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On localization phenomena in thermo-elasto-plasticity 

A. BENALLAL (CACHAN) 

THE LOCALIZATION OF DEFORMATION in the form of shear bands is understood as an instability in the 
macroscopic description of inelastic deformation. The effects of thermomechanical couplings in the 
development of these shear bands are analyzed. Conditions for the onset of localization when these 
couJ?.lings are taken into account are given both inside a body and at itc; boundary. These conditions 
are Illustrated by a particular set of constitutive equations. Destabilizing effects due to couplings are 
underlined. 

1. Introduction 

LOCALIZATION OF DEFORMATION in narrow zones or shear bands is very common in 
practice for many solids. A common approach to this phenomenon is to understand it 
as an instability in the macroscopic description of inelastic deformation of the material. 
More precisely, this phenomenon is usually described for rate-independent elastic-plastic 
materials as a bifurcation into modes involving discontinuities of the velocity gradient. 

While the basic principles for the analysis of shear banding were established by HADA
MARD [1] and then applied by THOMAS [2], HILL [3] and MANDEL [4] in various con
texts, the full application to localization phenomena is due to RICE [5, 6] who gave the 
necessary conditions for the occurrence of continuous localization for rate-independent 
materials by considering only the linear comparison solid corresponding to the loading 
branch of the constitutive relation. RUDNICKI and RICE [7], taking into account un
loadings, furnished later the necessary conditions for the appearance of discontinuous 
localization for incrementally bi-linear solids. Recently, BORRE and MAIER (8] showed 
that the above conditions are actuall~ necessary and sufficient, for both continuous and 
discontinuous localizations. Recently, BENALLAL, BILLARDON and GEYMONAT (9] in
troduced the boundary conditions and gave the necessary and sufficient conditions for a 
singular surface of the velocity gradient to appear or to reach the boundary of a solid. In 
[10], the same authors considered also the interactions of shear bands with interfaces. 

The complete analysis of the rate problem, at least for incrementally linear solids, sug
gests the possibility of emergence of other types of localization phenomena such as surface 
modes or interfacial modes which can indeed be interpreted respectively as localization 
of the deformation at either the boundaries or interfaces of solids. 

The general analysis of the linear rate problem, based on results of modern the
ory of linear elliptic boundary value problems was given by BENALLAL, BILLARDON and 
GEYMONAT [10, 11, 12], who showed that for linear solids, the three types of localization 
modes described above correspond exactly to ill-posedness of this rate problem. Indeed, 
ill-posedness occurs if and only if one of the three following conditions fails: 

the ellipticity condition, related to shear band modes, and the mechanical inter
pretation of which is the appearance of stationary acceleration waves [3, 4, 6]; . 

the boundary complementing condition, related to surface modes and to the emer
gence of stationary surface waves such as Rayleigh waves for instance [ 13); 
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16 A. BENALLAL 

the interfacial complementing condition, related to interfacial modes and to the 
existence of stationary interfacial waves such as Stoneley waves [10]. 

The authors also remarked that when these last three conditions are satisfied, a fi
nite number of linearly independent solutions (possibly uniqueness) exist at most; these 
solutions depend moreover continuously on the data and represent diffuse modes of de
formation. 

The same general analysis is not yet available for nonlinear materials and even for the 
incrementally bi-linear materials to be considered in this paper. However, it is possible 
for these last materials, to seek necessary and sufficient conditions for the appearance of 
singular surfaces of the velocity gradient. While it is possible to consider the corresponding 
linear problem and to define localization modes in presence of thermal effects in the same 
lines as above, we only study here the role of thermal effects on shear banding. We note 
however that, to the failure of the complementing conditions underlined before and to 
the corresponding deformation modes, are associated temperature fields localized either 
at the boundary or the interfaces of the solid. These latter fields are readily given by the 
heat equation when the velocity field is determined. 

This paper examines one further aspect of the theory of localization for general rate
independent elastic-plastic solids. For sake of simplicity, we limit ourselves to the small 
strain range and to quasi-static situations; both large strains and dynamic effects can easily 
be incorporated and will be given in a forthcoming paper. The aspect consi~ered here is 
the analysis of the roles of thermal properties and thermo-mechanical couplings on shear 
band localization modes. General constitutive equations are considered here and include 
most of the models existing in the literature and the results obtained are applicable to 
various localization phenomena in the thermomechanical behavior of materials. 

In the usual analysis of shear banding, the velo~ity field is assumed to be and remain 
continuous at the instant of localization. When introducing thermal effects, similar bifur
cation modes from a continuous state of temperature lead to temperature fields which may 
remain or not continuous. Two types of shear banding modes are thus possible depending 
on whether the temperature field is assumed to remain continuous or not. 

The outline of the paper is as follows: in Sec. 2, the constitutive equations and re
lated details are presented with particular emphasis to the heat equation; in Sec. 3, the 
conditions for localization including thermal effects are given both inside the body and at 
its boundary. In the last part, the results are applied to a more specific set of copstitu
tive equations which allows to highlight some of the consequences of thermal effects on 
localization phenomena. 

2. Constitutive relations 

2.1. Constitutive equations 

We consider in the following a general class of rate-independent (elastic-plastic, dam
ageable, ... ) materials in the small strain range. The reversible behavior of such ma
terials is given by the knowledge of the specific free energy tJ! ( £, ai, T) depending on 
the strain tensor £, the absolute temperature T and a set of internal variables ai as
sumed to describe various physical mechanisms. The stress tensor 0', the thermodynam
ical forces Ai associated to the internal variables and the entropy s are obtained by the 
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ON LOCALlZATlON PHENOMENA lN THERMO-ELASTO-Pl.ASTlClTY 17 

state laws: 

(2.1) 
8tJ! 

s=--
8T' 

where p denotes the mass density. The irreversible behavior is characterized by a re
versibility domain (inside which no irreversibility occurs) in the forces space and defined 
by 

(2.2) f(Aj' CXj' T) s; 0. 

The evolution of the internal variables is determined by the potential of irreversibility 
F(Aj, CXj, T) through the following normality rule 

. ' 8F ' J T 'f. T (2.3) CXi = A 8Ai ' A ~ 0' (Aj' CXj, ) s; 0' A (Aj' CXj' ) = 0. 

The heat flux q is taken to obey generalized Fourier's law ~f heat conduction 

(2.4) 

where g is the temperature gradient and K the heat conduction matrix assumed to be 
positive definite in this paper. 

When A is positive, it is computed by the consistency condition j = 0 as 

(2.5) 

8! . [8! 8! l . 
(

--•Aj:£+ ---·fiT) 
A= 8Ai 8T 8Ai 

h ' 

where we have set: 

(2.6) h = 8! • II · . • 8F _ 8! • 8F 
8Ai tJ 8Aj 8cxk 8Ak ' 

82tJ! 82tJ! 82tJ! 
(2· ?) A i = p 8cxj8£ ' IIij = p 8cxi8CXj ' r i = p 8T8cxj . 

The symbol"." is the adequate contraction on the nature of the internal variables CXj; ":" 
is the double tensor contraction and(·), the McAuley bracket. Summation convention on 
the indices is used. 

With the former constitutive relations, the heat equation securing local conservation 
of energy is written as 

(2.8) peT = T d : t + (Tf i + Ai) • ixi + r - Div q, 
-

where r is the internal heat supply, c the specific heat at constant strain. and internal state 
and we have set 

(2.9) 

(2.10) 

(2.11) 
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18 A. 8ENALLAL 

Using the energy equation (2.8) in the consistency condition (2.5) allows to get the plastic 
multiplier A 

(2.12) 

where we have set again 

(2.13) v·D=-
0f ·P · +!_{of- of .·r ·}d 

. 8Ai 1 pc 8T 8Ai ' 1 
' 

(2.14) T [of of ] . (3 = -- --- • r . (r- dtvq) 
pc 8T 8Ai 1 

' 

(2.15) H = h - !. [a f - ~ • r ·] [ (r k + Ak) • a F ]. 
pc 8T 8Ai 1 T 8Ak 

Using the state law (2.1)h the heat equation (2.8), the evolution laws (2.3)1 and the 
formula (2.12), the stress rate may be written as 

(2.16) a=C:t+m, 

where C and m take respectively the forms 

(2.17) 

(2.18) 

with 

(2.19) 

\

D=E+Td®d 
pc 

c = if f < 0 or f = 0 and v : D : t < (3 , 

m= 

H = D _ (D : u); (v : D) if f = 0 and v : D t ~ (3 , 

1 . 
d = -(r- dtvq)d 

pc 
if f < 0 or f = 0 and v : D : t < (3 , 

h = _!_(r- divq) [A+_!_{ of - of • r ·}D: u] 
pc H 8T 8Ai 1 

if f = 0 and v : D : t ~ (3 , 

D: u =-A· • 8F- !.[{r · + Aj} • 8F]A. 
1 8A · pc 1 T 8A · J J 

In the above formulae, C denotes the adiabatic tangent modulus, D the adiabatic elastic 
modulus and E the isothermal elastic modulus. It is convenient for the following to 
define also the isothermal tangent modulus L (relating the stress rate to the strain rate in 
isothermal conditions) as 

(2.20) 
(E : a) ® (b : E) 

L=E-....:....__~-....:....__~ 
h ' 

with 

(2.21) 

We assume in the following that h > 0, H -:f. 0, E and D are positive definite. 

http://rcin.org.pl



ON LOCALIZATION PHENOMENA lN T~RMO-ELASTO-PLASTICITY 19 

3. Conditions for localization 

3.1. The jump conditions 

The conditions for localization which will be derived later express merely the ap
pearance of singular surfaces across which the velocity gradient suffers jumps. In the 
uncoupled problem, these conditions were given by RICE [5, 6], RUDNICKI and RICE [7], 
BORRE and MAIER (8] for localisation inside the body and by BENALIAL, BILLARDON and 
GEYMONAT [9] for localization at the boundary. Conditions for singular surfaces of the 
velocity gradient to reach interfaces can also be established (see BENALLAL, BILLARDON 

and GEYMONAT [10]). As the rate constitutive equations given in (16) are hi-linear (the 
tangent modulus is dependent on the strain rate), two types of localization are usually 
recognized: continuous localization when the body is under plastic loading on each side 
of the singular surface and discontinuous localization when the body is under loading in 
one side and unloading on the other side. 

Let us suppose that a singular surface (S) of the velocity gradient lies in the body. 
This surface divides the body [2 into two parts [21 and [22, where mechanical and thermal 
fields exist denoted by subscripts 1 and 2, respectively. Let us also call n the unit normal to 
( S) directed from [21 to r22• In the presence of such surfaces, it is necessary to consider 
jump conditions across the surface, imposed by the mechanical as well as the thenJJal 
equations. 

If the velocity field v is assumed to be continuous, then it is necessary according to 
the Maxwell kinematical compatibility relation that the jump of the velocity gradient be 
in the form 

(3.1) 
1 

[t(v)] = t(v1)- t(v2) = z[a ® n + n ®a], 

where a is an arbitrary vector for the time being. The balance of linear momentum 
requires that the traction rate must be continuous across (S) and therefore we have 

(3.2) [ <1 • n] = Ut • n - <Tz • n = 0. 

Finally, the conservation of energy leads to the continuity of the heat flux across the 
singular surface ( S), which will be written as 

(3.3) [ q • n] = Qt • n - Qz • n = 0 . 

In the following we will give conditions for localization in two circumstances. We will 
consider the case where no restriction is imposed on the temperature field and the 
case where this field is assumed to remain continuous. These cases will be termed 
case I and case II, respectively. In case I, there will be no restriction on the tempera
ture rate; in case II however, the jump condition (3.3) combined with the continuity of 
the temperature requires that the temperature rate should be continuous across ( S) so 
that 

(3.4) rt1 = t 1 - t 2 = o . 
In what follows, the necessary and sufficient conditions will be given for the singular 
surfaces of the velocity gradient to appear inside or at the boundary of a solid. 
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20 A. BENALLAL 

3.2. Localization inside the body 

CASE I. The necessary and sufficient condition for localization inside the body is 

(3.5) det(n • H · n) ~ 0. 

CASE II. The necessary and sufficient conditions for localization inside the body are 

(3.5) det(n • H · n) ~ 0, 

_ 1 ( Aj) 8F 
(3.6) (n . ~) . [n. D. n] . (n. D : u) + r j + T . 8Aj = 0' 

or equivalently 

(3. 7) det(n · L • n) ~ 0, 

-1 ( Aj) 8F (3.8) (n. ~). [n. E. n] (n. E: a)+ rj + T . 8Aj = 0. 

The proof of (3.5) is similar to that of the uncoupled case (see BORRE and MAIER [8]). In 
Case II, condition (3.6) is obtained by computing the jump of the temperature rate via the 
heat equation (2.8) and setting it to zero according to the jump condition (3.4). Finally, 
the equivalence contained in Case II follows if we notice that conditions (3.6) and (3.8) 
are equivalent which can be easily checked by using relations (2.13), (2.19), (2.21) and the 
expressions of D and E. In conditions (3.5) and (3.6), the equality refers to continuous 
localization, whereas the inequality is related to discontinuous localization. 

It has to be recalled at this stage that condition (3.7) is exactly the necessary and 
sufficient condition for localization in the uncoupled problem. This will allow comparison 
between coupled and uncoupled situations. 

In the general case, the localization is governed by the adiabatic tangent modulus H . It 
has also to be emphasized that the heat conduction properties play no role in the type of 
instabilities investigated here. As it can be seen from relations (2.17), (2.13) and (2.19), the 
adiabatic tangent modulus is generally unsymmetric even when the mechanical behavior 
is such that f = F (associated plasticity); from results of RUDNICKI and RICE [14], it is 
then expected that thermomechanical couplings may lead to destabilizing effects; this will 
be shown in the next section through a simple example. 

As mentioned in the introduction, localization of deformation is linked to acceleration 
waves [3, 6] in the uncoupled approach. When thermal effects are considered, acceleration 
waves (in the sense ofTRUESDELL and NOLL [15]) are linked to Case II localization modes 
where temperature is assumed to remain continuous. One should also remark that in this 
last case, the loss of ellipticity of the equilibrium equations is not sufficient for localization; 
another condition is necessary but can also be interpreted in the same manner as the loss 
of ellipticity of the field equations of a linear solid, the tangent modulus of which is given 
by 

(D : u) ® ~ (E : a) ® ~ 
T = D + ( Aj) 8F = E + ( Aj) 8F . 

f · +- ·-- f · +- ·--) T aA · 1 T 8A · J J 

Notice also that at this type of localization, the loss of ellipticity of the adiabatic tangent 
moduli is equivalent to the loss of ellipticity of the isothermal tangent moduli. 
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3.3. Localization at the boundary 

At a point P of the boundary where only traction F and temperature 0 are imposed, 
the necessary and sufficient conditions for continuous localization are 

CASE I. The necessary and sufficient conditions for continuous localization at the 
boundary are: 

(3.5) 

(3.9) 

(3.11) 

det( n · H • n) = 0 , 

(m· D · n)(n · D · n)- 1 
• (n · D · u) = (m· D : u), 

. . iJ [8! 8! l oF · such that m · L : tu = F - - - - - • r · m • A · • - - Om • A . 
h 8T 8A · 1 1 8A · J J 

CASE Il. The necessary and sufficient conditions for continuous localization at the 
boundary are: 

(3.5) 

(3.6) 

(3.9) 
(3.10) 

det(n • H • n) = 0, 

-1 ( Aj) aF (n·A)·[n·D·n] ·(n·D:u)+ fj+T • aAj =0, 

(m· D · n) · (n · D • n)-1 
• (n · D: u) = (m· D : u), 

3 tu such that 

m · L : t 0 = F - ~ [a f - a f • r ·]m · A · • a F - Om · A . 
h 8T a A i 1 1 a A i 

or equivalently 

(3 .7) det( n · L · n) = 0 , 

(3.8) -1 ( Aj) 8F (n . A) . [n. E. n] • (n. E: a) + r j + T . 8Aj = 0' 

(3.10) (m. E. n). (n • E · n)- 1 
• (n · E: a) = (m· E: a), 

. iJ [8! 8/ l 8F · such that m · L : tu = F - h {)T - a A . • f j m · A j • a A. - Om • A · 
J J 

(3.11) 

Slightly different conditions are available for discontinuous localization. They are omitted 
here for simplicity and can be found in BENALLAL [13]. 

The proof of conditions in Case I are an extension of that given for uncoupled approach 
in BENALLAL, BILLARDON and GEYMONAT [9] if we write the stress rate as 

<1 = E : t + A j • ixj + AT 
so that the traction rate at the boundary leads to 

m • E : t = P - m · A i • ixj - Om · A . 

In Case II, the equivalence and the supplementary conditions are obtained by the same 
arguments as above. 
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22 A. BENALLAL 

4. An example 

This section is devoted to a detailed analysis of localization for a particular set of 
constitutive equations to which the formerly presented conditions are applied. The model 
considered here is based upon two internal variables (the plastic strain tP and the cumu
lated plastic strain p) describing an elastic-plastic material with isotropic hardening, and 
corresponds in the framework described before to a free energy, an elastic domain and a 
plastic potential defined respectively by 

(4.1) 

(4.2) J=F=Ci+R-k, 

..\ and J.-l are the Lame constants, a the thermal expansion coefficient, 1() the reference 
temperature, g(p) being an arbitrary function of p; besides, the von Mises equivalent 
stress is defined by Ci = y!S:S, R is the thermodynamical force associated to p, s is the 
stress deviator and k the yield stress. b is a constant which represents heat capacity when 
all the material properties are temperature-independent. 

The acoustic tensor is easily computed (for details see Appendix 1) as 

(4.3) n · H · n = A(n · n)l + Bn ® n + Cs · n ® s · n + Dn ® s · n + Es · n ® n 

with 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

A =J.-L, 

T.-2 up 
B=..\+J.L+---

pc H' 

C = Ts
2 

_ vq 
pc H' 

D = Trs _ uq 
pc H' 

E = Trs _ vp. 
pc H 

The expressions of c, r, s, u, v, p, q and H are given for convenience in Appendix 1. 

We limit the analysis here to continuous localization only. If we denote by E the 
deviatoric normal stress on the plane of localization and by S the shear stress on the 
same plane, the localization condition (3.5) reduces to 

(4.9) ACE2 + {C(B +A)- ED}S2 + A(E + D)E + A2 +AB= 0 

and represents in general a conical curve in the ( E, S) plane; on other hand (3.7) and 
(3.8) represent, respectively, an ellipse and a straight line. The analysis is first car
ried out when all the thermal as well as the mechanical properties are temperature
independent. 
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4.1. The role or thermo-mechanical couplings 

In this part, the model described above is used to show the consequences of taking 
into account the thermo-mechanical couplings. To separate the effects of these couplings, 
all the mechanical as well as the thermal properties of the material are assumed to be 
temperature-independent. In particular, no thermal softening is considered (l(T) = 1), 
and the thermoelastic properties and the yield stress are kept constant. The expressions 
given above and Appendix 1 are simplified. Indeed, the isothermal and adiabatic tangent 
moduli are easily obtained by 

(4.10) 

(4.11) 

2J-L + g" 
It is worthwhile to notice here that the last expression is formally similar to the tangent 
modulus used by RUDNICKI and RICE [14] in their analysis of localization for pressure
sensitive dilatant materials. The mater'al obtained here belongs to this kind of material 
with Lame constants given by 

(4.12) 

and frictional w* and dilatational 1r* parameters (the parameters J.L and {3 of [14]) given 
respectively by 

(4.13) w* = 0, * 3ka 
7r = . 

b + 3T(3.-\ + 2J.L )a2 

This remark emphasizes to some extent the analogy between thermal effects and those 
of pressure and dilatancy. It allows also to transfer to our analysis some of the results 
obtained by RUDNICKI and RICE [14]. We prefer here to use another approach which 
can be used in the more general case where the mechanical and thermal properties are 
temperature-dependent. This approach is essentially geometrical. 

Let us denote in the following by E* the deviatoric normal stress on the plane of 
localization and by S* the shear stress on this same plane; these stresses are respectively 
defined by 

(4.14) E* = n · s • n, (S*)2 = (sn) · (sn)- (n · s · n)2 

and byE and S their normalized values with respect to the von Mises equivalent stress 7f. 
From (4.10), (4.11), localization conditions (3.5), (3.7) and (3.8) given above become 

respectively: 

( 4.15) 

(4.16) 
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(4.17) 

where Z is defined by 

(4.18) 

E = (A+ 2p,)k 
2JLnT(3A + 2p,) ' 

z = (3A + 2p, )ka . 
2bJL 

A. BENAUAL 

It is then interesting to carry on the analysis in the "reduced Mohr's plane" ( E = 

E__* , S = s_:) depicted in Fig.1 where relation ( 4.15) and ( 4.16) represent two ellipse~ 
()' ()' 

(El) and (Ell) whereas relation ( 4.17) is a straight line ( L) parallel to the S axis. The 
size of the ellipse is linked to the "isothermal" hardening modulus - h = g" (p ); the larger 
this hardening modulus, the larger are the ellipses. 

Ellipse (EO 
Condition (Cl) 
det(n.H.n)=O 

s 

Ellipse(EIO 
Condition (C3) 
det(n.L.n)=O 

fiG. 1. 

Line (L) 
Condition (C4) 

From elementary Mohr analysis, it is concluded that solutions n exist for the localiza
tion problem for a given state of stress and a given temperature if and only if: 

the ellipse (El) intersects the dashed area or its boundary in Case I; 
the ellipse (Ell) intersects the line ( L) inside or at the boundary of this dashed 

area in Case ll. 
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Let the state of stress a and the temperature T be fixed and assume for simplic
ity that the principal stresses are distinct. The former remarks allow for the following 
conclusions: 

in Case I, the largest hardening modulus h1 leading to localization is obtained when 
the ellipse (El) is tangential to the largest Mohr circle (C) and is given by 

h1 !-lZ2 1-lz N _ (3.-\* + 21-l)(N )2. 
(4.19) 21-l = 2(.-\* + 2p,)(.-\* + p,) .-\* + 1-l 2 2(.-\* + p,) 2 ' 

in Case II, the maximum hardening modulus h11 for localization is obtained when 
the line (L) and ellipse (Ell) intersect on the circle (C). It is clear from Fig. 1 that this 
is possible only when 

(4.20) (.-\ + 2p,)k < N 
2!-loT(3.-\ + 2!-l) -

1
' 

in such a case, this modulus is given by 

(4.21) hu _ 2[N (.-\ + 2!-l)k ]
2 

21-l - - 2 + 2!-l(3.-\ + 2p, )oT 

The maximum hardening h for localization in the uncoupled isothermal problem is 
obtained when the ellipse (Ell) is tangential to the circle (C), which gives 

(4.22) !!:_ = - (3.-\ + 21-l) (N2) 2 • 

21-l 2(.-\ + /-l) 

In the above relations, N 1 = s1(ff, N2 = s2/a and N3 = s3/a are the reduced deviatoric 
principal stresses and s 1, s2 and s3 are the deviatoric principal stresses, i.e. the eigenvalues 
of the stress deviator. These eigenvalues are arranged in such a way that St ~ s2 ~ s3. 

When the principal stresses are distinct, it follows then that the normal to the plane of 
localization is perpendicular to the s2-direction. If two of the principal stresses are equal, 
only the angle between the normal to the critical plane and the third of the principal 
axes is uniquely determined. Conclusions similar to those of RUDNICKI and RICE (14] are 
drawn. 

The normal n to the surface of localization, which lies in the extreme principal plane 
of stresses can also be obtained by a simple Mohr analysis and the angle fJ between n and 
the greatest principal stress is given by 

(4.23) 

which leads in the two cases to the results 

CASE I 

(4.24) (tg 20)2 = 
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26 A. BENAu..AL 

CASEII 

[
NI; N3]

2 
[ (A+ 2~-t)k (NI+ N3)]

2 

(tg 20)2 = 2Jt(3A + 2~-t)aT 2 

[ 
(A+2~-t)k NI+N3]

2 

2~-t(3A + 2Jt)aT 2 

(4.25) 

A simple comparison of relations ( 4.22) and ( 4.19) reveals the destabilizing effects of 
thermomechanical couplings; indeed, uncoupled (or isothermal) analysis gives a negative 
critical hardening modulus while this modulus may become positive when using a coupled 
approach. This is mainly due to the asymmetry of the adiabatic tangent modulus which 
governs this localization, as already mentioned earlier and expected also from the results 
of RUDNICKI and RICE [14]. There are cases where uncoupled analysis do not predict 
localization whereas the coupled approach does for the same state of stress and tempera
ture. It is to be emphasized also that these destabilizing effects are due to the only fact of 
taking into account thermomechanical properties which were introduced in the example. 
Of course, these destabilizing effects must be evaluated and assessed in order to see their 
practical importance. 

Relation ( 4.19) exemplifies the roles of each of the constitutive parameters on the 
critical hardening modulus for a given stress state and a given temperature. For a given 
temperature, this modulus has a parabolic variation with stress state through the par
ameter N 2; for a fixed state of stress, the role of the temperature is involved through Z 
and the adiabatic Lame parameter A*; however, for many materials, the adiabatic elastic 
constants are only slightly different from the isothermal ones. Also of some importance 
is the role of thermal expansion and the yield stress k included in Z: the larger the yield 
stress, the larger the critical hardening modulus. 

Now, as regards to localization at the boundary, the complete analysis is not possible 
here and will be given elsewhere. Let us just mention the role of boundary conditions in 
the simple case of a tension test. Condition (3.9) leads to 

A 3T(3A + 2~-t)2a2 

if]ka 3 + 4~-t + b 
-------------- + --------------~--~~ 
b + 3T(3A + 2~-t)a2 \ 3T(3A + 2~-t) 2a2 

3A + 2jt + b (tg 8)2 = _____________ ..,.___ __ 

VJka 
1 - -------------

b + 3T(3A + 2~-t )a2 

(4.26) 

For typical steels, A* ~ A (the adiabatic elastic modulus is slightly different from the 
isothermal elastic modulus) and the ratio ka/b is of the order 10-3 so that formula 
( 4.26) reduces to 

(4.27) 
2-v 

(tg8)2 = --
1+v 

which is exactly the relation given in [9] and which corresponds to condition (3.10). This 
means that thermomechanical couplings have a small influence on the localization direc
tions at the boundary, at least for these materials and for this state of stress. v is the 
Poisson ratio. 
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4.2. The role of thermal softening 

In this part, the localization conditions are analysed by adding to thermo-mechanical 
couplings only the thermal softening. This thermal softening can be due to the decrease 
of elastic moduli or yield properties with temperature. We assume in the following, for 
the sake of simplicity, temperature dependence of the isotropic hardening (through the 
function l(T)) and the yield stress (through k(T)) only. The thermoelastic properties are 
considered to be constant. In this case, we have again s = 0 and (see Appendix 1), the 
adiabatic tangent modulus becomes 

-[ T(3A + 2J-L)2o 2
] 

(4.28) Hijkl = A+ JL + b + lg" hiihkl + J-L(hi khil + hilhjk) 

{
2p (3A+ 2p)aT(I'g'+~) } {2J.L (3A+2J-L)aT(l'g'+k') } 
?jSi j + b + ["g hij • 7jSkl + b + ["g hkl 

2J.L + lg" + T [l'g' + kl[l'g' + k'] 
b+l"g T 

A similar analysis to that of Sec. 4.1 can be carried out and the same qualitative conclu
sions can be reached. In particular, the critical hardening modulus at localization under 
adiabatic conditions is given by 

(4.29) 13:! = 3A* + 2J.L (w _ ,8)2 _ (3A* + 2J.L) [2N + !(w + ,8)]
2 

2J.L 4(A* + 2J.L) 8(-X* + J.L) 3 

(3A + 2p)aT [~ + l'g'] [k' + l'g'] 

2J.L(3.X* + 2J.L) b + lg" 

w = 3-X + 2J-L aT [k' + l' '] 
3A* + 2J-Lb + lg" g ' 

a 3A + 2Jt aT [ k l' '] 
fJ = 3A * + 2J-L b + lg" T + g ' 

from where one can easily see the destabilizing effects of thermal softening (compare with 
relation (4.19)). 

4.3. The general case 

When all the mechanical as well as the thermal properties are assumed to vary arbi
trarily with temperature, the analysis is much more involved and is not yet completed. It 
has not been considered here. 

5. Conclusions 

We have analysed the role of thermal effects and thermomechanical couplings on the 
development of shear bands and their interactions with boundaries of solids. Their inter
actions with interfaces in presence of thermal effects can also be incorporated in a simple 
way. It has been emphasized that for the type of analysis used here, heat conduction 
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properties have no influence on this development and that the adiabatic properties deter
mine the onset of these shear bands. The effects of heat conduction can be incorporated 
by a stability analysis and will be addressed elsewhere. 

We have illustrated the destabilizing effects of thermomechanical couplings and un
derlined the differences between the coupled and uncoupled approaches. Destabillzing 
effects due to thermal expansion and thermal softening were underlined. 

Although for practical reasons, Case I is more important than Case 11, the simple 
example analysed shows that the latter one is possible for given stress and temperature 
ranges. The conditions for localization given before show that an uncoupled analysis 
furnishes a conservative prediction for Case 11 while this is not necessarily true for the 
Case I by the example. 

Finally, the localization conditions obtained can be interpreted as local failure criteria 
or at least as indicators of rupture under general thermomechanical loadings which is still 
an open problem. For isothermal problems, this has already been suggested by RUDNICKI 
and RICE [14] and BILLARDON and DOGHRI [16]. 

Appendix 1 

We give in this appendix the results of the various computations involved in the ap
plication of the localization conditions to the model described in Sec. 4. 

a = - (3.-\ + 2p, )a(T - 1!1) , 

~ = rl +ss, 

_ , a(3.X' + 2p') { 2(J-LA' - AJ-L') p,' } 
r - a - + + - Tr a , 

3.-\ + 2J-L 2fL(3.-\ + 2J-L) 3p, 

1-l' 
s = -, 

1-l 
D: u =ut+ vs, 

r ( s ) (z' , k -) u = - pc 1' + '3 Tr a g + T - sa , 

2p, r s (z' , k -) v = (J - pc g + T - sa ' 

v: D =pi+ qs, 

T ( s ) l' ' k' p = -- r + - Tr a ( g + - sa) , 
pc 3 

2ft 'ts (z' , k -) q = -=- - - g + - - S(J ' 
a pc T 

h = 2J-L + lg"' 

H =2p,+lg"+ T{l'g'+ k -sa}{l'g'+k'-sa}. 
pc T 

In these relations, the prime (') denotes derivative of a function of a single variable with 
respect to this variable. Double prime(") is the second derivative. s is the stress deviator, 
1 the unit tensor and Tr denotes the trace operator. 
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