface 
between tool and work-piece, P - possible contact point, P' - possible contact point, 
predicted by the velocity field at the beginning of the step of time, n - external normal 
to the tool at P'. 

Work-p;ece 

n 

FIG. 1. Unilateral contact and its modeling. 
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The prediction of the possible contact point is said to be the geometrical investigation 
phase (see [4]). When the surfaces are discretized by facets, the predicted normal is a 
normal to the considered facet. When the impact point is close to several facets, it is 
necessary to consider all the constraints coming from these possible contact areas. 

When the friction is taken into account with the unilateral contact, an augmented 
Lagrangian multipliers method is used for the normal components, a new integral term 
h 3 with Lagrange multipliers is added to h, and the contribution of tangential components 
is included in the dissipation integral h 2• In mechanical terms, the contact linkages are 
not considered to be the main linkages. 

(2.5) /3 = ht + h2 + /33 ' 

with 
tl 

/31 = - J J Fd • v* da dt, 
to 8fJd 

t 1 

/32 = - J J F, · v* da dt , 
to 8fJc 

t I 

h3 = - J J Fn • v* da dt, 
to 80cc 

Fd -given forces, F, -tangential forces on the contact area. 
These friction forces lead to the dissipation processes on the contact areas. A local 

friction law can either depend only on the velocity field as it is formulated in the Northon­
Hoff friction law (see [2]), or depend only on the normal component in the case of 
the Coulomb friction law (see [4]), or be a mixed formulation. The friction law can be 
considered as non-local (see [8]). The choice is imposed by the contact materials behaviour 
and their interface behaviour. Fn - normal contact forces, which are dependent of the 
solids thrust and the unilateral contact state. 

If the virtual velocity field is chosen in order to allow for their work, then the normal 
contact forces appear as Lagrange multipliers in the expression after minimization of the 
Lagrangian with respect to the velocity field. When the Lagrangian of the problem is 
L(v, F) and v is a kinematically admissible velocity field and F* a statically admissible 
normal forces field, therefore we have 

(2.6) L(v, F*) ::; L(v, F) ::; L(v*, F), 

v- minimizes L(v*, F), F- maximizes L(v, F*). 

2.3. Material behaviour 

As an example, consider here the case of the viscoplastic behaviour. Then the stress 
tensor is a nonlinear function of the strain rate tensor. The material is assumed to be 
homogeneous isotropic and incompressible, and to obey the Northon-Hoff law 

(2.7) 
D s = 2/( ~ ' 

(vfjD)m-1 
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where D = 4 (grad v + grad T v) is the Euler strain rate tensor, D = (iD : D) 112 is the 
equivalent strain rate scalar, : is the symbol of the doubly contracted tensor product, S is 
the deviatoric part of the Cauchy stress tensor a, m is the strain rate sensitivity, J( is the 
material consistency. 

3. Numerical solution 

3.1. Space-time discretization 

The classical methods consist in using a spatial discretization separated from the time 
discretization scheme. This fact leads us to consider various descriptions: total La­
grangian, updated Lagrangian and the instantaneous updated Lagrangian (see (1, 2]). 
The space time discretization leads to using in a natural way the material description with 
the instantaneous updated Lagrangian description. Then the Cauchy stress tensor and 
the Euler deformation rate tensor are defined at any time t inside the time step. The 
geometrical configuration is parametric and is automatically updated at each iteration (see 
Fig. 2). The main unknown variable, the velocity v, is estimated by interpolation functions 
of space and time. The nodal values of the velocity field are defined at each node of the 
space-time mesh by the vector V. 

Confr"guratioh at time t +flt 

ConFiguration at time t ConFiguration at time t 

FtG. 2. Description of the domain evolution inside the step of time. 

At each iteration, the new approximated domain is calculated when the new veloCity 
field approximation is known. In the problems considered here, the. contact forces appear 
mainly in order to take into account the unilateral contact boundary conditions. There­
fore, it is not necessary to know their values accurately, and it is possible to call these 
unknown forces the auxiliary unknown variables. 

The contact evolution could be controlled as it is made in [2], but the approach based 
on the Lagrangian method proposed here can better integrate the evolution contact to 
satisfy the equilibrium inside each step of time, for any step of time. The space-time 
approach of the effect of the contact term, leads to the evaluation of their variation 
(see [5]). 
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3.2. Numerical integration 

The integral 11 is obtained by computing the sum of products of the function by the 
weight wi for all the integration points i. For instance, the numerical integral of the 
function J/1 over any element of the solid domain, is calculated by the expression 

(3.1) J wdndt=L J widndt=Lwiwi, 
[DnUTJ [DnUTJi 

where V is the discretized velocity vector associated to the velocity field v, [ iln UT]i is 
the discretized space-time sub-domain of any space-time element. At each iteration, the 
increment of time is fixed whereas the geometrical configuration is updated as soon as 
the new approximation of the velocity field is known. The spatial finite element method 
requires classically a reference element (see Fig. 3 and Fig. 4), then (3.1) is computed by 
(3.2) for any element. 

(3.2) J J/!i dildt = J 
[DnUTJi [DnUT]ri 

where r is the index of the reference element, J is the Jacobian of the transformation 
which connects the real sub-domain to the domain of the reference element. 

ConFiguration at time t+J1t 

Cnnriaurotron at timet 

ReFerence 
space-time 
element 

FIG. 3. Connection between the real spa~c-ume and the reference space-time element. 

u node number 

t' 
T~----. 

11------, 
0 ® 

<D ® 
a 1 a a b x 

ReFerence element Real element 

FIG. 4. Connection between reference element and real element with one dimension of space. 
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36 C. BOHATIER 

Therefore, the connection between the real element and the reference element leads 
to a numerical integration using the weight associated at the reference integration point. 

3.3. An elementary example 

For the sake of simplicity, let us present here an example with one dimension of 
space and one step of time. The connection between the real space-time element and the 
reference space-time element is formulated by: 

The relation between t and t1 is constant if a fixed increment of time is used. It is better 
that it can move within the deformation process in order to adapt itself to the variations 
of deformation gradient. At the beginning of any step of time, when the increment of 
time is fixed T = t1 - t0 , then 

t1 = Tt. 
The relation between the variables x and x 1 change at each time since the displace­

ments and the evolution of the velocity field modify the domain. With a space-time 
reference element in one dimension of space, the interpolation functions associated with 
the domain ( 1 x 1) (see Fig. 4) are formulated: 

(3.3) 

Nt = (1 - x 1)(1 - t1
), 

Nz = X
1 (1 - t1

), 

N3=t 1x 1
, 

N4 = t1 (1 - x 1
). 

The domain evolution is estimated by the expression 

t 

(3.4) x(t) = x(t0 ) + I v dt, 
to 

and the integral is computed according to the formula 

t 1 

(3.5) I v dt = EViT J Ni(x1, t1) dt1. 
to () 

If t1 is called reduced time, the location vector is updated from the initial time of the 
increment by 

1 1 I IT r I T/ T ( 
tl2) t12 

(3.6) x(t) = x(t0 ) + ((1- x )Vt + x Vz) t - 2 T + (x t'3 + (1- x )v4)2 . 

It is interesting to notice that 
if t 1 = 1 and x1 = 1, then 

T 
x(t) = x(to) + (V2 + V3)2 . 

This result is similar to that in [1, 2]. 
The Jacobian of the transformation is evaluated by the formula 

(3.7) J = . ' = T a + T (V2 - V1) t' - - + (V3 - V4)- . 
I 

D(x t) I ( ( ( t12) t'2)) 
D(x1

, t') 2 2 
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REMARKS 

.J does not depend on x' because of the linear relation with x (element of C0). When 
one integration point is chosen in x' = ~ and t' = ~, its expression becomes 

J = T (a + T Gw2 -V,) + ~(VJ - v.))) . 
At t' = 0, J = aT; at t' = 1, J = T(a + f((Vz- Vt) + (V3- V4))). 
Moreover the boundary conditions are l/1 = V4 = 0, then 

J = T (a + ~ (V2 + ~)) . 
The mesh evolution is the same as that considered in [1, 2]. Therefore, when a space­
time element belonging to C0 is chosen with only two values of time and one integration 
point, the integration can be compared with the one developed in [1, 2] but with a spatial 
integration over an intermediate configuration. 

3.4. Unilateral contact 

The problem of the unilateral contact is solved using the Usawa's algorithm with the 
mixed formulation that comes from the Lagrange method (2.6). v minimizes L(v*, F) 
solution by a fixed point method or the Newton-Raphson method; F maximizes L(v, F*) 
solution by a projected gradient method. 

At each step of time and for each iteration, the velocity field is estimated after having 
fixed an approximation of the contact forces. Therefore the problem becomes a velocity 
problem that is similar to that solved in [2]. The approximations of the velocity field and 
the contact forces are alternately calculated during the iteration process. The control is 
made by the convergence of the velocity field. At the first iteration the contact force at 
any possible contact point is estimated at zero. At the iteration k, it is evaluated by 

tl 

F~k+t) . = Proj Fn?:.o(F~k>- 1-l j F; • Vn dt (3.8) 
to 

with F~ - virtual admissible normal force. 
For all the possible contact points between the body and a rigid obstacle, F~ is for­

mulated by 

(3.9)· 
1 F; = 2( -1 + sgn(h + un)), 

Vn, Un, Fn are the components along the external normal to tool (opposite to the work­
piece), h is the initial gap between the tool and the work-piece at the beginning of 
the considered step of time, on the normal to the tangential plane at the impact point 
estimated at the first iteration. 

In order to improve the convergence of Usawa's algorithm, the Lagrangian is aug­
mented by a penalisation: term that comes from the unilateral contact constraint. Then, 
an extra term h 4 appears in the integral !3 

(3.10) !34 = ~ 1 J (;- Vn)i(h- Un) • v• dadt, · 
to anc 
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where 

j(un) = 0 si h- Un ~ 0, j(un) = 1 si h- Un < 0. 

3.5. Assembling (Fig. S) 

ts 

t.., 

t3 

t2 

t1 
x1 xz x3 x4 xs x6 

FIG. 5. Influence area for the node with coordinates XJ , t3. 

3.6. Solution methods 

FIRST METHOD 

When a space-time element with only two nodal values of time is chosen, the band is 
"hyper-wide" (see [3]). The frame of the assembling can be drawn in the following form: 

A(V., V2) B(Vt, V2) 
C(V1, V2) D(Vt, V2) + A(V2, V3) B(V2, V3) : 

C(V2, V3) D(V2, V3) : 

------------------------------------------~-------------------------------------------- X 
B{Vm-1, Vm) 

D{Vm-1 1 Vm) + A(Vm, Vm+1) B(Vm, Vm+1) 
C(Vm, Vm+l) D(Vm, Vm+1) 

v. F1 
v2 F2 
VJ FJ 

X Vm-1 Fm 
V m Fm-1 

Vm+1 Fm+1 

V m is the discretized velocity vector at time tm. It contains all the components of velocity 
at the nodes. 

SOLUTION ALGORITIIM 

The velocity field solution consists here in solving the successive nonlinear problems 
that contain the same number of unknown variables as the problems solved in [1, 2]. When 
the behaviour is viscoplastic, then the algorithm can be used in the following manner: 

Problem for step 1 of time 

B(Vt, V2)V2 = Ft(Vt, V2)- A(Vt)Vt. 
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Problem for step 2 of time 

B(Vz, V3)V3 = Fz(V., Vz, V3)- (D(Vt, Vz) + A(Vz, V3))V2- C(V~, Vz)V1 

Problem for step m of time 

(3.11) B(Vm, Vm+1)Vm+1 = Fm(Vm-h V m, Vm+d- (D(Vm-1, V m) 

+A(Vm, Vm+1))Vm- C(Vm-h Vm)Vm-1 · 

If at time t2 an approximation of V2, for instance V1 is considered in order to estimate 
B(V 1, V 2) and F 1 (V 1, V 2), then the Problem 1 is a linear problem with the unknown variable 
V2 • The new approximation is then used in B and F and so on, until the convergence 
criteria are satisfied. 

It is important to notice that in the general case Fm depends on Vm-b Vm, Vm+1 
because of the updating of the geometrical configurati~n and the expression of the dis­
sipation. Such a solution called the fixed point method could have some difficulties with 
converging, particularly when the increment of time is large. 

SECOND METHOD 
The discretization leads to an iterative solution of Eqs. (3.12) and (3.13). The com­

putation of the successive approximations of the velocity leads to the evaluation of the 
unknown geometrical configuration. 

When it is found that the problem can be solved by a frontal method, the solution of 
Eqs. (3.12), (3.13) is done by the Newton-Raphson method. On the first step of time the 
initial configuration is known, and V2 is the main unknown variable. For the next step of 
time the first approximation comes from the previous calculation. 

(3.12) H(Vn)c5Vn = -t\g(Vn), 

(3.13) Vn+1 = Vn + c5Vn o 

Assume that Vn is the discretized velocity at iteration n, then the gradient g(Vn) and the 
H(V n) are formulated by the expressions 

(3o14) ((a: 8D -p(r- dvt)) 8vv) dildt- J F: 88Vv dadt' 
{)V d {) [8Dn UT] 

(3o15) (
Otrf}D. OD Op(r- ~) Ov . ODd' (8v)) dildt 
anav 0 av + av av +a 0 av tv av 

J (;::;: ;; + (T +F);; diva(;)) dadt, 
[8ilnUT] 

where diva is the divergence of 8il, [ilnUT] and [8ilnUT] represent, respectively, the 
body space-time domain and its boundary 0 < A :::; 1 is chosen in order to have 

llc5Vn+111 < llc5Vnll (see [1] and [2]) 

REMARKS 

The Hessian is symmetrical: 
if T is independent of v, then the Hessian is independent of the boundary term; 
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if the material is incompressible, then div ( !~) = 0. During the iteration process, 

the material behaviour evolution is controlled and the internal variables, function of the 
history of gradient of velocity (for instance stress hardening), are updated. 

The relations between the solution of Eq. (3.11) at step of time rn and the one of 
Eqs. (3.12), (3.13) are given by 

(3.16) 

(3.17) 

g = BVm+t + (D + A)Vm + CVm-t, 
a 

H = B + --(A + B - F) . 
OVm+l 

In short, the algorithm of solution proposed here can be written as follows. 
Repeat for any step of time 
k = 1, V!n+t = Vm, 
repeat, 

estimated F~), 
solve the equation for unknown variable V~+ 1, 

calculate E = IIV~t;t - V~+tll 
IIV!n+tll 

k = k + 1, 
until (E ::; Ev and g(v) ::; £ 9 ) . 

Until the limit of the deformation process. 

4. Conclusion 

The use of the space-time finite element enables the spatial and time interpolation 
that can describe the relative equilibrium for any time instant inside each time step. 

This approach is particularly interesting for the study of large deformation and for the 
metal forming applications. It leads to improving the velocity formulation, based on an 
instantaneous updated Lagrangian description presented in [1 , 2]. 

The application of the space-time finite element should make it possible to consider any 
problems involving fast motion of the objects, and their internal or boundary behaviour. 
The evolution of mesh can be taken into account inside a step of time when the evolution 
of the deformation process could lead to inaccuracy. This approach with space-time 
finite element allows to increase the increment of time without increasing the number of 
unknown variables. Therefore, at the same accuracy, the computation time decreases in 
comparison to the classical methods. 
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